
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

Database System Concepts, Implementations and
Organizations-A Detailed Survey

Udoka Felista Eze1, Chukwuemeka Etus2, Joy Ebere Uzukwu3

1Federal University of Technology Owerri, School of Management Technology,
P.M.B 1526 Owerri, Imo State, Nigeria

2Federal University of Technology Owerri, School of Management Technology,
P.M.B 1526 Owerri, Imo State, Nigeria

3Federal Polytechnic Oko, Faculty of Applied Science, Department of Computer Science,
P.M.B. 21 Aguata Local Government Area, Anambra State

Abstract: The inclusion of database and database management system in the use of data is of paramount importance. Database design,
access and management are equivalent to plumbing. Like plumbing, there are dozens of segments that must be put together before the
whole thing works. In fact, database systems are now so common and form such an integral part of our day-to-day life that often we are
not aware we are using one. The methodology of this survey covers both industrial and academic environments, and divided into three
phases: (i) a conceptual database design phase, in which a model of the data is developed and used in an organization independent of all
physical considerations; (ii) a logical database design phase, in which the developed relational model of the data independent of any
particular DBMS and other physical considerations is developed; (ii) a physical database design phase, in which the implementation in
the target DBMS, such as Microsoft Access, Microsoft SQL Server, Oracle, DB2, or Informix is realized. Also, examined, are what
constitutes a database system and how this tool can bring great benefits to any organization that chooses to use one; with a deep look at
all the important aspects of database systems design, implementation and management including conceptual database, Schemas,
Database Management Systems, Implementation Database, Logical and Physical Database Organizations and structure, with their
basics, problems or shortcommings, benefits, requirements, components, types and roles, implementations and organizations.

Keywords: Database, Architecture, Interface, Schema.

1.Introduction

The backbone of an information management system (IMS)
is the database. It has fundamentally changed the way many
work. The developments in information technology over the
last few years have produced database systems that are more
powerful and more intuitive to use, and some users are
creating databases and applications without the necessary
knowledge to produce an effective and efficient system.

It has been estimated that one third of a data model consists
of common constructs that are applicable to most users and
the remaining two thirds are user-specific (customized).
Thus, most database design work consists of recreating
constructs that have already been produced many times
before in other companies. The models featured may not
represent a company exactly, but they may provide a starting
point from which a more suitable data model can be
developed that matches a company’s specific requirements.
Some of the models service common business areas
including Customer Order Entry, Inventory Control, Project
Management, Human Resource Management, and Payroll
Management, amongst others. Increasingly, users are
standardizing the way in which they model data by selecting
a particular approach to data modeling and using it
throughout their database development projects.

1.1 Database Overview
A database is any logically coherent collection of data
organized for storage and retrieval by computers, as a single,

possibly large, repository of data that can be used
simultaneously by multi-users [1]. Databases provide a high
level of structure for the collection of data. Structured
collection of data leads to a consistency that is essential for
the operation of an IMS. Data within a database are captured
electronically with a relatively small amount of storage space
compared with conventional paper records. Databases also
allow the use of queries and search tools, which make the
retrieval of information from even large amounts of data fast
and highly specific.

The two main types of databases are flat-file and relational
databases, in both of which the data are placed in tables with
columns and rows. However, in a flat-file database, the data
are placed within a single, spreadsheet-like table. In a
relational database, each of several tables contains a specific
type of information, and the tables are linked by primary and
secondary keys. Flat-file databases can be very efficient
when there are simple one-to-one relationships between the
data (eg, one patient to one medical record number [MRN])
[2]. When the data have one-to-many or many-to-one
relationships (e.g., one physician to many patients or vice
versa), it is best to use a relational database. Relational
databases are preferred to flat-file databases for all but
simple applications that are limited in scope.

A popular high-level data model used in logical database
design is based on the concepts of the Entity–Relationship
(ER) model. Currently there is no standard notation for an
ER model covering database design for relational DBMSs

Paper ID: J2013117 22 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

tending to use one of two conventional notations such as: (i)
Chen’s notation, consisting of rectangles representing
entities and diamonds representing relationships, with lines
linking the rectangles and diamonds; (ii) Crow’s Feet
notation, again consisting of rectangles representing entities
and lines between entities representing relationships at the
end of a line represents a one-to-many relationship [3].

The database is now such an integral part of our day-to-day
life that often we are not aware we are using one. A database
application is a computer program that interacts with the
database in some way, while database system is a collection
of database applications that interacts with the database
along with the DBMS and the database itself. Hence, the
basic functions of a database are provided by a DBMS
through a database engine; a software system that manages
how data is stored and retrieved [4]. For example, Microsoft
Jet is a database engine which is a subsystem of Visual Basic
and Microsoft Access for stand-alone implementation; while
Microsoft SQL Server is for Client - Server implementation.

Users interact with the database through a number of
database applications that are used to create and maintain the
database and to generate information. These programs can be
conventional batch applications or, more typically nowadays,
online applications. The database applications may be
written in a third-generation programming language such as
C++ or Java, or in some higher-level fourth-generation
language. The physical structure and storage of the data are
managed by the DBMS [5].

2.Conceptual Database

The conceptual database comprises some theoretical
frameworks of database developments, architectures and
models. These are examined below.

2.1 Three-level ANSI-SPARC Architecture
Date [6] opines that an early proposal for a standard
terminology and general architecture for database systems
was produced in 1971 by the Data Base Task Group (DBTG)
appointed by the Conference on Data Systems and
Languages (CODASYL). The DBTG recognized the need
for a two-level approach with a system view called the
schema and user views called sub-schemas. The American
National Standards Institute (ANSI), and Standards Planning
and Requirements Committee (SPARC) produced a similar
terminology and architecture in 1975. ANSI-SPARC
recognized the need for a three-level approach with a system
catalog. Although the ANSI-SPARC model did not become
a standard, it still provides a basis for understanding some of
the functionality of a DBMS.

The ANSI-SPARC model identified three distinct levels at
which data items can be described: an external level, a
conceptual level, and an internal level, as depicted in Figure
1. The way users perceive the data is called the external
level. The way the DBMS and the operating system perceive
the data is the internal level, where the data is actually
stored. The conceptual level provides both the mapping and

the desired independence between the external and internal
levels. The objective of this ‘three-level architecture’ is to
separate each user’s view of the database from the way it is
physically represented [5].

There are several reasons why the separation is desirable: (i)
Each user should be able to access the same data, but have a
different customized view of the data. (ii) Users should not
have to deal directly with physical database storage details,
such as file structures or indexing. (iii) The Database
Administrator (DBA) should be able to change the database
storage structures without affecting the users’ views. (iv)
The internal structure of the database should be unaffected
by changes to the physical aspects of storage, such as
moving to a new storage device. (v) The DBA should be
able to change the conceptual structure of the database
without affecting all users.

