On Certain Topological Structures of Normed Space Valued Generalized Orlicz Function Space

Narayan Prasad Pahari
Central Department of Mathematics, Tribhuvan University, University Campus, Kirtipur, Kathmandu, Nepal

Abstract: The aim of this paper is to introduce and study a new class \( \ell_{\Omega} (S, (T, \| . \|, \Omega, u) \) of normed space valued function space using Orlicz function \( \Omega \) as a generalization of well known basic bounded sequence space \( \ell_{\infty} \) studied in functional analysis. Besides the investigation of linear space structure of the class \( \ell_{\Omega} (S, (T, \| . \|, \Omega, u) \), our primarily interest is to explore the conditions pertaining to the containment relation of the class \( \ell_{\Omega} (S, (T, \| . \|, \Omega, u) \) in terms of different values of \( u \).

Keywords: Orlicz function, Orlicz Space, Normed Space, Solid space.

1. Introduction

So far, a good number of research works have been done on various types of Orlicz sequence space and Orlicz function spaces. In papers [1], [2], [3], [4], [5], [6], [10], [11], [12], [13], [14], [15], [16], [17], [18] the algebraic and topological properties of several sequence and function spaces using Orlicz function have been introduced and studied as the generalizations of well known sequence spaces and function spaces.

We begin with recalling some notations and basic definitions that are used in this paper.

Definition 1.1: A function \( \Omega : [0, \infty) \rightarrow [0, \infty) \) is called an Orlicz function if it is continuous, non decreasing and convex with \( \Omega (0) = 0, \Omega (s) > 0 \) for \( s > 0 \), and \( \Omega (s) \rightarrow \infty \) as \( s \rightarrow \infty \).

An Orlicz function \( \Omega \) can be represented in the following integral form

\[
\Omega (s) = \int_0^s q(t) \, dt
\]

where \( q \), known as the kernel of \( \Omega \), is right-differentiable for \( t \geq 0 \), \( q(0) = 0 \), \( q(t) > 0 \) for \( t > 0 \), \( q \) is non decreasing, and \( q(t) \rightarrow \infty \) as \( t \rightarrow \infty \) (see, [7]).

Definition 1.2: An Orlicz function \( \Omega \) is said to satisfy \( \Delta_2 \)-condition for all values of \( t \), if there exists a constant

\[
K > 0 \text{ such that } \Omega (2t) \leq K \Omega (t), \text{ for all } t \geq 0.
\]

The \( \Delta_2 \)-condition is equivalent to the satisfaction of the inequality

\[
\Omega (Lt) \leq KL \Omega (t)
\]

for all values of \( t \) for which \( L > 1 \), (see,[7]).
Definition 1.5: Let $T$ be a normed space and
$$V(T) = \{ \phi : S \to T \}$$
be the classes of $T$-valued functions. Then $V(T)$ is called solid if $\phi \in V(T)$ and scalars $\alpha(s), s \in S$ such that $|\alpha(s)| \leq 1, s \in S$ implies $\alpha(s)\phi(s) \in V(T)$.

2. The Class of Normed Space Valued Functions

Let $S$ be an arbitrary non empty set (not necessarily countable) and $\mathcal{T}(S)$ be the collection of all finite subsets of $S$ directed by inclusion relation. Let $(T, \| \cdot \|)$ be a Banach space over the field of complex numbers $\mathbb{C}$. We shall write $u, v$ for the functions on $S \to \mathbb{C} - \{0\}$ and the collection of all such functions will be denoted by $N(S, \mathbb{C} - \{0\})$.

We now introduce the following new class of Banach space $T$-valued functions using Orlicz function $\Omega$:
$$\mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u) = \{ \phi : S \to T \text{ such that } \sup_{s \in S} \Omega\left(\frac{\| u(s) \phi(s) \|}{r}\right) < \infty, \text{ for some } r > 0 \}.$$ 

If in the definition of $\mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$ the phrase ‘for some $r > 0$’ is replaced by ‘for every $r > 0$’ then we denote this subclass by $\mathcal{L}_1(S, (T, \| \cdot \|), \Omega, \alpha)$.

Thus
$$\mathcal{L}_1(S, (T, \| \cdot \|), \Omega, u) = \{ \phi : S \to T : \sup_{s \in S} \Omega\left(\frac{\| u(s) \phi(s) \|}{r}\right) < \infty, \text{ for every } r > 0 \}.$$ 

Further when $u : S \to \mathbb{C} - \{0\}$ is a function such that $u(s) = 1$ for all $s$, then $\mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$ will be denoted by $\mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega)$. $\Omega(S, (T, \| \cdot \|), \Omega, u)$ forms a linear space over the field of complex numbers $\mathbb{C}$ with respect to the point wise vector operations.

