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Abstract:A random number generator (RNG) is a device designed to generate a sequence of numbers or symbols that don‘t have any 
pattern. Hardware-based systems for random number generation are widely used, but often fall short of this goal, albeit they may meet 
some of the statistical tests for randomness for ensuring that they do not have any “de-cod able” patterns. In the existing work, they 
proposed LUTs as shift registers to achieve high quality and long periods, while requiring very few resources. In defining the LUT-SR 
generators, the provision of a serial load chain is explicitly taken into account, by embedding a chosen cycle into the matrix A from the 
start. Specifically, we embed a very simple cycle of the form i ← (i + 1)mod r through the XOR bits. In the enhancement work, we 
proposed enhanced LUT – SR architecture with a Linear Congruential Generator (LCG) represents one of the oldest and best known 
pseudorandom number generator algorithms. The theory behind them is easy to understand, and they are easily implemented and fast. 
Experimental result shows performance level of our proposed architecture. In this, we implement our architecture in VLSI platform. 
Here our design was made by VHDL programming language by using Xilinx software. 
 
Keywords: Linear Congruential Generator, field-programmable gate array (FPGA), uniform random number generator (RNG). 
 
1. Introduction 
 
In the past, the major concerns of the VLSI designer were 
area, performance, cost and reliability; power consideration 
was mostly of only secondary importance. In recent years, 
however, this has begun to change and, increasingly, power 
is being given comparable weight to area and speed 
considerations. Several factors have contributed to this 
trend. Perhaps the primary driving factor has been the 
remarkable success and growth of the class of personal 
computing devices (portable desktops, audio- and video-
based multimedia products) and wireless communications 
systems (personal digital assistants and personal 
communicators) which demand high-speed computation and 
complex functionality with low power consumption. 
 
The low power interests are driven both by evolutionary and 
revolutionary trends. It is estimated that in the next five 
years about 50% of the electronic market will be in the 
portable system, while keeping the heat generation under the 
control to avoid forced cooling. The low power requirement 
thus calls for global solution. The solution can be classified 
into two faces, supply and demand. On the supply side we 
need better denser and smarter batteries efficient power 
conversion and regulation, improved heat dissipation, 
distribution and cooling technique etc., on the other hand we 
try to reduce the demand for low power by better processes 
and device technique efficient computation structures design 
technique etc.  
 
Field programmable gate arrays are used in Monte Carlo 
application because of their highly parallel nature of the 
application, and because it is possible to take advantage of 
hardware features to create very efficient random generators 
(RNGs). In particular, uniform random bits are extremely 
cheap to generate in an FPGA, as large numbers of bits can 
be generated per cycle at high clock rates using lookup 

tables, or first-in-first-out (FIFO) queues. In addition, these 
generators can be customized to meet the exact requirements 
of the application, both in terms of the number of bits 
required per cycle, for the FPGA architecture of the target 
on platform. Despite these advantages, FPGA-optimized 
generators are not widely used in practice, as the process of 
constructing a generator for a given parameterization is time 
consuming, in terms of both developer man hours and CPU 
time. While it is possible to construct all possible generators 
ahead of time, the resulting set of cores would require many 
megabytes and be difficult to integrate into existing tools 
and design flows. Faced with these unpalatable choices, 
engineers under time constraints understandably choose less 
efficient methods, such as understandably choose less 
efficient methods, such as combined Taus-worthe generator 
or parallel linear feedback shift registers (LFSRs). 
 
However, while the FIFO in a LUT-FIFO RNG is usually an 
expensive block RAM, LUT-based shift registers are very 
cheap, as cheap as the LUTs used to build the XOR gates. 
So it now becomes economical to use the shift registers, one 
per output bit. 

 
2. LUT-SR RNG 
 
2.1 Our Contributions 
 
 In recent years some researchers have developed FPGA 
Optimized random number generator which is one of the 
family of uniform random number generator with a matrix A 
where each row and each column contains t - 1or tones. In 
hardware terms this means that each row maps to a t-1or t 
input XOR gate, and so can be implemented in a single t-
input LUT. Thus if the current vector state is held in a 
register, the new vector state can be calculated in a single 
LUT, and an r-bit generator can be implemented in r fully 
utilized LUT-FF’s. FPGA contains different types of storage 
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elements, such as block RAM’s, distributed RAM’s, and 
shift-registers. All of these can be configured to act as fixed-
length FIFO’s, which delay data for some fixed number of 
cycles. To extend the period of a generator, it need to add 
state, and as well as the flip flops in logic elements. The 
uniform random numbers are designed by using the LUT-SR 
RNGs (Lookup table-Shift Register Random number 
generator).In hardware, there are two different 
methodologies such as interleaved parallelization (IP), 
chunked parallelization (CP)for parallelizing long period 
RNG’s. The proposed LUT-SR random number generator 
provides a middle ground between the LUT-Opt generator 
and LUT-FIFO generator, by using cheap bit-wise shift-
registers to provide long period and duty cycle without 
requiring expensive resources. 
 