Figure 1: The ANSI–SPARC three-level architecture

2.1.1 External Level

The external level consists of a number of different external
views of the database. Each user has a view of the ‘real
world’ represented in a form that is familiar for that user.
The external view includes only those entities, attributes, and
relationships that the user is interested in. Other entities,
attributes, or relationships that are not of interest may be
represented in the database, but the user will be unaware of
them. In addition, different views may have different
representations of the same data. For example, one user may
view dates in the form (day, month, year), while another may
view dates as (year, month, day). Some views might include
derived or calculated data, data not actually stored in the
database as such but created when needed [7].

2.1.2 Conceptual Level

The middle level in the three-level architecture is the
conceptual level. This level contains the logical structure of
the entire database as seen by the DBA. It is a complete view
of the data requirements of the organization that is

Paper ID: J2013117 23 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

independent of any storage considerations. The conceptual
level represents:

(i)All entities, their attributes, and their relationships;
(ii) The constraints on the data;
(iii) Semantic information about the data;
(iv) Security information.

The conceptual level supports each external view, in that any
data available to a user must be contained in, or derivable
from, the conceptual level. However, this level must not
contain any storage-dependent details. For instance, the
description of an entity should contain only data types of
attributes (for example, integer, float, character) and their
length (such as the maximum number of digits or
characters), but not any storage considerations, such as the
number of bytes occupied [8].

2.1.3 Internal Level
The internal level covers the physical implementation of the
database to achieve optimal runtime performance and
storage space utilization. It covers the data structures and file
organizations used to store data on storage devices. It
interfaces with the operating system access methods (file
management techniques for storing and retrieving data
records) to place the data on the storage devices, build the
indexes, retrieve the data, and so on. Below the internal level
there is a physical level that may be managed by the
operating system under the direction of the DBMS. Some
DBMSs take advantage of many of the operating system
access methods, while others use only the most basic ones
and create their own file organizations. The physical level
below the DBMS consists of items only the operating system
knows, such as exactly how the sequencing is implemented
and whether the fields of internal records are stored as
contiguous bytes on the disk or not [9].

2.1.4 Schemas and Instances
The overall description of the database is called the database
schema. There are three different types of schema in the
database and these are defined according to the levels of
abstraction of the three-level architecture, as illustrated in
Figure 2. While there is an external schema for each user
view of the database, there is only one conceptual schema
and one internal schema per database. It is important to
distinguish between the description of the database and the
database itself. The description of the database is the
database schema. The schema is specified during the
database design process and is not expected to change
frequently. However, the actual data in the database may
change frequently; for example, it changes every time we
insert details of a new member of staff or a new product
detail. The data in the database at any particular point in time
is called a database instance. Therefore, many database
instances can correspond to the same database schema.

Figure 2: Schemas & data independence in ANSI-SPARC
three-level architecture

2.1.5 Data Independence
A major objective for the three-level architecture is to
provide data independence, which means that upper levels
are unaffected by changes to lower levels. There are two
kinds: logical data independence and physical data
independence. Changes to the conceptual schema, such as
the addition or removal of new entities, attributes, or
relationships, should be possible without having to change
existing external schema or having to rewrite database
applications. Clearly, the users for whom the changes have
been made need to be aware of them, but what is important
is that other users should not be. Changes to the internal
schema, such as using different file organizations or
modifying indexes, should be possible without having to
change the conceptual or external schemas. From the users’
point of view, the only effect that may be noticed is a change
in performance. In fact, deterioration in performance is the
most common reason for internal schema changes. Figure 2
illustrates where each type of data independence occurs in
relation to the three-level architecture.

2.1.6 Database Security [10]
A secure database must satisfy the following requirements
(subject to the specific priorities of the intended
Application):

i. It must have physical integrity (protection from data
loss caused by power failures or natural disaster),

ii. It must have logical integrity (protection of the
logical structure of the database),

iii. It must be available when needed,
iv. The system must have an audit system,
v. It must have elemental integrity (accurate data),
vi. Access must be controlled to some degree depending

on data sensitivity,
vii. A system must be in place to authenticate the users

of the system, and sensitive data must be protected
from inference

Paper ID: J2013117 24 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

2.2 Conceptual Database Modeling

A model is created to represent reality, an approximation of
reality, or a relevant structure. The model is then used as a
substrate for analysis, database creation, or problem solving.
Models are good tools because they are modifiable, scalable,
and more easily constructed than a final product. Rather than
focusing on the details of building the final product, the
model emphasizes function and purpose while providing the
basis for structural development. The basic principles of
modeling have been explained, described and illustrated
under conceptual database modeling, and a specific type of
conceptual database modeling known as object-role
modeling (ORM), has also been discussed.

Conceptual database modeling is a methodology that allows
users to participate in the creation and development of
databases. Conceptual database modeling is the first step in
database development and is the step at which those with
little or no programming experience can have the most
influence on its design. A conceptual database model is like
a blueprint. The graphical format of the model allows the
end user to represent, using English sentences, the
information needs of the application without worrying about
technicalities such as programming languages, field sizes,
and layout of tables. The model is in a format that end users,
modelers, programmers, and information technology
personnel can all understand, thereby facilitating open
communication among these groups. Conceptual database
modeling enables users to understand and participate in the
development of information systems, thereby improving the
likelihood of successful results. In object-role modeling,
groups of relevant objects and roles are identified and used
to create elementary facts that form the “building blocks” for
information models. The resultant models can easily be
communicated, reviewed, and revised, allowing decreased
development time and optimizing inclusion of relevant
features in the target relational database. Increasing the
amount of clinical and management input in the development
process may help information systems better meet user
needs, become accepted and more often used, and ultimately
succeed.

Conceptual database modeling is itself a process with several
steps [3]; the key steps for end users are the first and second
steps, describing information examples with English
sentences and representing this information in a graphical
model. Conceptual models portray applications at a
fundamental level, using terms and concepts familiar to
users. The end user need not know or complete the
subsequent steps; the person serving as the modeler can
finish the process. Modeling software can link all four steps
and can generate a database for any database management
system for which it has a driver. Although there are several
different types of conceptual database modeling e.g. one that
has the advantages of using natural language, intuitive
diagrams, and user-specific examples. There are other
structured approaches to modeling (e.g., entity-relationship
modeling). Less structured approaches may serve as front
ends, or interfaces, to databases.

2.2.1 Object-Role Modeling
Object-Role Modeling (ORM) is based on the premise that
any process can be described in terms of a group of objects
and the roles they play. The basic building block is the
elementary fact, which consists of a predicate with one or
more objects. An object is a person, place, or thing about
which data should be collected. A predicate is the
association between one or more objects. Objects play
various roles, which are described by the predicate.

