
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 3 March 2014

Sedas: A Self Destructive Active Storage
Framework for Data Privacy

R. C. Dharmik1, Hemlata Dakhore2, Vaishali Jadhao3

1Department of IT YCCE, Nagpur, Maharashtra, India

2Department of CSE, G.H Raisoni Nagpur, Maharashtra, India

Abstract: Personal data that we store in the Cloud may contain account numbers, passwords, notes, and other important information
that could be used and misused by a miscreant, a competitor, or a court of law. These data are cached and copied by Cloud Service
Providers, often without users’ authorization and control. Self-destructing data mainly aims at protecting the user data’s privacy. All the
data and their copies become destructed or unreadable after a user-specified time, without any information to user. In addition, the
decryption key is destructed after the user-specified time. In this paper, we present a system that meets this challenge through a novel
integration of cryptographic techniques with active storage techniques. We implemented a proof-of-concept self destructive prototype.
Through functionality and security properties evaluations of this prototype, the results demonstrate that the system is practical to use
and meets all the privacy-preserving goals described. Compared to the system without self-destructing data mechanism, throughput for
uploading and downloading with the proposed system acceptably decreases, while latency for upload/download operations with self-
destructing data mechanism increases.

Keywords: Active storage, Cloud computing, data privacy, self-destructing data

1. Introduction

As Cloud computing and mobile Internet is getting
popularized, Cloud services are becoming more and more
important in people’s life. People are requested to submit or
post some personal private information to the Cloud by the
Internet. When people post their data, they subjectively hope
service providers will provide security policy to protect their
data from leaking, so others people will not invade their
privacy. As people rely more and more on the Internet and
Cloud technology, security of their privacy is on more risks.
On the one hand, when data is being processed, transformed
and stored by the current computer system or network,
systems or network must cache, copy or archive it. Because
these copies are essential for systems and the network. As
people have no knowledge about these copies and cannot
control them, so these copies may leak their privacy. On the
other hand, their privacy also can be leaked via Cloud
Service Providers negligence, hackers’ intrusion or some
legal actions. These problems present formidable challenges
to protect people’s privacy.

Personal data stored in the Cloud may contain account
numbers, passwords, notes, and other important information
that could be used and misused by a miscreant, a competitor,
or a court of law. These data are cached, copied, and
archived by Cloud Service Providers, often without users’
authorization and control. Self-destructing data mainly aims
at protecting the user data’s privacy. All the data and their
copies become destructed or unreadable after a user-
specified time, without any user intervention. In addition,
the decryption key is destructed after the user-specified time.

2. Objectives

Objectives of Proposed System to implement a self
destructing data system are as follows:

The self destructive system defines two modules, a self-
destruct method object that is associated with each secret
key part and survival time parameter for each secret key
part. In this case, System can meet the requirements of self-
destructing data with controllable survival time while users
can use this system as a general object storage system. Our
objectives are summarized as follows.

1) We focus on the related key distribution algorithm,
Shamir’s algorithm, which is used as the core algorithm
to implement client (users) distributing keys in the
Object storage system. We use these methods to
implement a safety destruct with equal divided key.

2) Based on active storage framework, we use an object-
based storage interface to store and manage the equally
divided key.

3) Through functionality and security properties evaluation
of this prototype, the results demonstrate that System is
practical to use and meets all the privacy-preserving
goals. The prototype system imposes reasonably low
runtime overhead.

4) System supports security erasing files and random
encryption keys stored in a hard disk drive or solid state
drive, respectively.

5) Using load balancing and round robin algorithm for
managing the load on the nodes,

Paper ID: J2013156 33 of 36

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 3 March 2014

3. Related Work

3.1 Existing System
A pioneering study of Vanish supplies a new idea for
sharing and protecting privacy. In the Vanish system, a
secret key is divided and stored in a point to point system
with distributed hash tables. With joining and exiting of the
point to point node, the system can maintain secret keys.
According to characteristics of point to point, the distributed
hash tables will refresh every node after every eight hours.
With Shamir Secret Sharing Algorithm, when we will not
get enough parts of a key, he will not decrypt data encrypted
with this key, which means the key is destroyed and the data
cannot be recovered. Some special attacks to characteristics
of point to point are challenges of Vanish, uncontrolled in
how long the key can survive.

