
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

Approaches Used for Prioritization of Test Suites
Gurdiksha1, Janpreet Singh2

1M. Tech Student, Lovely Professional University, School of Computer Science and Engineering,
Jalandhar-Delhi G.T Road,National Highway 1, Phagwara 144411, India

2Assistant Professor and COD, School of Computer Science and Engineering, Lovely Professional University,
Jalandhar-Delhi G.T Road,National Highway 1, Phagwara 144411, India

Abstract: Regression testing certifies that alteration or augmentation performed is not going to impact the original functionality. To
make this sure test case must rerun from the present set of test suites, although it is not possible to conclude that how much retesting is
required. Various regression test selection techniques have been developed for making regression testing more effective and efficient. As
test suites becomes large in size when the software progresses also tend to increase the cost and effort of re-executing the entire test suite
randomly. Test Suite Prioritization approach has been studied to exploit the test suites that have been built. According to it, test suites
are run in a particular order to maximise the fault detection.

Keywords: Regression Testing, Test case, Test Suite, Test Suite Prioritization, Average Percentage of faults detected.

1. Introduction

Software testing is a procedure of testing or comparing the
actual outcome with the expected outcome. Testing of the
software is done in order to check the correct functionality
of the system or project. If the testing will not be performed
then system may lead to catastrophic or improper results in
the field. So it’s better to test the system earlier, so that the
excellent results can be produced. Also it ensures quality of
the system. As testing is performed in order to detect faults
but we can’t make guarantee that 100% faults will be
detected and removed.

a) Software Testing includes:
 Verification: Under verification, we check whether we

are going to make right product means we ensure before
the actual implementation of the software or project.
Basically it is performed phase wise.

 Validation: Under validation, we check whether we
made the right product means we ensure after the actual
implementation of software or project. Basically it is
performed on end product.

b) Software testing can be performed using two models:
 White box testing model: This type of testing is based

on the internal working of the system that how the
actual flow of programs is going on. One must have
good programming skills in order to test with the white
box testing model. Logical paths, loops, conditions,
branches are mainly tested in it.

 Black box testing model: In this type of model no
internal working of the system is needed to be known,
also no programming skills are required. Input is given
to the system and output is manipulated that whether it
is wrong or right. Only the external behaviour is
observed, without any knowledge of internal
functioning.

Now there exists various types of testing but our focus is on
Regression Testing as we are going to prioritize test cases
during regression testing. Regression Testing is performed

when any module, unit, component or system is modified in
order to change the functionality or for some other reasons.
It ensures that any modification done in specified
components will not lead to any discrepancy in the actual
output of the system. It also ensures that no other modules
are being affected due to performed modifications. It
maintains the quality of the system. Regression testing
basically provides the assurance that modification or
enhancement made will not infect the existing functionality
or system. It may be a more complex and challenging
process if retest-all approach is going to be used. In this
approach all the test cases of all test suites must be rerun.
Though it may become very expensive to execute all the test
cases, various techniques have been studied to assist
regression testing procedure that may include majorly test
suite minimisation, Test case selection and Test suite
Prioritization.

This paper surveys the work carried out in the field of test
suite prioritization.

2. Test Case Prioritization

Prioritization of test cases is the process of arranging the test
cases in a logical manner and then t run them according to
their logical order. It is useful because it helps in better
utilization of expensive resources like disk space. It is
considered when we need test cases having higher priority to
be run earlier than the other test cases present in the test
suite. Also with this approach defects can be found earlier.
The problem of resource lacking can be resolved as resource
can be better utilized.

Priorities are not assigned randomly but got assigned
according to some principle. And then test cases will run
according to their own order of execution. If faults can be
detected former, then release of the product will be before
on time as well. And we can detect the faults former by
prioritizing test cases.

Paper ID: J2013118 4 of 7

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

Need for prioritization of test cases: whenever we have
inadequate number of resources then it may happen that the
test cases that are not so much required to get run would
consume the resources. That will results in lack of resources
for the test cases which are urgently required to run. So to
avoid this kind of condition to occur, we can prioritize the
test cases. With the help of which we can give high priority
to the test cases which are urgently required to run and lower
priority to those test cases which are less needed. Test case
prioritization will also decrease the time consumption and
will lead to early detection of faults.