The first step in creating a conceptual database model with
ORM is to verbalize the information required from the
system, using English sentences. This method of
representation is less informative and intuitive than the
conceptual model style of ORM. In creating elementary
facts, one is essentially identifying the objects and roles that
are relevant to the desired information. Once the elementary
facts have been determined, the next step is to identify how
these facts fit together. Any number of objects may be
interrelated, but ORM provides rules for making the
descriptive sentences as simple as possible. In practice, very
few sentences have more than two objects. The simplicity of
the elementary facts is one of the aspects of ORM that make
it accessible to the average user. These facts would be
translated into additional relationships between objects.

Although there are additional details within a model that
must be specified, use of modeling software makes this
process accessible to the non-programming community.
Although the software may include technical database terms,
specification of details can be performed with simple
language. For example, uniqueness constraints, which are
further descriptors of the relationships between objects (ie,
one-to-one, one-to-many, or many-to-one), can be
determined by answering simple questions about the
relationships of the objects attached to a given predicate.
These answers may then be translated into a descriptive
statement that determines how the constraints are placed on
that particular relationship. This process also determines
whether a particular role is mandatory.

After the conceptual model is complete, the modeling
software checks the ORM diagrams for errors and generates
the familiar logical tables that constitute the essence of a
relational database. The tables are then integrated into a
database management system, the backbone of an
information management application. By participating in the
design of the database, the end user provides valuable
insights and information that enable development of a more
usable information system. As implemented in modeling
software, conceptual database modeling facilitates
translation of database applications across different database
management systems as well as reengineering of databases
from existing applications. Increasing the amount of clinical
and management input in the development process may help
information systems better meet user needs, become
accepted and more often used, and ultimately succeed.

Paper ID: J2013117 25 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

3.Database Management System (DBMS) [11]

The Database Management System (DBMS) is the software
that interacts with the users, database applications, and the
database. Among other things, the DBMS allows users to
insert, update, delete, and retrieve data from the database.
Having a central repository for all data and the data
descriptions allows the DBMS to provide a general inquiry
facility to this data, called a query language. The provision
of a query language (such as SQL) alleviates the problems
with earlier systems where the user has to work with a fixed
set of queries or where there is a proliferation of database
applications, giving major software management problems.
Some people use the term DBMS more generically to
include functions and tools to help users develop database
applications. With the functionality described above, the
DBMS is an extremely powerful tool.
However, as end-users are not too interested in how complex
or easy a task is for the system, it could be argued that the
DBMS has made things more complex because users may
now see more data than they actually need or want to do
their job. In recognition of this problem, a DBMS provides
another facility known as a view mechanism, which allows
each user to have his or her own customized view of the
database, where a view is some subset of the database.

A view is usually defined as a query that operates on the
base tables to produce another virtual table. As well as
reducing complexity by letting users see the data in the way
they want to see it, views have several other benefits: Views
provide a level of security. Views can be set up to exclude
data that some users should not see. For example, we could
create a view that allows a center manager and the Payroll
department to see all staff data, including salary details.
However, we could create a second view that excludes salary
details, which other staff uses. Views provide a mechanism
to customize the appearance of the database. A view can
present a consistent, unchanging picture of the structure of
the database, even if the underlying database is changed (for
example, columns added or removed, relationships changed,
data files split, restructured, or renamed). If columns are
added or removed from a table, and these columns are not
required by the view, the view is not affected by this change.
Thus, a view helps provide additional data independence to
that provided by the system.

3.1 Components of the DBMS Environment

We can identify five major components in the DBMS
environment: hardware, software, data, procedures, and
people:

i. Hardware: The computer system(s) that the database
system runs on. This can range from a single PC, to a
single mainframe, to a network of computers.

ii.Software: The DBMS software and the database
applications, together with the operating system, including
network software if the DBMS is being used over a
network.

iii. Data: The data acts as a bridge between the hardware
and software components and the human components. As
we have already said, the database contains both the
operational data (the data for the day-to-day running of the
business) and the metadata.

iv. Procedures: The instructions and rules that govern the
design and use of the database. These may include
instructions on how to log on to the DBMS, make backup
copies of the database, and handle hardware or software
failures.

v. People: This includes the business analysts, database
designers, data administrators (DAs), database
administrators (DBAs), application programmers, and end-
users.

3.2 DBMS architecture

DBMS architecture specifies its components (including
descriptions of their functions) and their interfaces. DBMS
architecture is distinct from database architecture. The
following are major DBMS components:

 DBMS external interfaces - They are the means to
communicate with the DBMS (both ways, to and from the
DBMS) to perform all the operations needed for the
DBMS. These can be operations on a database, or
operations to operate and manage the DBMS. According
to Jeffrey and Jennifer [4], an external interface can be
either a user interface (e.g., typically for a database
administrator), or an application programming interface
(API) used for communication between an application
program and the DBMS.

 Database language engines (or processors) - Most
operations upon databases are performed through
expression in Database languages. Languages exist for
data definition, data manipulation and queries (e.g., SQL),
as well as for specifying various aspects of security, and
more. Language expressions are fed into a DBMS through
proper interfaces. A language engine processes the
language expressions (by a compiler or language
interpreter) to extract the intended database operations
from the expression in a way that they can be executed by
the DBMS.

 Query optimizer - Performs query optimization on every
query to choose for it the most efficient query plan (a
partial order (tree) of operations) to be executed to
compute the query result.

 Database engine - Performs the received database
operations on the database objects, typically at their
higher-level representation.

 Storage engine - translates the operations to low-level
operations on the storage bits. In some references the
sstorage engine is viewed as part of the database engine.

 Transaction engine - for correctness and reliability
purposes most DBMS internal operations are performed
encapsulated in transactions. Transactions can also be
specified externally to the DBMS to encapsulate a group
of operations. The transaction engine tracks all the
transactions and manages their execution according to the
transaction rules.

Paper ID: J2013117 26 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

 DBMS management and operation component -
Comprises many components that deal with all the DBMS
management and operational aspects like performance
monitoring and tuning, backup and restore, recovery from
failure, security management and monitoring, database
storage allocation and database storage layout monitoring,
etc.

3.3 DBMS Types

Johann et al [12], writes that there are 4 main types of
Database Management System (DBMS) and these are based
upon their management of database structures. In other
words, the types of DBMS are entirely dependent upon how
the database is structured by that particular DBMS.
3.3.1Hierarchical DBMS

A DBMS is said to be hierarchical if the relationships among
data in the database are established in such a way that one
data item is present as the subordinate of another one. Here
subordinate means that items have 'parent-child' relationships
among them. Direct relationships exist between any two
records that are stored consecutively. The data structure
"tree" is followed by the DBMS to structure the database. No
backward movement is possible / allowed in the hierarchical
database. Hierarchical data model was developed by IBM in
1968 and introduced in I.M.S. (Information Management
System). Conrick [13], points out that this model is like a
structure of a tree with the records forming the nodes and
fields forming the branches of the tree. In the hierarchical
model, records are linked in the form of an organization
chart. A tree structure may establish one-to-many
relationship.