3. Main Results

In this section, we study the linear space structure of the class $\mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$. As far as the linear space structures of the class $\mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$ over the field of complex numbers $\mathbb{C}$ are concerned, we shall take point-wise vector operations, i.e., for any $\phi, \psi \in \mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$, we have

$$(\phi + \psi)(s) = \phi(s) + \psi(s),$$

and
$$(\alpha \phi)(s) = \alpha \phi(s), s \in S, \alpha \in \mathbb{C}.$$ 

Moreover, we shall denote zero element of $\mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$ by $0$ by which we mean the function $\theta : S \to T$ such that $\theta(s) = 0$ for all $s \in S$.

Theorem 3.1: The class $\mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$ forms a solid.

Proof:
Let $\phi \in \mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$ and $r > 0$ be associated with $\phi$. Then we have

$$\sup_{s \in S} \Omega\left(\frac{\| u(s) \phi(s) \|}{r}\right) < \infty.$$ 

Now, if we take scalars $\alpha(s), s \in S$ such that $|\alpha(s)| \leq 1$, then using non-decreasing property of $\Omega$, we have

$$\sup_{s \in S} \Omega\left(\frac{\| u(s) \phi(s) \|}{r}\right) \leq \Omega\left(\frac{\| u(s) \phi(s) \|}{r}\right) < \infty.$$ 

This shows that $\phi \in \mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$ and hence $\mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$ forms a solid.

Theorem 3.2: The class $\mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$ forms a linear space over the field of complex numbers $\mathbb{C}$ with respect to the point wise vector operations.

Proof:
Let us suppose that $\phi, \psi \in \mathcal{L}_\infty(S, (T, \| \cdot \|), \Omega, u)$, $r_1 > 0$ and $r_2 > 0$ associated with $\phi$ and $\psi$ respectively and $\alpha, \beta \in \mathbb{C}$. Then we have

$$(3.2) \sup_{s \in S} \Omega\left(\frac{\| u(s) \phi(s) \|}{r_1}\right) < \infty$$

and

$$(3.3) \sup_{s \in S} \Omega\left(\frac{\| u(s) \psi(s) \|}{r_2}\right) < \infty.$$ 

We now set $r_3$ such that

$$r_3 = \max\left(2|\alpha| r_1, 2|\beta| r_2\right).$$

So that

$$\frac{|\alpha|}{r_3} \leq \frac{1}{2} \frac{1}{r_1} \text{ and } \frac{|\beta|}{r_3} \leq \frac{1}{2} \frac{1}{r_2}.$$ 

For such $r$, using non-decreasing and convex properties of $\Omega$ we have

$$\Omega\left(\frac{\| u(s) \alpha \phi(s) + \beta \psi(s) \|}{r_3}\right)$$
On the other hand, if \( r_2 < r_1 \) then \( r_1 \geq r_2 \).

Let \( r_2 > 0 \). If \( r_1 > 0 \), then

\[
\sup_{s \in S} \Omega \left( \frac{\| u(s) \phi(s) \|}{r_1} \right) \leq \frac{1}{2} \sup_{s \in S} \Omega \left( \frac{\| u(s) \phi(s) \|}{r_1} \right) + \frac{1}{2} \sup_{s \in S} \Omega \left( \frac{\| u(s) \psi(s) \|}{r_2} \right) < \infty,
\]

and shows that

\[
\alpha \phi + \beta \psi \in \ell_{\infty} (S, (T, \| . \|), \Omega, u).
\]

Hence, \( \ell_{\infty} (S, (T, \| . \|), \Omega, u) \) forms a linear space over the field of complex numbers \( C \).

**Theorem 3.3:** If \( \Omega \) satisfies the \( \Delta_2 \)-condition then we have

\[
\ell_{\infty} (S, (T, \| . \|), \Omega, u) = \ell_1 (S, (T, \| . \|), \Omega, u).
\]

**Proof:**

Obviously by definition of \( \ell_1 (S, (T, \| . \|), \Omega, u) \), \( \ell_{\infty} (S, (T, \| . \|), \Omega, u) \subseteq \ell_1 (S, (T, \| . \|), \Omega, u) \).

