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Abstract: Support vector machine (SVM) has been first introduced by Vapnik. There are two main categories for support vector 
machines: support vector classification (SVC) and support vector regression (SVR). SVM is a learning system using a high dimensional 
feature space. It yields prediction functions that are expanded on a subset of support vectors. The model produced by support vector 
classification only depends on a subset of the training data, because the cost function for building the model does not care about 
training points that lie beyond the margin. The regression analysis gives absurd results, if there are outlier’s presents in the data sets. 
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1. Introduction 
 
The Support Vector Machine (SVM) is a universal approach 
for solving the problems of multidimensional function 
estimation. Those approaches are all based on the Vapnik– 
Chervonenkis (VC) theory. Initially, it was designed to solve 
pattern recognition problems, where in order to find a 
decision rule with good generalization capability, a small 
subset of the training data, called the support vectors are 
selected. Experiments showed that it is easy to recognize 
high-dimensional identities using a small basis constructed 
from the selected support vectors. Recently, SVM has also 
been applied to various fields successfully such as 
classification, time prediction and regression. When SVM is 
employed to tackle the problems of function approximation 
and regression estimation, the approaches are often referred 
to as the Support Vector Regression (SVR). The SVR type of 
function approximation is very effective, especially for the 
case of having a high-dimensional input space.  
 
In general, for any real-world applications, observations are 
always subject to noise or outliers. The intuitive definition of 
outliers is that “an observation which deviates so much from 
other observations as to arouse suspicions that it was 
generated by a different mechanism”. Outliers may occur due 
to various reasons, such as erroneous measurements or noisy 
phenomenon appearing in the tail portion of some noise 
distribution functions. However, the traditional SVR is not 
effective in dealing with outliers in training data commonly 
encounter in practical applications. Thus few outliers result 
in a poor regression. The basic idea of the proposed method 
consists in gradually partitioning data into outliers and 
inliers, and thus refining the estimation with the inliers.  

 
2. Linear Regression 
 
Regression analysis includes any techniques for modeling 
and analyzing several variables, when the focus is on the 
relationship between a dependent variable and one or more 
independent variables. More specifically, regression analysis 
helps us understand how the typical value of the dependent 
variable changes when any one of the independent variables 

is varied, while the other independent variables are held 
fixed. Most commonly, regression analysis estimates the 
conditional expectation of the dependent variable given the 
independent variables — that is, the average value of the 
dependent variable when the independent variables are held 
fixed.  
 
Regression analysis is widely used for prediction and 
forecasting, where its use has substantial overlap with the 
field of machine learning. Regression analysis is also used to 
understand which among the independent variables are 
related to the dependent variable, and to explore the forms of 
these relationships.  
 
Regression models involve the following variables:  
 
• The unknown parameters denoted as β; this may be a scalar 

or a vector of length k.  
• The independent variables X.  
• The dependent variable, Y.  
 
A regression model relates Y to a function of X and β. 
 

 
 
In linear regression, the model specification is that the 
dependent variable, yi is a linear combination of the 
parameters (but need not be linear in the independent 
variables). 
 
Suppose we are given a data set  
 

 
of n statistical units, a linear regression model assumes that 
the relationship between the dependent variable yi and the p-
vector of regressors xi is approximately linear. This 
approximate relationship is modeled through a so-called 
“disturbance term” εi — an unobserved random variable that 
adds noise to the linear relationship between the dependent 
variable and regressors. 
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Thus the model takes form 
 

 
 
where ′ denotes the transpose, so that xi′β is the inner product 
between vectors xi and β. 
 
Often these n equations are stacked together and written in 
vector form as 
 

 
 
Where 
 

 
 

Example of linear regression with one independent variable 
 

 
 
3. Support Vector Regression 
 
There are two main categories for support vector machines: 
support vector classification (SVC) and support vector 
regression (SVR).SVM is a learning system using a high 
dimensional feature space. It yields prediction functions that 
are expanded on a subset of support vectors. A version of a 
SVM for regression has been proposed in 1997 by Vapnik, 
Steven Golowich, and Alex Smola . This method is called 
support vector regression (SVR). The model produced by 
support vector classification only depends on a subset of the 
training data, because the cost function for building the 
model does not care about training points that lie beyond the 
margin. Analogously, the model produced by SVR only 
depends on a subset of the training data, because the cost 
function for building the model ignores any training data that 
is close (within a threshold ε) to the model prediction.  
 
These might be, for instance, exchange rates for some 
currency measured at subsequent days together with 

corresponding econometric indicators. The main goal of 
regression problems is to find a function f (x) that can 
correctly predict the observation values, y, of new input data 
points, x, by learning from the given training data set, S. 
 