3.3.2Network DBMS
A DBMS is said to be a Network DBMS if the relationships
among data in the database are of type many-to-many. The
relationship among many-to-many appears in the form of a
network. Thus the structure of a network database is
extremely complicated because of these many-to-many
relationships in which one record can be used as a key of the
entire database. A network database is structured in the form
of a graph that is also a data structure. Though the structure
of such a DBMS is highly complicated however it has two
basic elements i.e. records and sets to designate many-to-
many relationships. Mainly high-level languages such as
Pascal, COBOL and FORTRAN, etc. are used to implement
the records and set structures.

3.3.3Relational DBMS
Zhuge [14], notes that DBMS is said to be a Relational
DBMS or RDBMS if the database relationships are treated in
the form of a table. There are three keys on relational
DBMS: relation, domain and attributes. It contains
fundamental constructs or records sets that contains one-to-
many relationship. It is composed of rows and columns
which are used to organize the database and its structure and
is actually a two dimension array in the computer memory. A
number of RDBMSs are available; some popular examples

are Oracle, Sybase, Ingress, Informix, Microsoft SQL
Server, and Microsoft Access.

3.3.4Object-oriented DBMS (OODBMS)
This is able to handle many new data types, including
graphics, photographs, audio, and video. Object-oriented
databases represent a significant advance over their other
database cousins. Hierarchical and network databases are all
designed to handle structured data; that is, data that fits
nicely into fields, rows, and columns. Date [15], opines that
they are useful for handling small amount of information
such as names, addresses, zip codes, product numbers, and
any kind of statistic or number you can think of. On the other
hand, an object-oriented database can be used to store data
from a variety of media sources, such as photographs and
text and produce work as output, in a multimedia format.
Codd [16] points out that object-oriented databases have two
disadvantages. First, they are more costly to develop.
Second, most organizations are reluctant to abandon or
convert from those databases that they have already invested
money in developing and implementing. However, the
benefits to object-oriented databases are compelling. The
ability to mix and match reusable objects provides incredible
multimedia capability. Healthcare organizations, for
example, can store, track, and recall scans, X-rays,
electrocardiograms and many other forms of crucial data.

3.3.5 General-purpose DBMS
This is typically a complex software system that meets many
usage requirements to properly maintain its databases which
are often large and complex. This is specially the case with
client-server, near-real time transactional systems, in which
multiple users have access to data. Data is concurrently
entered and inquired for in ways that preclude single-thread
batch processing. Most of the complexities of those
requirements are still present with personal, desktop-based
database systems. Well known DBMSs include Oracle,
FoxPro, IBM DB2, Linter, Microsoft Access, Microsoft SQL
Server, MySQL, PostgreSQL and SQLite. Kroenke and
David [17], states that a database is not generally portable
across different DBMS, but different DBMSs can inter-
operate to some degree by using standards like SQL and
Oracle Database Connectivity (ODBC) together to support a
single application built over more than one database. A
DBMS also needs to provide effective run-time execution to
properly support (e.g., in terms of performance, availability,
and security) as many database end-users as needed.

3.3.6 Distributed DBMS (DDBMS) [18]
A distributed database is a collection of multiple, logically
interrelated databases distributed over a computer network.
A distributed database is a database that is under the control
of a central database management system (DBMS) in which
storage devices are not all attached to a common central
processing unit (CPU). It may be stored in multiple
computers located in the same physical location, or may be
dispersed over a network of interconnected computers.
Collections of data (e.g. in a database) can be distributed
across multiple physical locations. A distributed database is
distributed into separate partitions/fragments. Each

Paper ID: J2013117 27 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

partition/fragment of a distributed database may be
replicated (i.e. redundant fail-overs, RAID like).

Besides distributed database replication and fragmentation,
there are many other distributed database design
technologies. For example, local autonomy, synchronous and
asynchronous distributed database technologies. These
technologies' implementation can and does definitely depend
on the needs of the business and the
sensitivity/confidentiality of the data to be stored in the
database, and hence the price the business is willing to spend
on ensuring data security, consistency and integrity.

DDBMS has the following characteristics: (i) Horizontal
fragments - subsets of tuples (rows) from a relation (table);
(ii) Vertical fragments - subsets of attributes (columns) from
a relation (table); (iii) Mixed fragment - a fragment which is
both horizontally and vertically fragmented or a logical
collection of objects in an ODBMS; (iv) Homogeneous
distributed database - uses one DBMS (eg: Objectivity/DB
or Oracle); (v) Heterogeneous distributed database - uses
multiple DBMS's (eg: Oracle and MS-SQL and
PostgreSQL).

Users access the distributed database through: (i) Local
applications - Applications which do not require data from
other sites; (ii) Global applications - Applications which do
require data from other sites. Care with a distributed
database must be taken to ensure that the following
considerations:

i. The distribution is transparent: users must be able to
interact with the system as if it was one logical system.
This applies to the systems performance, and methods of
access amongst other things.

ii. Transactions are transparent: each transaction must
maintain database integrity across multiple databases.
Transactions must also be divided into sub-transactions,
each sub-transaction affecting one database system.

The distributed database has all of the security concerns of a
single-site database plus several additional problem areas. In
developing a distributed database, one of the first questions
to answer is where to grant system access. Beynon [10],
outlines two strategies: The first case is access at home. This
is no more difficult to implement than a centralized access
strategy. Beynon pointed out that the success of this strategy
depends on reliable communication between the different
sites (the remote site must receive all of the necessary
clearance information). Since many different sites can grant
access, the probability of unauthorized access increases.
Once one site has been compromised, the entire system is
compromised. If each site maintains access control for all
users, the impact of the compromise of a single site is
reduced (provided that the intrusion is not the result of a
stolen password).

The second strategy – centralized access, while perhaps
more secure, has several disadvantages. Probably the most
glaring is the additional processing overhead required,

particularly if the given operation requires the participation
of several sites. Furthermore, the maintenance of replicated
clearance tables is computationally expensive and more
prone to error. Finally, the replication of passwords, even
though they're encrypted, increases the risk of theft. A third
possibility offered by Date, Hugh and Nikos [19], centralizes
the granting of access privileges at nodes called policy
servers. These servers are arranged in a network. When a
policy server receives a request for access, all members of
the network determine whether to authorize the access of the
user. Woo and Lam believes that separating the approval
system from the application interface reduces the probability
of compromise.