Hence to prove the assertion completely, it is sufficient to show that

\[
\ell_{\infty} (S, (T, \| . \|), \Omega, u) \subseteq \ell_1 (S, (T, \| . \|), \Omega, u).
\]

Suppose \( \phi \in \ell_{\infty} (S, (T, \| . \|), \Omega, u) \) then for some \( r_1 > 0 \),

\[
\sup_{s \in S} \Omega \left( \frac{\| u(s) \phi(s) \|}{r_1} \right) < \infty.
\]

Let \( r_2 > 0 \). If \( r_1 \leq r_2 \), then clearly by the non decreasing property of \( \Omega \), we have

\[
\Omega \left( \frac{\| u(s) \phi(s) \|}{r_2} \right) < \Omega \left( \frac{\| u(s) \phi(s) \|}{r_1} \right)
\]

and hence

\[
\sup_{s \in S} \Omega \left( \frac{\| u(s) \phi(s) \|}{r_2} \right) \leq \sup_{s \in S} \Omega \left( \frac{\| u(s) \phi(s) \|}{r_1} \right) < \infty.
\]

On the other hand, if \( r_2 < r_1 \), then \( \frac{r_1}{r_2} > 1 \).

Since, \( \Omega \) satisfies the \( \Delta_2 \)-condition, there exists a constant \( K > 0 \) such that

\[
\Omega \left( \frac{\| u(s) \phi(s) \|}{r_2} \right) = \Omega \left( \frac{r_1}{r_2} \frac{\| u(s) \phi(s) \|}{r_1} \right) \leq K \frac{r_1}{r_2} \Omega \left( \frac{\| u(s) \phi(s) \|}{r_1} \right)
\]

for each \( s \in S \), which implies that

\[
\sup_{s \in S} \Omega \left( \frac{\| u(s) \phi(s) \|}{r_2} \right) < \infty, \text{ for every } r_2 > 0.
\]

This shows that

\[
\ell_{\infty} (S, (T, \| . \|), \Omega, u) \subseteq \ell_1 (S, (T, \| . \|), \Omega, u)
\]

and hence

\[
\ell_{\infty} (S, (T, \| . \|), \Omega, u) = \ell_1 (S, (T, \| . \|), \Omega, u).
\]

This completes the proof.

**Corollary 3.4:** If \( \Omega \) satisfies the \( \Delta_2 \)-condition, then \( \ell_1 (S, (T, \| . \|), \Omega, u) \) forms linear space over \( C \).

**Proof:**

Proof follows from the immediate consequence of Theorems 3.2 and 3.3.

In the followings, we shall investigate some of the results that characterize the condition pertaining to the containment relation of the class \( \ell_{\infty} (S, (T, \| . \|), \Omega, u) \) in terms of different values of \( u \) and thereby derive the condition of their equality.

**Theorem 3.5:** For any \( u, v \in N (S, C - \{0\}) \),

\[
\ell_{\infty} (S, (T, \| . \|), \Omega, u) \subseteq \ell_{\infty} (S, (T, \| . \|), \Omega, v)
\]

if

\[
\lim \inf_{s \rightarrow \infty} \left| \frac{u(s)}{v(s)} \right| > 0.
\]

**Proof:**

Assume that

\[
\lim \inf_{s \rightarrow \infty} \left| \frac{u(s)}{v(s)} \right| > 0.
\]

Then there exists a positive constant \( m \) such that

\[
m | v(s) | < | u(s)|,
\]

for all but finitely many \( s \in S \).

Let \( \phi \in \ell_{\infty} (S, (T, \| . \|), \Omega, u) \) and \( r_1 > 0 \) be associated with \( \phi \), so that

\[
\sup_{s \in S} \Omega \left( \frac{\| u(s) \phi(s) \|}{r_1} \right) < \infty.
\]

Let us choose \( r \) such that \( r_1 < m r \). For such \( r \), using non decreasing property of \( \Omega \), we have

\[
\Omega \left( \frac{\| v(s) \phi(s) \|}{r} \right) = \Omega \left( \frac{v(s) \| \phi(s) \|}{r} \right) \leq \Omega \left( \frac{u(s) \| \phi(s) \|}{mr} \right) \leq \Omega \left( \frac{\| u(s) \phi(s) \|}{r_1} \right).
\]
and hence in view of (3.4), we have
\[
\sup_{s \in S} \Omega \left( \frac{\|v(s) \phi(s)\|}{r} \right) \leq \sup_{s \in S} \Omega \left( \frac{\|u(s) \phi(s)\|}{r_1} \right) < \infty.
\]
This shows that \( \phi \in \ell_r(S, (\|\cdot\|), \Omega, u) \) and hence \( \ell_\infty(S, (\|\cdot\|), \Omega, u) \subseteq \ell_r(S, (\|\cdot\|), \Omega, v) \).

