
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 3, March 2014

Linear Congruential Generator for LUT-SR
Architecture

Mary Evanchalin .S1, Arulmozhi .P2

PG Scholar, Department of ECE, Nandha Engineering College, Erode-52, Tamil Nadu, India

Assistant Professor, Department of ECE, Nandha Engineering College, Erode-52, Tamil Nadu, India

Abstract:A random number generator (RNG) is a device designed to generate a sequence of numbers or symbols that don‘t have any
pattern. Hardware-based systems for random number generation are widely used, but often fall short of this goal, albeit they may meet
some of the statistical tests for randomness for ensuring that they do not have any “de-cod able” patterns. In the existing work, they
proposed LUTs as shift registers to achieve high quality and long periods, while requiring very few resources. In defining the LUT-SR
generators, the provision of a serial load chain is explicitly taken into account, by embedding a chosen cycle into the matrix A from the
start. Specifically, we embed a very simple cycle of the form i ← (i + 1)mod r through the XOR bits. In the enhancement work, we
proposed enhanced LUT – SR architecture with a Linear Congruential Generator (LCG) represents one of the oldest and best known
pseudorandom number generator algorithms. The theory behind them is easy to understand, and they are easily implemented and fast.
Experimental result shows performance level of our proposed architecture. In this, we implement our architecture in VLSI platform.
Here our design was made by VHDL programming language by using Xilinx software.

Keywords: Linear Congruential Generator, field-programmable gate array (FPGA), uniform random number generator (RNG).

1. Introduction

In the past, the major concerns of the VLSI designer were
area, performance, cost and reliability; power consideration
was mostly of only secondary importance. In recent years,
however, this has begun to change and, increasingly, power
is being given comparable weight to area and speed
considerations. Several factors have contributed to this
trend. Perhaps the primary driving factor has been the
remarkable success and growth of the class of personal
computing devices (portable desktops, audio- and video-
based multimedia products) and wireless communications
systems (personal digital assistants and personal
communicators) which demand high-speed computation and
complex functionality with low power consumption.

The low power interests are driven both by evolutionary and
revolutionary trends. It is estimated that in the next five
years about 50% of the electronic market will be in the
portable system, while keeping the heat generation under the
control to avoid forced cooling. The low power requirement
thus calls for global solution. The solution can be classified
into two faces, supply and demand. On the supply side we
need better denser and smarter batteries efficient power
conversion and regulation, improved heat dissipation,
distribution and cooling technique etc., on the other hand we
try to reduce the demand for low power by better processes
and device technique efficient computation structures design
technique etc.

Field programmable gate arrays are used in Monte Carlo
application because of their highly parallel nature of the
application, and because it is possible to take advantage of
hardware features to create very efficient random generators
(RNGs). In particular, uniform random bits are extremely
cheap to generate in an FPGA, as large numbers of bits can
be generated per cycle at high clock rates using lookup

tables, or first-in-first-out (FIFO) queues. In addition, these
generators can be customized to meet the exact requirements
of the application, both in terms of the number of bits
required per cycle, for the FPGA architecture of the target
on platform. Despite these advantages, FPGA-optimized
generators are not widely used in practice, as the process of
constructing a generator for a given parameterization is time
consuming, in terms of both developer man hours and CPU
time. While it is possible to construct all possible generators
ahead of time, the resulting set of cores would require many
megabytes and be difficult to integrate into existing tools
and design flows. Faced with these unpalatable choices,
engineers under time constraints understandably choose less
efficient methods, such as understandably choose less
efficient methods, such as combined Taus-worthe generator
or parallel linear feedback shift registers (LFSRs).

However, while the FIFO in a LUT-FIFO RNG is usually an
expensive block RAM, LUT-based shift registers are very
cheap, as cheap as the LUTs used to build the XOR gates.
So it now becomes economical to use the shift registers, one
per output bit.