According to Beynon [10], preservation of integrity is much
more difficult in a heterogeneous distributed database than in
a homogeneous one. The degree of central control dictates
the level of difficulty with integrity constraints (integrity
constraints enforce the rules of the individual organization).
The homogeneous distributed database has strong central
control and has identical DBMS schema. If the nodes in the
distributed network are heterogeneous (the DBMS schema
and the associated organizations are dissimilar), several
problems can arise that will threaten the integrity of the
distributed data. They list three problem areas:

i. Inconsistencies between local integrity constraints,
ii. Difficulties in specifying global integrity constraints,
iii. Inconsistencies between local and global constraints

Beynon also explain that local integrity constraints are
bound to differ in a heterogeneous distributed database. The
differences stem from differences in the individual
organizations. These inconsistencies can cause problems,
particularly with complex queries that rely on more than one
database. Development of global integrity constraints can
eliminate conflicts between individual databases. Yet these
are not always easy to implement .Global integrity
constraints on the other hand are separated from the
individual organizations. It may not always be practical to
change the organizational structure in order to make the
distributed database consistent. Ultimately, this will lead to
inconsistencies between local and global constraints.
Conflict resolution depends on the level of central control. If
there is strong global control, the global integrity constraints
will take precedence. If central control is weak, local
integrity constraints will take precedence.

3.4 Roles of DBMS

DBMS stands for Database Management System. So its role
is basically to manage the database. More specifically this
software controls the storage, organization, retrieval,
integrity and security of the data in the database. Codd [20],
opines that without a database management system
organizing, controlling and cataloging data, an information
system would be an organized conglomeration of data. The
ultimate role of a database management system is to
implement controls and provide maintenance to data files
using data security to ensure integrity of data. The process of

Paper ID: J2013117 28 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

cataloging files in a DBMS is extremely important. There are
various file types, which range from actual computer code
and query programs (which extract information) to system
utility and record maintenance programs. All of these
programs have a unique file structure, which is identified by
a system schematic or "schema." Without the process of a
file structure, files would be hard to access and operate. A
file structure within a DBMS provides an orderly structure
for file access and management. These roles include support
for all of the following:

 Data definition: The DBMS must be able to accept data
definitions (external schemas, the conceptual schema, the
internal schema, and all associated mappings) in source
form and convert them to the appropriate object form.

 Data manipu1ation: The DBMS must be able to handle
requests from the users to retrieve, update, or delete
existing data in the database, or to add new data to the
database. In other words, the DBMS must include a data
manipulation language (DML) processor component.

 Data security and integrity: The DBMS must monitor user
requests and reject any attempt to violate the security and
integrity rules defined by the Database Administrator
(DBA).

 Data recovery and concurrency: The DBMS - or else some
other related software component, usually called the
transaction manager - must enforce certain recovery and
concurrency controls.

 Data Dictionary: The DBMS must provide a data
dictionary function. The data dictionary can be regarded as
a database in its own right (but a system database, rather
than a user database). The dictionary contains “data about
the data” (sometimes called metadata) - that is, definitions
of other objects in the system - rather than just raw data. In
particular, all the various schemas and mapping (external,
conceptual, etc.) will physically be stored, in both source
and object form in the dictionary. Lightstone [21] notes
that a comprehensive dictionary will also include cross-
reference information, showing, for instance, which
programs use which pieces of the database, which users
require which reports, which terminals are connected to
the system, and so on. The dictionary might even (in fact,
probably should) be integrated into the database it defines,
and thus include its own definition. It should certainly be
possible to query the dictionary just like any other
database, so that, for example, it is possible to tell which
programs and or users are likely to be affected by some
proposed change to the system.

 Performance: It goes without saying that the DBMS
should perform all of the roles identified above as
efficiently as possible.

3.5 DBMS Implementation

After designing a database for an application arrives the
stage of building the database. Typically an appropriate
general-purpose DBMS can be selected to be utilized for this
purpose. A DBMS provides the needed user interfaces to be
utilized by database administrators to define the needed
application's data structures within the DBMS's respective

data model. Other user interfaces are used to select needed
DBMS parameters (like security related, storage allocation
parameters, etc.). When the database is ready (all its data
structures and other needed components are defined), it is
typically populated with initial application's data (database
initialization, which is typically a distinct project; in many
cases using specialized DBMS interfaces that support bulk
insertion) before making it operational. In some cases the
database becomes operational while empty from
application's data, and data are accumulated along its
operation. After completing, building the database and
making it operational arrives the database maintenance stage:
various database parameters may need changes and tuning
for better performance, application's data structures may be
changed or added, new related application programs may be
written to add to the application's functionality, etc.

Codd [20] also states that a database built with one DBMS is
not portable to another DBMS (i.e., the other DBMS cannot
run it). However, in some situations it is desirable to move,
migrate a database from one DBMS to another. The reasons
are primarily economical (different DBMSs may have
different total costs of ownership or TCOs), functional, and
operational (different DBMSs may have different
capabilities). The migration involves the database's
transformation from one DBMS type to another. The
transformation should maintain (if possible) the database
related application (i.e., all related application programs)
intact. Thus, the database's conceptual and external
architectural levels should be maintained in the
transformation. It may be desired that also some aspects of
the architecture internal level are maintained. A complex or
large database migration may be a complicated and costly
(one-time) project by itself, which should be factored into
the decision to migrate. This in spite of the fact that tools
may exist to help migration between specific DBMS.
Typically a DBMS vendor provides tools to help importing
databases from other popular DBMSs.

A typical DBMS cannot store the data of the application it
serves alone. In order to handle the application data the
DBMS need to store these data in data structures that
comprise specific data by themselves. In addition the DBMS
needs its own data structures and many types of bookkeeping
data like indexes and logs. The DBMS data are an integral
part of the database and may comprise a substantial portion
of it. Since a database management system (DBMS) is a
system that allows to build and maintain databases, as well
as to utilize their data and retrieve information from it. It
implements solutions to data and database usability
requirements. It defines the database type that it supports, as
well as its functionality and operational capabilities. Chapple
[22], notes that a DBMS provides the internal processes for
external applications built on them. The end-users of some
such specific application are usually exposed only to that
application and do not directly interact with the DBMS.
Thus end-users enjoy the effects of the underlying DBMS,
but its internals are completely invisible to end-users.
Database designers and database administrators interact with
the DBMS through dedicated interfaces to build and

Paper ID: J2013117 29 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

maintain the applications' databases, and thus need some
more knowledge and understanding about how DBMSs
operate and the DBMSs' external interfaces and tuning
parameters.

Teory, Lightstone, and Nadeau [23] writes that a DBMS
consists of software that operates databases, providing
storage, access, security, backup and other facilities to meet
needed requirements. DBMSs can be categorized according
to the database model(s) that they support, such as relational
or XML, the type(s) of computer they support, such as a
server cluster or a mobile phone, the query language(s) that
access the database, such as SQL or XQuery, performance
trade-offs, such as maximum scale or maximum speed or
others. Some DBMSs cover more than one entry in these
categories, e.g., supporting multiple query languages.
Database software typically support the Open Database
Connectivity (ODBC) standard which allows the database to
integrate (to some extent) with other databases. The
development of a mature general-purpose DBMS typically
takes several years and many man-years. Developers of
DBMS typically update their product to follow and take
advantage of progress in computer and storage technologies.
Several DBMS products like Oracle and IBM DB2 have
been in on-going development since the 1970s-1980s.