Vanish is a system used for creating messages that
automatically self-destruct after a period of time. It
integrates cryptographic techniques with global-scale, point
to point distributed hash tables. Distributed hash tables have
the property to discard data older than a certain age. In this
the key is permanently lost, and the encrypted data is
permanently unreadable after data expiration time. In Vanish
system each message is encrypted with a random key and
storing share of the key in a large, public distributed hash
tables. However, Sybil attacks may compromise the system
by continuously crawling the distributed hash tables and
saving each stored value before it ages out and the total cost
is two orders of magnitude less than that mentioned in
estimated. They can efficiently recover keys for more than
99% of Vanish messages.

3.2 Proposed System

The self destructive system defines two new modules, a self-
destruct method object that is associated with each secret
key part and each secret key part has its own survival time
parameter. In this case, self destructive system can meet the
requirements of self-destructing data with controllable
survival time while users can use this system as a general
object storage system. We are using load balancing and
round robin algorithm for managing the data on the nodes.

Figure 1: Self destructive system architecture

A) Self destructive Architecture

Figure 1 shows the architecture of self destructive. There are
three parties based on the active storage framework.

i. Metadata server: It is responsible for user management,
server management, session management and file
metadata management.

ii. Application node: The application node is a client to use
storage service of the self destructive.

iii. Storage node: Each storage node is an OSD. It contains
two core subsystems: key value store subsystem and
active storage object runtime subsystem. The key value
store subsystem which is based on the object storage
component and is used for managing objects stored in
storage node: lookup object, read/write object and so on.
The object ID is used as a key. The associated data and
attribute of the node are stored as values. The active
storage object runtime subsystem based on the active
storage agent module in the object-based storage system
is used to process active storage request from users and
manage method objects and policy objects.

B) Active Storage Object
An active storage object derives from a user object and has a
time-to-live value property. The time-to-live value is used to
trigger the self-destruct operation. The time-to-live value of
a user object has the property infinite so the user object will
not be deleted until a user deletes it manually. On the other
hand the time-to-live value of an active storage object is
limited so an active object will be deleted when the value of
the associated Policy object is true.

C) Self-Destruct Method Object
A self-destruct method object is a service method. It needs
three arguments. The lun argument specifies the device; the
pid argument specifies the partition and the obj_id argument
specifies the object to be destructed.

D) Data Process
To use the self destructive system, user’s applications should
implement logic of data process and act as a client node.

There are two different logics: uploading and downloading.
i. Uploading file process: When a user uploads a file to a

storage system and stores his key in this System, he has to
specify the file, the key and time-to-live as arguments for
the uploading procedure. Fig. 3 presents its pseudo-code.
In these codes, we assume data and key has been read
from the file. The ENCRYPT procedure uses a common
encrypt algorithm or user-defined encrypt algorithm. After
uploading data to storage server, the key shares that are
generated by Shamir Secret Sharing algorithm are used to
create active storage object in storage node in the Self
destructive system.

ii. Downloading file process: Any user who has relevant
permission can download data stored in the data storage
system. The data must be decrypted before use.

Paper ID: J2013156 34 of 36

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 3 March 2014

E) Data Security Erasing in Disk
We must secure delete sensitive data and reduce the negative
impact of OSD performance due to deleting operation. The
proportion of required secure deletion of all the files is not
great, so if these parts of the file update operation changes,
then the OSD performance will be impacted greatly.

Our implementation method is as follows:
i) The system pre-specifies a directory in a special area to

store sensitive files.
ii) Monitor the file allocation table and acquire and

maintain a list of all sensitive documents, the logical
block address.

iii) Logical block address list of sensitive documents appear
to increase or decrease, the update is sent to the OSD.

iv) OSD internal synchronization maintains the list of
logical block address, the logical block address data in
the list updates.

4. Proposed Plan of Work

1. Study of the Existing System as well as Proposed
System
 In this module we will do study of the existing system
and also of the proposed system and whatever
disadvantage that are in the existing system we have to
remove it and have to see that it does not occur in the
proposed system.