2. LUT-SR RNG

2.1 Our Contributions

 In recent years some researchers have developed FPGA
Optimized random number generator which is one of the
family of uniform random number generator with a matrix A
where each row and each column contains t - 1or tones. In
hardware terms this means that each row maps to a t-1or t
input XOR gate, and so can be implemented in a single t-
input LUT. Thus if the current vector state is held in a
register, the new vector state can be calculated in a single
LUT, and an r-bit generator can be implemented in r fully
utilized LUT-FF’s. FPGA contains different types of storage

Paper ID: J2013179 97 of 102

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 3, March 2014

elements, such as block RAM’s, distributed RAM’s, and
shift-registers. All of these can be configured to act as fixed-
length FIFO’s, which delay data for some fixed number of
cycles. To extend the period of a generator, it need to add
state, and as well as the flip flops in logic elements. The
uniform random numbers are designed by using the LUT-SR
RNGs (Lookup table-Shift Register Random number
generator).In hardware, there are two different
methodologies such as interleaved parallelization (IP),
chunked parallelization (CP)for parallelizing long period
RNG’s. The proposed LUT-SR random number generator
provides a middle ground between the LUT-Opt generator
and LUT-FIFO generator, by using cheap bit-wise shift-
registers to provide long period and duty cycle without
requiring expensive resources.

2.2 LUT-SR RNG

The architecture of the proposed LUT-SR random number
generator is shown in Figure 3.1. The main goal of the
proposed method is to achieve the maximum period of
P=22048 – 1(i.e., P=2n – 1).It can be defined as how much
amount of time the sequence is repeated itself is called the
period. The repeatability is one of the major requirements of
the random number generator. Although this may seem to
contradict randomness it is a virtue that, using the same
initial conditions, the sequence exactly repeats itself. The
lookup table is a memory with a one bit output that
essentially implements a truth table where each input
Combination generates a certain logic output. The input
combination is referred to as an address. The HDL
synthesizer implements an AND gate by programming the
stored elements in a LUT.

Consider the row of the generator is 64 bit and the depth of
the FIFO queue is 31bit, the number of stages in shift
register increases to n=2048. This provides a potential
period of P=22048 – 1 for a cost of 1 LUT, and 16 flip flops
as compared to a previous methods such as LUT-OPT
random number generator and LUT-FIFO random number
generator. The four stages of the developed uniform random
number generator are given as follows.

Figure 3.1: Stages of Random Number Generator

2.3 Create initial seed cycle

A cycle of length r is created through the r XOR gates at the
output of the RNG. FPGA optimized pseudo uniform

random number generator with a large period and with the
ability to generate large quantities of uniform random
numbers from a single seed. At this stage there are no FIFO
bits, or equivalently there are r FIFOs of length is zero is
shown in Figure 3.2.

Figure 3.2: Create seed cycle

2.4 FIFO Extension

The cycle is randomly extended until a total cycle length of
n is reached, by randomly selecting a FIFO and increasing
its length by 1, while maintaining the known cycle is shown
in Figure 3.3. AFIFO is a sequential data buffer that is very
easy to use. Very small FIFOs can be implemented with flip-
flops or register arrays, sometimes even with shift registers.

Figure 3.3: Randomly extended FIFO

2.5: Add XOR Connections

The cycle provides one input for each of the XOR gates, so
now the additional t – 1random inputs are added over
t−1rounds. Each round is constructed from a permutation of
the FIFO outputs, which ensures that at the end each FIFO
output is used at most t times is shown in Figure 3.4.

Paper ID: J2013179 98 of 102

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 3, March 2014

Figure.3.4: Add XOR Connections

A FIFO is a sequential data buffer that is very easy to use.
Very small FIFOs can be implemented with flip-flops or
register arrays, sometimes even with shift registers.

2.6 Output permutation

The simple dependency between adjacent bits is masked
using a final output permutation is shown in Figure 3.5.
Each permuted output bit is used at most times. Some bits
will be assigned the same FIFO bit in multiple rounds. The
XOR outputs are given to the PIPO SR and fed back to the
FIFO extensions

Figure 3.5: Output Permutation

3. Proposed Work

In proposed work, enhanced LUT – SR architecture with a
Linear Congruential Generator (LCG) represents one of the
oldest and best known pseudorandom number generator
algorithms. The theory behind them is easy to understand,
and they are easily implemented and fast. Experimental
result shows performance level of our proposed architecture.
The method of this random number generation by linear

congruential method, works by computing each successive
random number from the previous. Starting with a seed, Xo,
the linear congruential method uses the following formula:

 Xi+1 = (A*Xi + C) mod M
 m,0<m — the "modulus“
 a, 0<a<m — the "multiplier"
 c,0<c<m — the "increment“
 Xo,0<Xo<m — the "seed" or "start value"

4. Results and Discussion

The initial seed for an 8-bit RNG is given or triggered
through PIPO SR.A shift register is an n-bit register that
shifts its stored data by one bit position for every clock tick.
The resulting sequence is fed back to the SISO SR or
FIFOSR. Permutation of the resulting outputs is given to the
XOR gates, where the XOR gate outputs are shifted and thus
random number generation takes place successfully.