4.Logical and Physical Database Organizations

Database tables/indexes are typically stored in memory or on
hard disk in one of many forms, ordered/unordered Flat files,
ISAM, Heaps, Hash buckets or B+ Trees. The most
commonly used are B+ trees and ISAM [24]. Other
important design choices relate to the clustering of data by
category (such as grouping data by month, or location),
creating pre-computed views known as materialized views,
partitioning data by range or hash. As well memory
management and storage topology can be important design
choices for database designers. Just as normalization is used
to reduce storage requirements and improve the extensibility
of the database, conversely de-normalization is often used to
reduce join complexity and reduce execution time for
queries.

4.1 Sequential File Organization

The physical order of sectors, tracks, and cylinders in which
blocks are written, (and therefore subsequently read) is
defined so as to minimize access times. This means that all
sectors within the same cylinder are written to before
moving to the next cylinder so as to minimize head
movement. (Working from surface to surface on the same
cylinder does not require movement of the read-write head).
It also means that the sectors within a track are written in an
order that reduces rotational delay. Ideally, this would mean
that the sectors are written (and read) in numbered sequence
1, 2, 3, etc but normally delays in the software or hardware
controlling the reads and write means that one or more
sectors have to be skipped between writes. For example, if
there are 8 sectors on a track, the order of reads might be 1,

4, 7, 2, 5, 8, 3, 6 with a delay of two sectors between each
read.

4.1.1Index Sequential Organization
All of these databases can take advantage of indexing to
increase their speed, and this technology has advanced
tremendously since its early uses in the 1960s and 1970s.
The most common kind of index is a sorted list of the
contents of some particular table column, with pointers to the
row associated with the value. An index allows a set of table
rows matching some criterion to be located quickly.
Typically, indexes are also stored in the various forms of
data-structure mentioned above (such as B-trees, hashes, and
linked lists). Usually, a specific technique is chosen by the
database designer to increase efficiency in the particular case
of the type of index required.

Relational DBMSs have the advantage that indexes can be
created or dropped without changing existing applications
making use of it. The database chooses between many
different strategies based on which one it estimates will run
the fastest. In other words, indexes are transparent to the
application or end-user querying the database; while they
affect performance, any SQL command will run with or
without indexes existing in the database.

Relational DBMSs utilize many different algorithms to
compute the result of an SQL statement. The RDBMS will
produce a plan of how to execute the query, which is
generated by analyzing the run times of the different
algorithms and selecting the quickest. Some of the key
algorithms that deal with joins are Nested loop join, Sort-
Merge Join and Hash Join. Which of these is chosen depends
on whether an index exists, what type it is, and its cardinality
[25].

The same principles apply with respect to minimizing access
time but the situation is complicated by the more complex
organization of the file. The index sequential file is created
from a file that is already in sequential order. The indexes
are generated and included as the index sequential file is
organized and stored. The indexes are subsequently updated
as the file is updated.

i. Primary Index: This is created in main storage as the file
i.e. organized, and stored on the disk when organization
and storage of the file is completed. It is loaded into main
storage again at the start of any subsequent access. The
primary index is normally organized as a sequential file on
its own area of the disk e.g. on its own cylinder.

ii.Secondary Index: This is also created in main storage
while each cylinder is organized and stored. There is one
secondary index per cylinder. During the organization of
each cylinder provision is made for local overflow, i.e. the
provision of spare storage on the same cylinder, for tracks
that subsequently may become full and therefore unable to
accommodate further records. (Global overflow, i.e.
overflow of the whole file, may be catered for in a similar
way.)

Paper ID: J2013117 30 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

Space is left on each surface during the initial organization
so that a few additions can be made before overflow occurs.
When the file is accessed, in the absence of any overflow,
the access times for primary index, secondary index and the
data access itself are kept to a minimum. Performance
degrades as the amount of overflow increases because of the
additional index references incurred.

4.2 Random File Organization

In this method the key are used to allocate record positions
on the disc. For example, a record whose key was 149 could
be allocated the position surface 1 track 49. We say that the
disk address of the record has been generated from the key
and so the technique is called address generation. The
generated disk address usually gives just enough detail to
specify the block in which the record is to be placed or
found; so that when a record is to be accessed the whole
block is input, and the record is searched for within the
block. We thus have organization by address generation and
access by address generation. Sometimes an index of
generated addresses is produced as the file is created. This
index is then stored with the file. It is then possible to access
the file by means of this random index. We then have
organization by address generation and access by random
index.

4.2.1 Hashed Keys

When disk addresses are generated directly from keys, as in
the example just given, there tends to be an uneven
distribution of records over available tracks. This can be
avoided by applying some algorithm to the key first. In this
case we say the key is hashed. Examples:

a. Squaring, e.g. for key number 188
1882 35 3 4 4
DISC
ADDRESS

Track
Number

Surface
Number

Bucket
Number

Block
Number

b. Division method, e.g. for key number 188, is 188 /7
= 26 Remainder 6. So we could use track 26 surface 6 say.

Hashing reduces the chances of overflow occurring, but
when overflow does occur records are normally placed on
the next available surface in the same cylinder so as to
minimize head movement.

We might ask if it is possible to create a data structure that
does not require a search to implement the find operation. Is
it possible for example to compute the location of the record
that has a given key value: Memory address of records = f
(key), Where, f is a function that maps each distinct key
value into the memory address of the records identified by
the key. Such function can be found, but they are difficult to
determine and can only be constructed if all of the keys in
the data set are known in advance. They are called perfect
hashing functions. This function does not necessarily give
the exact memory address of the target record but only give a
home address that many contain the desired record: Home
address = H (key)

4.2.2 Rehashing
Function such as H are known as hashing function. They are
easy to determine and can give excellent performance.
Although the home address many not contain the record
being sought. In that case, a search of other addresses may
be required. This is known as rehashing. The fundamental
idea behind hashing in the antithesis (the direct opposite) is
sorting. A sort arranges the records in a regular pattern that
makes the relatively efficient binary search possible.
Hashing takes diametrically opposite approach. The basic
idea in hashing is to scatter the records completely
throughout some memory or storage space.

The hash function can be thought of as a pseudo-random
number generation that uses the value of the key as a seed
and that outputs the home address of the element containing
the key. It allows us to find records with 0 (1) probes. Let us
imagine the hash function H is: H(key) = key mod 7
Please observe that the value produced by this function is
always an integer between 0 and 6 which is within the range
of indexes of the table.

One of the drawbacks is the random (scatter) location of
stored element. There is no notion of first, next, parent or
child or anything.