Here, learning from a given training data set means finding a 
linear or nonlinear surface that tolerates a small error in 
fitting this training data set. In ε -SV regression, our goal is 
to find a function f(x) that has at most ε deviation from the 
actually obtained targets yi for all the training data, and at the 
same time is as flat as possible. In other words, we do not 
care about errors as long as they are less than ε , but will not 
accept any Example of linear regression with one 
independent variable deviation larger than this. This may be 
important if you want to be sure not to lose more than ε 
money when dealing with exchange rates, for instance.  
 
Also, applying the idea of support vector machines (SVMs) 
the function f(x) is made as flat as possible in fitting the 
training data. This problem is called -support vector 
regression ( -SVR) and a data point  is called a 
support vector if |f(xi)−yi|≥ .  
 
Conventionally, ε -SVR is formulated as a constrained 
minimization problem, namely, a convex quadratic 
programming problem or a linear programming problem. 
Such formulations introduce 2m more nonnegative variables 
and 2m inequality constraints that enlarge the problem size 
and could increase computational complexity for solving the 
problem.  
 
For pedagogical reasons, we begin by describing the case of 
linear functions f, taking the form f(x)=<w,x>+b 
 
where <. , .> denotes the dot product in X. Flatness in the 
case of (1) means that one seeks a small w. One way to 
ensure this is to minimize the norm i.e. 2|||| w =<w,w>. We 
can write this problem as a convex optimization problem. 

minimize 
2
1 2|||| w  

subject to yi −<w,xi>−b ≤ ε ; 
 <w,xi>+b− yi ≤ ε ; 
 
The tacit assumption was that such a function f actually exists 
that approximates all pairs (xi; yi) with  precision, or in 
other words, that the convex optimization problem is 
feasible. Sometimes, however, this may not be the case, or 
we also may want to allow for some errors. Analogously to 
the soft margin, loss function which was adapted to SV 
machines, one can introduce slack variables  and * to 
cope with otherwise infeasible constraints of the optimization 
problem. Hence we arrive at the formulation stated in  

 R(w,b , , *)=C ( + *) +
2
1  2|||| w   

Subject to yi −<w,xi>−b ≤ +  ; <w,xi>+b− yi ≤ + * ; 
≥0; *≥0; 
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The constant C > 0 determines the trade-off between the 
flatness of f and the amount up to which deviations larger 
than are tolerated. 
 
After solving this optimization problem one can get the 
function f(x) 

as bxxxf i

n

i
ii +><−= ∑

=

,)*()(
1

αα
 

and this is the equation of hyper plane. 
 

 
 
4. Support Vector Regression for Outliers 

Removal 
 
An outlier is an observation that is numerically distant from 
the rest of the data. In larger samplings of data, some data 
points will be further away from the sample mean than what 
is deemed reasonable. This can be due to incidental 
systematic error or flaws in the theory that generated an 
assumed family of probability distribution, or it may be that 
some observations are far from the center of the data. Outlier 
points can therefore indicate faulty data, erroneous 
procedures, or areas where a certain theory might not be 
valid. However, in large samples, a small number of outliers 
is to be expected (and not due to any anomalous condition). 
Grubbs defined an outlier as: “An outlying observation, or 
outlier, is one that appears to deviate markedly from other 
members of the sample in which it occurs.” Outliers can 
occur by chance in any distribution, but they are often 
indicative either of measurement error or that the population 
has a heavy-tailed distribution. 
 
5. Results and Comparisons 
 
Data Set Generation with and without Outliers:  
 
Here we are working on 4 dim artificial data. To generate the 
data we need x1, x2, x3, x4 and a linear relationship between 
them. We generate x1 from a uniform distribution on the unit 
interval i.e. on the interval [0,1], x2 from a uniform 
distribution on the interval [1,4], x3 from a uniform 
distribution on the interval [-1,2], and x4 from a uniform 
distribution on the unit interval i.e. on the interval [0,1].  

Y=2-3*x1+4*x2+x3+0*x4 is the linear relationship between 
x1,x2,x3 and x4 and our regression function y is given by 
normal distribution with the mean of Y and variance of 1.  
 
6. Conclusion and Future Discussion 
 
In this approach, we are finding the value of maximum 
epsilon by using the usual Support Vector Regression 
Method. And for value of epsilon less than maximum epsilon 
see the performance. If outliers are not present in the data set, 
then usual Support Vector do the better regression in 
compare to Multivariate Regression. But if outliers are 
present in the dataset then first we will have to remove that 
outlier by the above method and then do the regression on the 
inliers data points. So ultimately we are using Support Vector 
Regression Method twice so its complexity will increase by 
the factor of 2. SVR performance depends on a good setting 
of meta-parameters parameters C, ε and the kernel 
parameters. Parameter C determines the tradeoff between the 
model complexity (flatness) and the degree to which 
deviations larger than are tolerated in optimization 
formulation for example, if C is too large (infinity), then the 
objective is to minimize the empirical risk only, without 
regard to model complexity part in the optimization 
formulation. Here we are dealing with the value of C to be 
100 and linear kernel. 
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