This completes the proof.

**Theorem 3.6:** For any \( u, v \in N(S, C - \{0\}) \),
\[
\ell_\infty(S, (\|\cdot\|), \Omega, u) \subseteq \ell_\infty(S, (\|\cdot\|), \Omega, v),
\]
then \( \lim \inf_k \left| \frac{u(s)}{v(s)} \right| > 0 \).

**Proof:**
Assume that
\[
\lim \inf_k \left| \frac{u(s)}{v(s)} \right| = 0.
\]
Then there exists a sequence \( < s_k > \) in \( S \) of distinct points such that for each \( k \geq 1 \), we have
\[
(3.5) \ k \ | u(s_k)| < | v(s_k)|
\]
We now choose \( t \in T \) and \( \|t\| = 1 \) and define \( \phi : S \to T \) by
\[
(3.6) \ \phi(s) = \begin{cases} \{u(s_k)^{-1} t, \text{ for } s = s_k, k = 1, 2, 3, \ldots \}, & \text{if } s = s_k, k \geq 1, \\ \theta, & \text{otherwise}. \end{cases}
\]
Let \( r > 0 \). Then we have
\[
\sup_{s \in S} \Omega \left( \frac{\|u(s) \phi(s)\|}{r} \right) = \sup_{k \geq 1} \Omega \left( \frac{\|u(s_k) \phi(s_k)\|}{r} \right)
\]
\[
= \Omega \left( \frac{\|t\|}{r} \right)
\]
\[
= \Omega \left( \frac{1}{r} \right)
\]
\[
< \infty.
\]
This clearly shows that \( \phi \in \ell_r(S, (\|\cdot\|), \Omega, u) \). But on the other hand, in view of (3.5) and (3.6), we have
\[
\sup_{s \in S} \Omega \left( \frac{\|v(s) \phi(s)\|}{r} \right) = \sup_{k \geq 1} \Omega \left( \frac{\|v(s_k) \phi(s_k)\|}{r} \right)
\]
\[
= \sup_{k \geq 1} \Omega \left( \frac{v(s_k)}{u(s_k)} \right) \|u\|
\]
\[
\geq \sup_{k \geq 1} \Omega \left( \frac{1}{r} \right)
\]
\[
= \infty.
\]
This shows that \( \phi \notin \ell_\infty(S, (\|\cdot\|), \Omega, v) \), a contradiction. This completes the proof.

When the Theorems 3.5 and 3.6 are combined, we get:

**Theorem 3.7:** For any \( u, v \in N(S, C - \{0\}) \),
\[
\ell_\infty(S, (\|\cdot\|), \Omega, u) \subseteq \ell_\infty(S, (\|\cdot\|), \Omega, v)
\]
if and only if
\[
\lim \inf_k \left| \frac{u(s)}{v(s)} \right| > 0.
\]

**Corollary 3.8:** Let \( u \in N(S, C - \{0\}) \). Then
\[
\ell_\infty(S, (\|\cdot\|), \Omega, u) \subseteq \ell_\infty(S, (\|\cdot\|), \Omega, v)
\]
if and only if \( \lim \inf_k \left| \frac{u(s)}{v(s)} \right| > 0 \).

**Proof:**
By considering the function \( v \) on \( S \) such that \( v(s) = 1 \) for all \( s \in S \) in Theorem 3.7, one can easily obtain the assertion.

In the following example, we show that inspite of the satisfaction of the condition \( \lim \inf \left| \frac{u(s)}{v(s)} \right| > 0 \) of Theorem 3.7, \( \ell_\infty(S, (\|\cdot\|), \Omega, u) \) may strictly be contained in \( \ell_\infty(S, (\|\cdot\|), \Omega, v) \).

**Example 3.9:**
Let \( S \) be any set and \( < s_k > \) be a sequence of distinct points of \( S \). Take \( t \in T \) such that \( \|t\| = 1 \) and define \( \phi : S \to T \) by
\[
(3.7) \ \phi(s) = \begin{cases} \{t, \text{ if } s = s_k, k = 1, 2, 3, \ldots \}, & \text{if } s = s_k, k \geq 1, \\ \theta, & \text{otherwise}. \end{cases}
\]
Further if \( s = s_k, u(s_k) = k, v(s_k) = 1 \) for all values of \( k \) and \( u(s) = 3, v(s) = 2 \) otherwise.