3. Approaches of Prioritization

Approaches used for prioritization describes various ways
on the basis of which prioritization can take place. Different
ways can be used to prioritise the test cases and they can be
described as:

3.1 Prioritization Using Dependency Structure

Definition 3.1 (Test Case Prioritization): Test case
prioritization is the process of scheduling test cases to be
executed in a particular order so that test cases with a higher
priority are executed earlier in the test sequence. The priority
is defined relative to some test criterion; for example the
number of code statements covered [3].

Test Case Prioritization is considered when we need test
cases having higher priority to be run earlier than the other
test cases present. The First approach that can be used is
discovering the “functional dependencies”. As Scenarios
that will be having more dependencies will produce more
faults as well. Functional dependency exists when some
interactions can’t take place until or unless some other
interactions occur first. We can say interaction I1 is
dependent on interaction I2 if and only if interaction I1 must
take place before I2 anywhere in the program. . Functional
dependencies in the software are present in the requirement
phase. These dependencies exactly can be inherited in the
test cases. For example, if a requirement R1 is dependent on
requirement R2 then the test cases developed for R1 must be
dependent on test cases developed for R2.

In following first figure, the test order is t1-t2-t3-t4. 20
percent faults have been detected after t1 has executed. And
in second figure, the test order is t4-t1-t2-t3. 60 percent
faults have been detected after the first test case has run
which is t4. Clearly the execution sequence has greater
impact on the percent of fault detection.

Figure 1: Test ordering [3]

Techniques can be:
 Open dependency structure: It can be described as one test

case should be executed prior to other test case anywhere
in the program.

 Closed dependency structure: It can be described as one
test case should be executed just before the other test case
means the other test case must follow the first test case.

 Structures of dependencies (TD): we can say there exist
dependencies between scenarios when one must take place
before the other.

Figure 2: Dependency structure [3]

Or we can say the processing of one test case must be halted
till the test case on which it is dependent will get executed.
Only after that test case will take place its execution will be
started.

 Independent test cases: These test cases can be executed

without taking into the concerns of another test case’s
completion into account. Means they can be executed
freely as no any test case needed to be finish before them.

 Dependent test cases: These test cases can’t be executed
without taking into the account another test case’s
execution as they are dependent on it. Means they can’t
execute freely because one or more test cases needed to be
finish before them.

 Algorithms used for open dependency structure: DSP
volume: Higher weight will be assigned to the test cases
whosoever will be having greater number of dependents.

Paper ID: J2013118 5 of 7

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

It can be calculated by finding all of the direct and indirect
dependents.

 DSP height: Higher weight will be assigned to the test
cases whosoever will be having dependents in depth.
Altitude of all paths needs to be measure in order to
calculate it. Longest path will be having the greatest
weight.

3.2 Model Based Prioritization

In Model based prioritization of test cases, test cases are
generated from the UML diagrams (activity diagram,
sequence diagram, component diagram, and state chart
diagram) and then prioritization takes place based on some
model information. Traditional test case prioritization
techniques consider the knowledge about how system has
been previously used, like fault proneness of different
modules of code in a program, capability of detecting faults,
information regarding control flow and data flow. Almost all
of these techniques are code based and used for the post
implementation phase of development of software.
Therefore model based technique is required for pre-
implementation testing. Terms need to understand for model
based testing:

Definition 3.2(Activity Graph): Activity graph G=(V,E) is
a directed graph where each node in V represents one action
in the activity model and each edge in E represents a control
flow from one node to other [1].

Definition 3.2.2(Activity Flow): Activity flow (or flow) in
an activity graph is defined as sequence edges starting from
the root (start) node of the activity graph to the target node
[1].

Test case generation process:

Step 1: Create activity diagram: activity diagram can depict
the behaviour of the system. It can be used to recognize the
work flow performed by an object or component. Also
interaction between different use cases can be visualised.
The main vigour of activity diagram is that, it can represent
concurrent activities. Concurrency can be shown using:

Figure 3: Generation of test cases [1]

 Fork: It has multiple outgoing transitions and one
incoming transition.

 Join: It has one outgoing transition and multiple incoming
transitions.

 Rendezvous: It has multiple outgoing transitions and
multiple incoming transitions.

Step 2: Identify the flows: All the flows in the activity
diagram are recognized once the activity diagram is created.
Flows in the activity diagram represents major and substitute
scenarios for that use case. The system should cover as
many as flows it can.

Step 3: Prioritise the flows: At this point, prioritization of
flows takes place based on coverage of all transitions in the
activity diagram.

Step 4: Generate test cases: Test cases get generated from
the prioritised flows using manual or automated approach.