2.2 LUT-SR RNG 
 
The architecture of the proposed LUT-SR random number 
generator is shown in Figure 3.1. The main goal of the 
proposed method is to achieve the maximum period of 
P=22048 – 1(i.e., P=2n – 1).It can be defined as how much 
amount of time the sequence is repeated itself is called the 
period. The repeatability is one of the major requirements of 
the random number generator. Although this may seem to 
contradict randomness it is a virtue that, using the same 
initial conditions, the sequence exactly repeats itself. The 
lookup table is a memory with a one bit output that 
essentially implements a truth table where each input 
Combination generates a certain logic output. The input 
combination is referred to as an address. The HDL 
synthesizer implements an AND gate by programming the 
stored elements in a LUT. 
 
Consider the row of the generator is 64 bit and the depth of 
the FIFO queue is 31bit, the number of stages in shift 
register increases to n=2048. This provides a potential 
period of P=22048 – 1 for a cost of 1 LUT, and 16 flip flops 
as compared to a previous methods such as LUT-OPT 
random number generator and LUT-FIFO random number 
generator. The four stages of the developed uniform random 
number generator are given as follows. 
 

 
Figure 3.1: Stages of Random Number Generator 

 
2.3 Create initial seed cycle 
 
A cycle of length r is created through the r XOR gates at the 
output of the RNG. FPGA optimized pseudo uniform 

random number generator with a large period and with the 
ability to generate large quantities of uniform random 
numbers from a single seed. At this stage there are no FIFO 
bits, or equivalently there are r FIFOs of length is zero is 
shown in Figure 3.2. 
 

 
Figure 3.2: Create seed cycle 

 
2.4 FIFO Extension 
 
The cycle is randomly extended until a total cycle length of 
n is reached, by randomly selecting a FIFO and increasing 
its length by 1, while maintaining the known cycle is shown 
in Figure 3.3. AFIFO is a sequential data buffer that is very 
easy to use. Very small FIFOs can be implemented with flip-
flops or register arrays, sometimes even with shift registers. 
  

 
Figure 3.3: Randomly extended FIFO 

 
2.5: Add XOR Connections 
 
The cycle provides one input for each of the XOR gates, so 
now the additional t – 1random inputs are added over 
t−1rounds. Each round is constructed from a permutation of 
the FIFO outputs, which ensures that at the end each FIFO 
output is used at most t times is shown in Figure 3.4. 
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Figure.3.4: Add XOR Connections 
 

A FIFO is a sequential data buffer that is very easy to use. 
Very small FIFOs can be implemented with flip-flops or 
register arrays, sometimes even with shift registers. 
 
2.6 Output permutation 
 
The simple dependency between adjacent bits is masked 
using a final output permutation is shown in Figure 3.5. 
Each permuted output bit is used at most times. Some bits 
will be assigned the same FIFO bit in multiple rounds. The 
XOR outputs are given to the PIPO SR and fed back to the 
FIFO extensions 

 

 
Figure 3.5: Output Permutation 

 
3. Proposed Work 
 
In proposed work, enhanced LUT – SR architecture with a 
Linear Congruential Generator (LCG) represents one of the 
oldest and best known pseudorandom number generator 
algorithms. The theory behind them is easy to understand, 
and they are easily implemented and fast. Experimental 
result shows performance level of our proposed architecture. 
The method of this random number generation by linear 

congruential method, works by computing each successive 
random number from the previous. Starting with a seed, Xo, 
the linear congruential method uses the following formula: 
  
 Xi+1 = (A*Xi + C) mod M  
 m,0<m — the "modulus“  
 a, 0<a<m — the "multiplier"  
 c,0<c<m — the "increment“  
 Xo,0<Xo<m — the "seed" or "start value"  
 
4. Results and Discussion 
 
The initial seed for an 8-bit RNG is given or triggered 
through PIPO SR.A shift register is an n-bit register that 
shifts its stored data by one bit position for every clock tick. 
The resulting sequence is fed back to the SISO SR or 
FIFOSR. Permutation of the resulting outputs is given to the 
XOR gates, where the XOR gate outputs are shifted and thus 
random number generation takes place successfully. 
 