Then for \( s = s_k \) and \( k \geq 1 \), we have
\[
\frac{u(s)}{v(s)} = k \text{ for all values of } k,
\]
and
\[
\frac{u(s)}{v(s)} = 3\frac{1}{2} \text{ otherwise}.
\]
Therefore \( \lim \inf_k \left| \frac{u(s)}{v(s)} \right| > 0 \).

But taking \( r > 0 \) we see below that
\[
\sup_{s \in S} \Omega \left( \frac{\|v(s) \phi(s)\|}{r} \right) = \sup_{k \geq 1} \Omega \left( \frac{\|v(s_k) \phi(s_k)\|}{r} \right)
\]
\[
= \Omega \left( \frac{k t}{r} \right)
\]
\[
< \infty.
\]
This shows that \( \phi \notin \ell_\infty(S, (\|\cdot\|), \Omega, v) \). But on the other hand, in view of (3.7), we have
\[
\sup_{k \geq 1} \Omega \left( \frac{u(s_k) \phi(s_k)}{r} \right) = \sup_{k \geq 1} \Omega \left( \frac{k t}{r} \right)
\]
\[
= \infty.
\]
implies that \( \phi \notin \ell_\infty(S, (\|\cdot\|), \Omega, u) \).

This shows that inspite of the satisfaction of the condition of Theorem 3.7, \( \ell_\infty(S, (\|\cdot\|), \Omega, u) \) is strictly contained in \( \ell_\infty(S, (\|\cdot\|), \Omega, v) \).
Theorem 3.10: Let \( u, v \in N(S, C - \{0\}) \), 
\( \ell_\infty (S, (T, \| . \|), \Omega, v) \subseteq \ell_\infty (S, (T, \| . \|), \Omega, u) \) 
if \( \limsup_s \left\{ \frac{|u(s)|}{|v(s)|} \right\} < \infty \).

Proof:

Assume that 
\( \limsup_s \left\{ \frac{|u(s)|}{|v(s)|} \right\} < \infty \),
then there exists a constant \( d > 0 \) such that 
\( |u(s)| < d \cdot |v(s)| \)
for all but finitely many \( s \in S \).

Let \( \phi \in \ell_\infty (S, (T, \| . \|), \Omega, v) \) and \( r_1 > 0 \) is associated with \( \phi \). Then
\( (3.8) \quad \sup_{s \in S} \Omega \left( \frac{|u(s) \phi(s)|}{r_1} \right) < \infty \).

Let us choose \( r > 0 \) such that \( d \cdot r_1 \leq r \), then for such \( r \), using non decreasing property of Orlicz function \( \Omega \) we have
\( \Omega \left( \frac{|u(s) \phi(s)|}{r} \right) \leq \Omega \left( \frac{|u(s)|}{r} \right) \)
\( \leq \Omega \left( \frac{|v(s)|}{r} \right) \)
\( \leq \Omega \left( \frac{(v(s))^{-1} \cdot t'}{r} \right) \)
and hence in view of (3.8),
\( \sup_{s \in S} \Omega \left( \frac{|u(s) \phi(s)|}{r} \right) \leq \sup_{s \in S} \Omega \left( \frac{|v(s) \phi(s)|}{r} \right) < \infty \).

This shows that \( \phi \in \ell_\infty (S, (T, \| . \|), \Omega, u) \) and hence
\( \ell_\infty (S, (T, \| . \|), \Omega, v) \subseteq \ell_\infty (S, (T, \| . \|), \Omega, u) \).
This completes the proof.

Theorem 3.11: Let \( u, v \in N(S, C - \{0\}) \), 
\( \ell_\infty (S, (T, \| . \|), \Omega, v) \subseteq \ell_\infty (S, (T, \| . \|), \Omega, u) \),
then \( \limsup_s \left\{ \frac{|u(s)|}{|v(s)|} \right\} < \infty \).

Proof:

Assume that 
\( \ell_\infty (S, (T, \| . \|), \Omega, v) \subseteq \ell_\infty (S, (T, \| . \|), \Omega, u) \)
but
\( \limsup_s \left\{ \frac{|u(s)|}{|v(s)|} \right\} = \infty \).

Then we can find a sequence \( < s_k > \) of distinct points in \( S \) such that for each \( k \geq 1 \),
\( (3.9) \quad |u(s_k)| > k \cdot |v(s_k)| \).