2. Development of Active Storage Framework
An active storage object that is derived from a user object
and has the time-to-live value property. The time-to-live
value is used to trigger the self-destruct operation. The
time-to-live value of a user object is infinite i.e. user
object will not be deleted until a user deletes it manually.
The time-to-live value of an active storage object is
limited so an active object will be deleted when the value
of the associated Policy object is true.

3. Development of login tracking of the user
To use the Self destructive system, user’s applications
should implement logic of data process and act as a client
node. There are two different logics: uploading and
downloading.
i) Uploading file process: When a user uploads a file

to a storage system and stores his key in this System,
he should specify the file, the key and time-to-live as
arguments for the uploading procedure. We assume
data and key has been read from the file. The
ENCRYPT procedure uses a common encrypt
algorithm or user-defined encrypt algorithm. After
uploading data to storage server, key shares generated
by Shamir Secret Sharing algorithm will be used to
create active storage object in storage node in the self
destructive system.

ii) Downloading file process: Any user who has
relevant permission can download data stored in the
data storage system. The data must be decrypted
before use. The whole logic is implemented in code
of user’s application.

4. Development of deletion module in case user logs out
A self-destruct method object is a service method. It
needs three arguments. The lun argument specifies the
device; the pid argument specifies the partition and the
obj_id argument specifies the object to be destructed.

5. Checking the response of the system
Impact of OSD performance due to deleting operation.
The proportion of required secure deletion of all the files
is not great, so if this part of the file update operation
changes, then the OSD
Performance will be impacted greatly. Our method is as
follows:
i) The system pre specifies a directory in a special area

to store sensitive files.
ii) Monitor the file allocation table and acquire and

maintain a list of all sensitive documents, the logical
block address (LBA).

iii) LBA list of sensitive documents appear to increase or
decrease, the update is sent to the OSD.

iv) OSD internal synchronization maintains the list of
LBA, the LBA data in the list updates.

6. Testing and optimization of our system
We input the full path of file, key file, and the life time
for key parts. The system encrypts data and uploads
encrypted data. The life time of key parts is 150 s for a
sample text file with 101 bytes. System prompts creating
active object are successful afterwards and that means the
uploading file gets completed. The time output finally is
the time to create active object. Self destructive was
checked and corresponded with changes on work
directory of the storage node. The sample text file also
was downloaded or shared successfully before key
destruct.

5. Research Methodology

We focus on the related key distribution algorithm, Shamir’s
algorithm, which is used as the core algorithm to implement
client (users) distributing keys in the object storage system.
We use these methods to implement a safety destruct with
equal divided key (Shamir Secret Shares) based on active
storage framework, we use an object-based storage interface
to store and manage the equally divided key. We
implemented a proof-of-concept Self destructive prototype.
Through functionality and security properties evaluation of
the Self destructive prototype, the results demonstrate that
self destructive is practical to use and meets all the privacy-
preserving goals. The prototype system imposes reasonably
low runtime overhead. 4) Self destructive supports security
erasing files and random encryption keys stored in a hard
disk drive or solid state drive, respectively.

Paper ID: J2013156 35 of 36

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 3 March 2014

Figure 2: Key distribution using Shamir secret sharing
algorithm

6. Conclusion

Data privacy has become increasingly important in the
Cloud environment. This paper introduced a new approach
for protecting data privacy from attackers who retroactively
obtain, through legal or other means, a user’s stored data and
private decryption keys. A novel aspect of our approach is
the leveraging of the essential properties of active storage
framework.

References

[1] IEEE paper on “SeDas: A Self-Destructing Data System
Based on Active Storage Framework” by: Lingfang
Zeng, Shibin Chen, Qingsong Wei, and Dan Feng IEEE
TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 6,
JUNE 2013.

[2] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy,
“Vanish: Increasing data privacy with self-destructing
data,” in Proc. USENIX Security Symp., Montreal,
Canada, Aug. 2009, pp. 299–315.

[3] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, D. D. E.
Long, Y. Kang, Z. Niu, and Z. Tan, “Design and
evaluation of oasis:An active storage framework based
on t10 osd standard,” in Proc. 27th IEEE Symp. Massive
Storage Systems and Technologies (MSST), 2011.

[4] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for storage security in cloud
computing,” in Proc. IEEE INFOCOM, 2010.

Paper ID: J2013156 36 of 36