4.2.3 Collision
Can be described as when two different key value hashing to
the same location. Why thus happens and what to do about it
are important because collisions are a fact of life when
hashing for example: H (227) = 227 mod 7 = 3

The birthday paradox described that the probability that
there is no collisions is essentially zero. Codd, [20],
explained that hash function with no collision is rare and it is
worth looking for them only in very special circumstances.

Strategies for handing collisions are normally called
rehashing or collision resolution strategies. This determines
what happen when two or where elements have a collision or
hash to the same address. There are three strategies or
approaches to resolve collision. They are as follows:

i. Open Address method: This method attempts to place a
second and subsequent keys that hash to the one table
location into some other position in the table that is
unoccupied (open) e.g. in our earlier example.

H (227) = 227 mod 7 = 3. Therefore 227 collide with 374.
A simple resolution to the collision called linear rehashing
is to start a sequential search through the hash table at the
position at which the collision occurred. The search
continues until an open position is found or until the table
is exhausted.

ii. External chaining: This is a second approach to the
problem of collision. In this approach the table positions
absorb all the records that hash to it. Since we do not
usually know how many keys will hash into any table

Paper ID: J2013117 31 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

position, a linked list is a good data structure to collect the
record. H (key) = key mod 7

External Chaining has three advantages over open address
method.
 Deletions are possible with no resulting problems.
 The number of elements in the table can be greater than

the table size; this can be greater than 1.0. Storage for
the elements is dynamically allocated as the lists grow
larger.

 That the performance of external chaining in executing a
find a key operation is better than that of open address
methods and continues to be excellent as it grows
beyond 1.0.

 In the next technique collisions are resolves, as they are
in external chaining, by adding the element to be
inserted to the end of a list. The different is in how the
list is constructed.

iii.Coalesced chaining: coalesced chaining behaves exactly
like external chaining – each new record is added to the
end of a list that begins at its home address, except that the
next insertion illustrates how a collision is resolved after
the cellar is full; Such that, once again the record being
inserted was, since its home address was already occupied,
placed in the empty position with the largest address.

4.3 Other Organizations and Access Methods

The methods of file organization and access described so far
are closely related to the physical features of the disk. It is
now common practice for much of this detail to be “hidden”
from programmers or users of the system. Instead of
operating system handles the physical levels of organization
and access, and provides standard logical file organization
and access method. Some examples of logical file
organization include:

i. Sequential Files: A programmer need merely regard the
file as a sequence of records, and need have no concern for
their physical location. A program instruction to read the
next record will result in the appropriate record being
transferring into memory, i.e. the programmer’s “view”
may just be like this.

R1 R2 R3 R4 R5 R6 etc
 R1…R6 are logical records.

ii. Direct Files: There are files that provide fast and efficient
direct access i.e. they are normally random files with one
of a number of appropriate addressing methods. A
common type of direct file is the Relative File. The logical
organization of a relative file is like this:

R1 R2 R3 R4 R5 R6 etc

R1…R6 are logical records with logical keys 1…6
A relative file may be accessed sequentially or randomly.

iii. Index Sequential Files: Logical versions of index
sequential files are simpler than their physical
counterparts, in that logical keys are used instead of disk
addresses, and details of overflow are hidden from the
programmer.

4.3.1 Choice of File Organization and Access Methods
There are several characterizes factors that determined the
type of file organization and access to be applied at any
particular time. The factors affecting choice includes:

i. Size: Disks and tapes are both capable of storing very
large files but very large files are stored more
economically on magnetic tape. Small files can use disk
space well if blocks are suitably sized and can be easily
accessed, but may be troublesome to access if strung
(combination of bits) along magnetic tape because of the
serial nature of tape. The percentage of additions or
deletions in file maintenance if low many allow
satisfactory organization of indexed or random files, but if
high will make sequential organization more attractive. If
a file is like to increase in size then the design of an
indexed or random file must allow for it.

ii.Reference and Enquiry: If quick reference is essential then
indexed or random files will be needed. If the file is only
used for quick one-off reference then a random
organization may be best.

iii. Hit Rate: Low hit rates are suited by indexed or random
files, and high hit rates are suited by sequential files.
Putting together batches of enquiries to form a transaction
file can raise hit rates.

iv. Security and Backup: The “Father-Son” concept is an
aid to security when using sequential files. Indexed and
random files are overwritten during processing so they
may need to be dumped onto tape or another disk between
processing, as well as keeping a copy of all transaction
between dumps.

4.4 File Calculations
Two basic types of calculation are often needed when using
files:

a. The storage space occupied by the file (for magnetic
tape the length of tape may be required).

b. The time taken to read or write the file.

A simple example now follows.

For a sequential file on disk the basic calculation for
estimating the required space is as follows:

 Divide the block size by the record size to find how many
whole records can fit into a block. This is the blocking
factor.

 Divide the total number of records by the blocking factor
to obtain the total number of blocks required.

Paper ID: J2013117 32 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

 Multiply the block size in bytes by total number of blocks
required.

This basic method can be modified if the records are variable
in length (e.g. use an average).

For non-sequential files on disk, the storage space required is
greater than that for sequential because of the space allowed
for insertions and overflow. The exact calculations depend
on the software used to organize the files and on the ways in
which it is possible to configure the settings. However, a
typical overhead is 20% more than that for sequential. The
basic calculations of read and write times on disk are as
follows.

Average access time = seek time + latency + data transfer
time.

For a random file where N records were read the total time
would simple be: N x average access time.

Please take note that a whole sector would have to be read in
just to get each individual record. For a sequential file,
where the disk was not being used for any other accesses at
the same time there would be a seek for each cylinder and
then all sectors in the cylinder would be read. This suggests
a formula such as:

Total read time = seek time x latency + data x sectors per x
cylinder transfer time per file

4.5 Other Types of Storage Methods

Having examined file organization and access we are now in
a better position to review files storage methods. The main
types of storage are:

i. Immediate-access storage (IAS) e.g. RAM - Because of its
unique electronic properties giving extremely quick access
to stored this type of storage is used as the computer’s
main storage. Access to individual characters/bytes is
completely independent of their position in store. It is in
main storage that the programs are held during processing
so that their instructions can be executed swiftly. Also the
particular data currently being worked on is held in main
storage. Ideally, IAS would be used for storage of all data
because it is fast in operation. This is not practicable
because of cost and volatility, and its use therefore is
limited to main storage. Thus some alternative form must
be found for storing the files and data, which are not
immediately required by the program.

ii. Direct-access storage (DAS) - One such alternative is
DAS (e.g. disk storage). Storage capacity can vary from
thousands to hundreds of millions of characters. DAS has
the important facility of allowing direct access, that is,
records can be accessed independently of each other. It is
thus suitable for files being processes in a selective
manner and also for storing programs, and systems
software that are required to be called into main storage at

any time during the running of an application program. It
is an essential requirement for on-line processing or where
file-interrogation facilities are needed.

iii.Serial-access storage (SAS) e.g. magnetic tape - If bulky
auxiliary storage is required and the need for random
access is not present then the choice may well fall on SAS,
the most common form of which is magnetic tape. It is
also cheaper than main memory or disk. Because of its
inherent serial nature, access to a record on tape is a
function of its position on the tape. Therefore very
preceding record on a master file must be read (and
written out onto the new tape) before the required record
can be located. Nevertheless millions of characters can be
stored very cheaply.