We now choose \( t \in T \) and \( \| t \| = 1 \) and define
\( \phi : S \rightarrow T \) by
\( (3.10) \quad \phi(s) = \frac{(v(s_k))^{-1} \cdot t}{\| v(s_k) \|}, \text{ for } s = s_k, \ k = 1, 2, 3, \ldots, \text{ and } \phi(s) = 0, \text{ otherwise.} \)

Let \( r > 0 \). Then we have
\( \sup_{s \in S} \Omega \left( \frac{|v(s) \phi(s)|}{r} \right) = \sup_{k \geq 1} \Omega \left( \frac{|v(s_k) \phi(s_k)|}{r} \right) \)
\( = \Omega \left( \frac{1}{r} \right) \)
\( < \infty \).

This shows that \( \phi \in \ell_\infty (S, (T, \| . \|), \Omega, v) \).

If on the other hand in view of (3.9) and (3.10), we have
\( \sup_{s \in S} \Omega \left( \frac{|u(s) \phi(s)|}{r} \right) \leq \sup_{k \geq 1} \Omega \left( \| v(s_k) \phi(s_k) \| \right) \)
\( \leq \frac{1}{k} \Omega \left( \frac{1}{r} \right) \)
\( \leq \frac{1}{k} \Omega (1) \)
\( = \infty \),
implies that \( \phi \notin \ell_\infty (S, (T, \| . \|), \Omega, u) \). This leads to a contradiction and completes the proof.

When the Theorems 3.10 and 3.11 are combined, we get:

Theorem 3.12: Let \( u, v \in N(S, C - \{0\}) \), 
\( \ell_\infty (S, (T, \| . \|), \Omega, v) \subseteq \ell_\infty (S, (T, \| . \|), \Omega, u) \)
if and only if
\( \limsup_s \left\{ \frac{|u(s)|}{|v(s)|} \right\} < \infty \).

Corollary 3.13: Let \( u, v \in N(S, C - \{0\}) \). Then
\( \ell_\infty (S, (T, \| . \|), \Omega) \subseteq \ell_\infty (S, (T, \| . \|), \Omega, u) \)
if and only if \( \limsup_s \left\{ \frac{|u(s)|}{|v(s)|} \right\} < \infty \); and
(3.13) \( \limsup_s \left\{ \frac{|u(s)|}{|v(s)|} \right\} < \infty \).

Proof:

By considering the function \( v \) on \( S \) such that
\( v(s) = 1 \) for all \( s \in S \) in Theorems 3.12, one can easily obtain the assertion.

If Theorems 3.7 and 3.12 are combined, we get:

Theorem 3.13: If \( u, v \in N(S, C - \{0\}) \), then
\( \ell_\infty (S, (T, \| . \|), \Omega, u) = \ell_\infty (S, (T, \| . \|), \Omega) \)
if and only if
\( 0 < \liminf_s \frac{|u(s)|}{|v(s)|} \leq \limsup_s \frac{|u(s)|}{|v(s)|} < \infty \).

Corollary 3.14: Let \( u, v \in N(S, C - \{0\}) \). Then
\( \ell_\infty (S, (T, \| . \|), \Omega) = \ell_\infty (S, (T, \| . \|), u) \)
if and only if
\( 0 < \liminf_s |u(s)| \leq \limsup_s |u(s)| < \infty \).

Proof:

By considering the function \( v \) on \( S \) such that
\( v(s) = 1 \) for all \( s \in S \) in Theorem 3.13, one can easily obtain the assertion.

4. Conclusion

This paper establishes some of the results that characterize the linear structures of the class \( \ell_\infty (S, (T, \| . \|), \Omega, u) \) of normed space valued function space using Orlicz function. In fact, these results can be used for further generalization and unification to investigate the properties of the various
existing Orlicz function spaces studied in Functional Analysis.

References


[17] Srivastava, J.K and Pahari, N.P.: On Banach space valued sequence space \( c_0(X, \lambda, \varphi, L) \) defined by Orlicz function, Jour. of Rajasthan Academy of Physical Sciences, 11(2) (2011), 103-116.

[18] Srivastava, J.K. and Pahari, N.P.: On 2-Banach space valued paranormed sequence space \( c_0(X, M, ||.||, \lambda, \varphi, L) \) defined by Orlicz function, Jour. of Rajasthan Academy of Physical Sciences, 12(3) (2013), 319-338.