The results for 8-bit RNG are discussed in figure. The same
scheme is carried out for 64 bit RNG. The permuted bits
output is given to the XOR gates. For 8-bit RNG the number
of XOR gates is 8(t=8). The concept of permutation is used
up for improving randomness among bits and thus
employing unpredictability. The first and last bits are
interchanged. The same concept of permutation is used for
different bit RNGs. The permuted outputs are fed into the
XOR gates and for remaining inputs to XOR gates round
basis is used. The resulting outputs generate the random
number cycle. The cycle is fed into the SISO SR [FIFO] of
varying lengths (length=k). The length should not exceed r.
As each bit crosses the flip-flop, it will be set to zero. Thus
random number generation takes place. The resulting
random numbers are generated such that their period is 2r -
1.If the number of bits is 16, then the period is 216-1. The
count of all zero state is reduced since the all zero state leads
to idle condition. The period is the duration after which the
entire sequence goes on repeating based on the initial seed
and the permutations. So, the period for 32, 64, 128 and 512
bit RNGs are 232-1, 264-1, 2128-1, 2512-1. Register-
Transfer-Level abstraction is used in VHDL languages for
the formation of high level representation of the circuit and
it clearly depicts the amount of LUTs used.

Figure 4: RTL schematic view

Paper ID: J2013179 99 of 102

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 3, March 2014

The technology schematic depicts the exact number of LUTs
and FFs considered in fig

Figure 5: Technology schematic

As each bit crosses the flip-flop, it will be set to zero. The
count of all zero state is reduced since the all zero state leads
to idle condition.

Figure 6: Output waveform

4.1 Device Utilization Summary

The device utilization summary results for 16-bit, RNG
shows the number of (resources) flip-flops and LUTs
utilized.

Figure 7: Device utilization summary for 16-bitRNG

The device utilization summary table is displayed by Xilinx
Design Suite soon after the RTL implementation is
completed. The number of flip-flops utilized for 8-bit RNGs
are 8 in number. The resource usage has considerably been
reduced compared to the existing methodology. The number
of LUTs has also been reduced in the work based on the
proposed architecture.

4.2 Performance Comparison

The RNGs have the ability to configure LUTs as
independent shift registers and require less amount of logic.
The key point of the LUT-SR generators over previous
FPGA optimized uniform RNGs is that they can be
reconstructed using a simple algorithm. The number of LUT
and FF utilized for 512-bit RNGs are 740 and 75 compared
to the existing methodology’s resource usage of 1024
and1024 for 512-bit RNGs as shown in Table.

 4.3 Comparison between existing and proposed
methodology

Existing Methodology Proposed Methodology
LUT FF LUT FF
16 16 19 8
32 32 33 16

4.4 Overall Comparison Chart

The system of resource efficient RNG is described using the
algorithm. Thus by the use of the simplified algorithm
random numbers are generated successfully with the period
of 2r -1. The overall comparison of all random number
generators, in case of Lookup table and Flip flop is shown in
Figure.

Paper ID: J2013179 100 of 102

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 3, March 2014

Figure 8: Overall Comparison Chart

The overall resource usage increases linearly as the number
of bits increases. Compared to the existing RNGs the
resource usage has reduced thus leading to improvement in
resource efficiency.

5. Conclusion and Future Work

5.1 Conclusion

In this existing system, a family of FPGA optimized uniform
RNGs, called LUT-SR RNGs is generated using a simplified
algorithm. The RNGs have the ability to configure LUTs as
independent shift registers and require less amount of logic.
The key point of the LUT-SR generators over previous
FPGA optimized uniform RNGs is that they can be
reconstructed using a simple algorithm. This paper presented
a family of FPGA-optimized uniform RNGs, called LUT-SR
RNGs. These RNGs take advantage of the ability to
configure LUTs as independent shift registers, allowing
high-quality long-period generators to be implemented using
only a small amount of logic. In addition, the period and
quality scale with the number of output bits, unlike
generators adapted from software. A key advantage of the
LUT-SR generators over previous FPGA-optimized uniform
RNGs is that they can be reconstructed using a simple
algorithm, which is contained in this paper. In concert with
the tables of maximum period generators, this allows FPGA
engineers to use the new RNGs without needing to find
generator instances themselves.