The results for 8-bit RNG are discussed in figure. The same 
scheme is carried out for 64 bit RNG. The permuted bits 
output is given to the XOR gates. For 8-bit RNG the number 
of XOR gates is 8(t=8). The concept of permutation is used 
up for improving randomness among bits and thus 
employing unpredictability. The first and last bits are 
interchanged. The same concept of permutation is used for 
different bit RNGs. The permuted outputs are fed into the 
XOR gates and for remaining inputs to XOR gates round 
basis is used. The resulting outputs generate the random 
number cycle. The cycle is fed into the SISO SR [FIFO] of 
varying lengths (length=k). The length should not exceed r. 
As each bit crosses the flip-flop, it will be set to zero. Thus 
random number generation takes place. The resulting 
random numbers are generated such that their period is 2r -
1.If the number of bits is 16, then the period is 216-1. The 
count of all zero state is reduced since the all zero state leads 
to idle condition. The period is the duration after which the 
entire sequence goes on repeating based on the initial seed 
and the permutations. So, the period for 32, 64, 128 and 512 
bit RNGs are 232-1, 264-1, 2128-1, 2512-1. Register-
Transfer-Level abstraction is used in VHDL languages for 
the formation of high level representation of the circuit and 
it clearly depicts the amount of LUTs used. 
 

 
Figure 4: RTL schematic view 

 
 

Paper ID: J2013179 99 of 102



International Journal of Scientific Engineering and Research (IJSER) 
www.ijser.in 

ISSN (Online): 2347-3878 
Volume 2 Issue 3, March 2014 

The technology schematic depicts the exact number of LUTs 
and FFs considered in fig 
 

 
Figure 5: Technology schematic 

 
As each bit crosses the flip-flop, it will be set to zero. The 
count of all zero state is reduced since the all zero state leads 
to idle condition. 
 

 
Figure 6: Output waveform 

 
4.1 Device Utilization Summary 

The device utilization summary results for 16-bit, RNG 
shows the number of (resources) flip-flops and LUTs 
utilized. 

 
Figure 7: Device utilization summary for 16-bitRNG 

 
The device utilization summary table is displayed by Xilinx 
Design Suite soon after the RTL implementation is 
completed. The number of flip-flops utilized for 8-bit RNGs 
are 8 in number. The resource usage has considerably been 
reduced compared to the existing methodology. The number 
of LUTs has also been reduced in the work based on the 
proposed architecture. 
 
4.2 Performance Comparison 
 
The RNGs have the ability to configure LUTs as 
independent shift registers and require less amount of logic. 
The key point of the LUT-SR generators over previous 
FPGA optimized uniform RNGs is that they can be 
reconstructed using a simple algorithm. The number of LUT 
and FF utilized for 512-bit RNGs are 740 and 75 compared 
to the existing methodology’s resource usage of 1024 
and1024 for 512-bit RNGs as shown in Table. 
 
 4.3 Comparison between existing and proposed 
methodology 
 

Existing Methodology Proposed Methodology 
LUT FF LUT FF 
16 16 19 8 
32 32 33 16 

 
4.4 Overall Comparison Chart 
 
The system of resource efficient RNG is described using the 
algorithm. Thus by the use of the simplified algorithm 
random numbers are generated successfully with the period 
of 2r -1. The overall comparison of all random number 
generators, in case of Lookup table and Flip flop is shown in 
Figure.  
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Figure 8: Overall Comparison Chart 
 
The overall resource usage increases linearly as the number 
of bits increases. Compared to the existing RNGs the 
resource usage has reduced thus leading to improvement in 
resource efficiency. 

 
5. Conclusion and Future Work 
 
5.1 Conclusion 
 
In this existing system, a family of FPGA optimized uniform 
RNGs, called LUT-SR RNGs is generated using a simplified 
algorithm. The RNGs have the ability to configure LUTs as 
independent shift registers and require less amount of logic. 
The key point of the LUT-SR generators over previous 
FPGA optimized uniform RNGs is that they can be 
reconstructed using a simple algorithm. This paper presented 
a family of FPGA-optimized uniform RNGs, called LUT-SR 
RNGs. These RNGs take advantage of the ability to 
configure LUTs as independent shift registers, allowing 
high-quality long-period generators to be implemented using 
only a small amount of logic. In addition, the period and 
quality scale with the number of output bits, unlike 
generators adapted from software. A key advantage of the 
LUT-SR generators over previous FPGA-optimized uniform 
RNGs is that they can be reconstructed using a simple 
algorithm, which is contained in this paper. In concert with 
the tables of maximum period generators, this allows FPGA 
engineers to use the new RNGs without needing to find 
generator instances themselves. 
 
5.2 Future Enhancement 
 
A generator called Linear Congruential Generator (LCG) is 
introduced in LUT-SR random number generator, which 
represents one of the oldest and best known pseudorandom 
number generator algorithms. The theory behind them is 
easy to understand, and they are easily implemented and 
fast. Experimental result shows performance level of our 
proposed architecture. 
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