Step 5: Associate test data: Association of test data with the
appropriate test cases is done in order to guarantee that
accurate activity flow is executed for a test case.

3.3 Requirement-Based Prioritization

In requirement based test case prioritization test cases gets
generated from the requirement specifications produced by
the customer which lead to the earlier detection of faults and
user satisfaction with quality software. There are three
factors that need to be considered while doing prioritization
based on the requirements.

1. Customer assigned priority of requirements: It defines the
significance of some requirements to the customer.
Customer can assign any priority value from 1-10 to all
the requirements. 1 represents the lowest priority and 10
represent the highest priority. Customer can assign any
number to the requirement based on the importance of that
requirement to the customer. Motivation to include this
factor: As the customer satisfaction is very important in
any development, so to make customer satisfy, the
requirements of higher priority must be tested first.

2. Implementation Complexity: It represents the difficulty
faced by the developer in order to develop or implement
the system. Each and every requirement can be scrutinized
and provided a value from 0-10. Developer can assign a
value based on difficulty of development.

 Motivation to include this factor: Requirements having
more complex tend to be producing more faults.
3. Requirement changes: It shows how many number of

times a requirement has been changed during the
development time. Again the value from 1-10 can be
assigned by the developer itself. It can be calculated as:
RCi = N/M*10
Where, RC is Requirement Change [5].
N is number of changes for requirement i.
M is highest number of changes for any requirement

among all the project requirements.
Motivation to include this factor: It is seen that roughly
50% of the faults introduced in the project are due to the
errors exists in the requirement phase. And requirement
changes can lead to these faults.

3.4 Prioritization Using Clustering

In this approach, clustering of test cases is done (based on
some criteria) of the prepared test cases after prioritization is

Paper ID: J2013118 6 of 7

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 2, February 2014

performed on those clusters. As an example we can consider
that first of all, clustering is done using the agglomerative
hierarchical method. According to which, pair-wise distance
is calculated among two test cases. The closest the two test
cases in terms of their code coverage similarity are merged
into one cluster. Then the table of pair-wise similarity is
recomputed.

Figure 3.4.1: Hierarchical tree for clustering [6]

The vertical lines at a meticulous level represent the number
of test clusters at that level. This approach gives flexible
path to adjust size and number of clusters. After the
preparation of clusters, First step is to perform prioritization
within each cluster. And to perform prioritization, reorder of
test cases is done. The second step is to generate complete
prioritised list of test cases by selecting test cases from each
cluster.

4. Conclusion and Proposed Work

Test case prioritization is procedure of prioritizing and
scheduling test cases with the help of which test cases of
higher priority run in order to minimise the testing effort,
time and cost. The literature review shows that many
researchers proposed many methods to achieve this. We can
take some of them collectively in order to improve the
prioritization process.

By concluding this, In future we are going to perform:

Step1: Generate test cases from models
Step2: Find the dependencies between generated test cases.
Step3: Based on those dependencies clustering will be

performed.
Step4: And finally the prioritization will take place.

By performing these steps we can achieve:
 Elevation of rate of fault detection.
 Decreased time of testing process.
 Decreased pair-wise comparison.
 Increased performance of coupled modules.

Reference

[1] Gantait, A. (2011). Test Case Generation and
Prioritization from UML Models. IEEE, pp. 345-350.

[2] Gregg Rothermel, R. H. (2001). Prioritizing Test Cases
For Regression Testing. IEEE vol. 27 no.10 , pp.929-948.

[3] Miller, S.-e.-Z. H. (2013). Using Dependency Structures
for Prioritization of Functional Test Suites. IEEE
Transation on Software Engineering, Vol. 39, No. 2,
pp.258-275.

[4] Quart-ul-an-farooq, M. Z. (2010). A Model Based
Regression Testing Approach For Evolving Software
Systems With Flexible Tool Support. IEEE, pp. 41-49.

[5] R.Kavitha, V. K. (2010). Requirement Based Test Case
Prioritization. IEEE, pp 826-829.

[6] Ryan Carlson, H. D. (n.d.) (2011). A clustering
Approach to Improving Test Case Prioritization: An
Industrial Case Study. IEEE, pp. 382-391.

Author Profile

Gurdiksha is pursuing M. Tech from Lovely Professional
University, School of Computer Science and Engineering,
Jalandhar-Delhi, India.

Janpreet Singh is working as Assistant Professor and COD,
Lovely Professional University, School of Computer Science and
Engineering, Jalandhar-Delhi, India.

Paper ID: J2013118 7 of 7