5.2 Future Enhancement

A generator called Linear Congruential Generator (LCG) is
introduced in LUT-SR random number generator, which
represents one of the oldest and best known pseudorandom
number generator algorithms. The theory behind them is
easy to understand, and they are easily implemented and
fast. Experimental result shows performance level of our
proposed architecture.

Reference

[1] D. B. Thomas and W. Luk, “High quality uniform

random number generation using LUT optimised state-
transition matrices,” J. VLSI Signal Process., vol. 47,
no. 1, pp. 77–92, 2007.

[2] D. B. Thomas and W. Luk, “FPGA-optimised high-
quality uniform random number generators,” in Proc.
Field Program. Logic Appl. Int.Conf., 2008, pp. 235–
244.

[3] P. L’Ecuyer, “Tables of maximally equidistributed
combined LFSR generators,” Math. Comput., vol. 68,
no. 225, pp. 261–269, 1999.

[4] D. B. Thomas and W. Luk, “FPGA-optimised uniform
random number generators using luts and shift
registers,” in Proc. Int. Conf. Field Program. Logic
Appl., 2010, pp. 77–82.

[5] M. Matsumoto and T. Nishimura, “Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-
random number generator,”ACM Trans. Modeling
Comput. Simulat., vol. 8, no. 1, pp. 3–30,Jan. 1998.

[6] M. Saito and M. Matsumoto, “SIMD-oriented fast
mersenne twister: A128-bit pseudorandom number
generator,” in Monte-Carlo and Quasi-Monte Carlo
Methods. New York: Springer-Verlag, 2006, pp. 607–
622.

[7] F. Panneton, P. L’Ecuyer, and M. Matsumoto,
“Improved long-period generators based on linear
recurrences modulo 2,” ACM Trans. Math. Software,
vol. 32, no. 1, pp. 1–16, 2006.

[8] M. Matsumoto and Y. Kurita, “Twisted GFSR
generators II,” ACM Trans. Modeling Comput. Simulat.,
vol. 4, no. 3, pp. 254–266, 1994.

[9] P. L’Ecuyer and R.Simard. (2007). TestU01 Random
Number Test Suite [Online]. Available:
http://www.iro.umontreal.ca/∼imardr/indexe.html.

[10] F. Panneton, P. L’Ecuyer, and M. Matsumoto,
“Improved long-period generators based on linear

[11] recurrences modulo 2,” ACM Trans. Math.
[12] Software, vol. 32, no. 1, pp. 1–16, 2006.
[13] V. Shoup. (1997, Jan. 15). NTL: A Library for Doing

Number Theory [Online]. Available:
http://www.shoup.net/ntl/

[14] M. Albrecht and G. Bard. (2010). The M4RI Library -
Version 20100817 [Online]. Available:
http://m4ri.sagemath.org

[15] S. Duplichan. (2003). PPSearch: A Primitive
Polynomial Search Program [Online]. Available:
http://users2.ev1.net/∼sduplichan/
primitivepolynomials/

[16] V. Sriram and D. Kearney, “A high throughput area
time efficient pseudo uniform random number generator
based on the TT800 algorithm,” in Proc. Int. Conf.
Field Program. Logic Appl., 2007, pp. 529–532.

[17] S. Konuma and S. Ichikawa, “Design and evaluation of
hardware pseudorandom number generator mt19937,”
IEICE Trans. Inf. Syst., vol. 88, no. 12, pp. 2876–2879,
2005.

[18] Y. Li, P. C. J. Jiang, and M. Zhang, “Software/hardware
framework for generating parallel long-period random

0
100
200
300
400
500
600
700

LUT

FF

Paper ID: J2013179 101 of 102

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 3, March 2014

numbers using the well method,” in Proc. Int. Conf.
Field Program. Logic Appl., Sep. 2011, pp. 110–115.

 Author Profile

S. Mary Evanchalin has completed her B.E (ECE).
She is pursuing M.E (VLSI Design) in Nandha
Engineering College, Erode, Tamil Nadu, India

Paper ID: J2013179 102 of 102