5.Conclusion

Databases are used in many applications, spanning virtually
the entire range of computer software. Databases are the
preferred method of storage for large multiuser applications,
where coordination between many users is needed. Even
individual users find them convenient, and many electronic
mail programs and personal organizers are based on standard
database technologies. This study has been carried out to
show that database technology concepts, implementations
and organizations have developed over the years and will yet
develop, and the all the stages of improvements till date can
be traced for academic, and other purposes.

References

[1] Gehani, N., “The Database Book: Principles and
practice using MySQL”. 1st ed., Summit, NJ.: Silicon
Press, (2006).

[2] Berkowitz L. L., “Diagnosing doctors: four types of
physicians require four approaches to promote clinical
computing acceptance” Healthc Inform; 15:93-96,
(1998).

[3] Hawkins H. Hugh, Young Scott K., Hubert C.
Katherine, Hallock Patrick, “Conceptual Database
Modeling for Understanding and Developing
Information Management Applications”, (2007).

[4] Connolly, T. and Carolyn, B., Database Systems. New
York: Harlow, (2002).

[5] Date, C. J., "When's an extension not an extension?".
IntelligentEnterprise. Available: http://intelligent-
enterprise.informationweek.com/db_area/archives/1999
/990106/online1.jhtml;session, [Accessed: Dec 12,
2013].

[6] Codd, E.F., "A Relational Model of Data for Large
Shared Data Banks". Communications of the ACM 13
(6): 377–387. doi:10.1145/362384.362685. Available:
http://www.acm.org/classics/nov95/toc.html.
[Accessed: Dec 15, 2013].

[7] Date, C. J., Database in Depth: Relational Theory for
Practitioners. p. 152, (2005).

[8] Ling, L. and Tamer, M. Ö (Eds.), "Encyclopedia of
Database Systems, 4100 p. 60, (2009).

Paper ID: J2013117 33 of 34

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

[9] Beynon,D P., Database Systems 3rd Edition. Palgrave,
Basingstoke, UK, (2004).

[10] Halpin T. A., “Conceptual schema and relational
database design”, 2nd ed. Sydney, Australia: Prentice
Hall, (1995).

[11] Jeffrey, U. and Jennifer, W., First course in database
systems, Prentice-Hall Inc., Simon & Schuster, (1997).

[12] Johann, A.; Makowsky, V. & Nimrod R., "Entity-
relationship consistency for relational schemas"
Proceedings of the 1986 Conference on Database
Theory (ICDT '86), Lecture Notes in Computer
Science, 1986, Volume 243/1986, pp. 306-322,
Springer, doi:10.1007/3-540-17187-8_43, (1986).

[13] Conrick, M., “Introducing databases, health
informatics: transforming healthcare with technology,
Thomson, ISBN 0-17-012731-1, p. 69, (2006).

[14] Zhuge, H., The Web Resource Space Model. Web
Information Systems Engineering and Internet
Technologies Book Series4. Springer, (2008).

[15] Date, C. J., An Introduction to Database Systems, Fifth
Edition. Addison Wesley, (2003).

[16] Codd, E. F., "Recent Investigations into Relational Data
Base Systems". IBM Research Report RJ1385.
Republished in Proc. 1974 Congress (Stockholm,
Sweden, New York, N.Y.: North-Holland, (1974).

[17] Kroenke, D. M. and David, J. A., Database Concepts.
3rd ed. New York: Prentice, (2007).

[18] Osuagwu O. E., “Distributed Intelligent Data Base
Networks, Concurrent & Real Time Communications”,
First Edition, Alphabet Publishers, Owerri, pp 100-150,
(2010).

[19] Date, Chris J.; Hugh Darwen, Nikos A. Lorentzos,
"Chapter 10: Database Design - Temporal Data and the
Relational Model: A Detailed Investigation into the
Application of Interval and Relation Theory to the
Problem of Temporal Database Management”. Oxford:
Elsevier LTD, p. 176. ISBN: 1558608559 (2003).

[20] Codd, E.F., "Serious Flaws in SQL", in The Relational
Model for Database Management: Version 2. Addison-
Wesley, pp. 371–389, (1990).

[21] Lightstone S., Teorey T., Nadeau T., “Physical
Database Design: the database professional's guide to
exploiting indexes, views, storage, and more”, Morgan
Kaufmann Press, ISBN 0-12-369389-6, (2007).

[22] Chapple, M. "SQL Fundamentals". Databases.
About.com. Available:
http://databases.about.com/od/sql/a/sqlfundamentals.ht
m. [Accessed: December 12, 2013]

[23] Teorey, T.; Lightstone, S. and Nadeau, T., Database
Modeling & Design: Logical Design, 4th edition,
Morgan Kaufmann Press. ISBN 0-12-685352-5,
(2005).

[24] Galindo, J., Urrutia, A., Piattini, M., "Fuzzy Databases:
Modeling, Design and Implementation" (FSQL guide).
Idea Group Publishing Hershey, USA, (2006).

[25] Galindo, J., “Handbook on Fuzzy Information
Processing in Databases”, Information Science
Reference (an imprint of Idea Group Inc.), Hershey,
USA, (2008).

Authors Profile

Udoka Felista Eze (MCPN, MNCS, MISOC, MNITAD,
MNIWIIT) received the B.SC, M.SC and Ph.D degrees in
Computer Science from Nnamdi Azikiwe University, Awka. She is
a lecturer in the department of Information Management
Technology, FUTO. Her research areas include: Computer
Systems, Database Systems, Electronic and Computer system,
Artificial Intelligence, and Information Systems.

Chukuemeka Etus received the B.Eng and M. Eng. degrees in
Electrical/Electronic Engineering from Federal University of
Technology, Owerri in 2005 and 2010, respectively. He is a
lecturer in the department of Information Management Technology,
FUTO. His research areas include: Electronic and Computer
system, Smart Environments and Working Smart, Artificial
Intelligence, Telecommunication systems and Information
Technology.

Joy Ebere Uzukwu received the B.SC, M.SC, and PGDE
(education) degrees in Computer Science and Computer Education
from Nnamdi Azikiwe University, Awka, and National Teachers
Institute, Awka respectively in 2005 and 2010, respectively. She is
a lecturer in the department of Computer Science Federal
Polytechnic, Oko. She has authored several books and publications
in the field of computing. She is also a conference speaker and
motivational writer.

Paper ID: J2013117 34 of 34

