www.ijser.in ISSN (Online): 2347-3878 Volume 2 Issue 5, May 2014

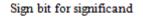
FPGA Implementation of Pipelined Architecture of Floating Point Arithmetic Core and Analysis of Area and Timing Performances

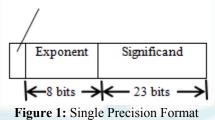
Hemraj Sharma¹, Abhilasha²

¹JECRC University, M.Tech VLSI Design, Rajasthan, India ²JECRC University, Rajasthan, India

Abstract: The aim of this paper is FPGA implementation of architecture of floating point arithmetic core and analysis of area and timing performances of that arithmetic core. The basic concept behind designing such a core is to optimally utilize the algorithms of floating point arithmetic operations, i.e., addition, subtraction, multiplication and division and to enhance the operational speed of these calculations in order to determine the better code amongst them in order to use it in future to increase the processor efficiency. The simulation has been carried out on Modelsim (Student edition) EDA tool 10.0c and synthesis has been carried out on ISE Design Suit EDA tool 14.4.

Keywords: Binary Division, Carry Look Ahead Adder, Exponent Subtraction, Floating Point, FPGA, Single Precision technique, Urdhva – tiryakbhyam


1. Introduction


Real world is full of different types of mathematical calculations. Today people have shortage of time and they want calculations to be performed at a very fast speed. Some of the common applications of mathematical calculations are in determining the exponential values, logarithmic calculations, etc. where it is essential to eliminate the time consumed or in other words, we can call it as delay in performing high speed calculations. Therefore, some kind of electronic calculation technique is highly essential to be used to perform this calculation at a very fast speed. Mathematical calculations including addition, subtraction, multiplication and division are very important fundamental functions in arithmetic calculative operations. Computational performance of a DSP system is limited by the performance of these mathematical operations. So, in order to improve its performance, a floating point arithmetic core is proposed.

In case of floating point arithmetic calculations, a significant improvement can be observed in execution speed using its algorithms because of inherent integer math hardware support in a large number of processors but this speed improvement does come at the cost of reduced range and accuracy of the algorithm variables. So to increase the range of variables and accuracy of operations, floating point arithmetic core is being used for addition, subtraction, multiplication and division.

2. Proposed Design

In floating point arithmetic core based design we use single precision (or 4 byte) technique. This technique is commonly known as "float" in the C language family and "real" or "real*4" in FORTRAN. This binary format occupies 32 bits, i.e., 4 bytes and its significant and has a precision of 24 bits (about 7 decimal digits).[1] Format is as shown below-

Using this format, we create codes of mathematical computations, namely, addition/subtraction, multiplication and division. After implementing the codes, we execute them on FPGA and then analyze their area and timing

performances. The proposed floating point design flow is

as drawn in figure below:

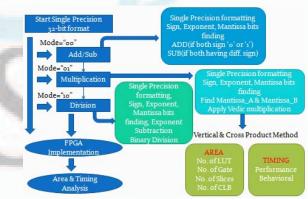


Figure 2: Floating Point Design Flow

In the floating point design architecture, codes of 32-bit addition/subtraction, multiplication and division codes have been designed and implemented. Complete coding is implemented using single precision technique.[2] For this purpose, different modes have been considered as mode "00" for add/subtract, mode "01" for multiplication and mode "10" for division. Add/subtract code is being

<u>www.ijser.in</u>

ISSN (Online): 2347-3878 Volume 2 Issue 5, May 2014

designed using conventional add/subtract methods using Carry Look Ahead Adder. Multiplication code is designed using vedic multiplication technique named Urdhva tiryakbhyam, i.e., "Vertically and Crosswise" technique.[3,4] Division code is implemented using binary division and exponent subtraction techniques.

For addition/subtraction coding, we use Carry Look Ahead Adder instead of ripple carry adder and any other kind of adder because this adder is a practical design with reduced delay. In case of multiplication, we use Vedic multiplier instead of any other conventional or array multipliers.[5,6] In Vedic multiplier, there are Nikhilam sutra which literally means "All from 9 and last from 10" and Urdhva – tiryakbhyam sutra which literally means "Vertically and Crosswise" out of which we proceed with Urdhva - tiryakbhyam sutra [7,8].

3. Timing and Area Analysis

The timing and area analysis of codes are as under:

3.1 Add/Subtract

The timing and area analysis, respectively, of add/subtract code are as shown under.

Table 1: Add/Subtract Code Timing Parameters

Parameters	Floating
Min. i/p arrival time before clock (ns)	7.382
Max. o/p required time after clock (ns)	4.368
Max. combinational path delay (ns)	28.726

Table 2: Add/Subtract Code Area Parameters

Parameters	Floating
Total Number of 4-input LUTs	447 out of 7168 (6%)
Number of occupied Slices	234 out of 3584 (6%)
Total Gate Count	3179

3.2 Multiplication

The timing and area analysis, respectively, of multiplication code are as shown under.

Tuble of manipheadon code Think	5 i arameters
Parameters	Floating
Min. i/p arrival time before clock (ns)	Not Found
Max. o/p required time after clock (ns)	Not Found
Max. combinational path delay (ns)	107.379

Table 4: Multiplication Code Area Parameters
--

Parameters	Floating
Total Number of 4-input LUTs	3412 out of 7176 (47%)
Number of occupied Slices	1751 out of 3584 (48%)
Total Gate Count	23,597

3.3 Division

The timing and area analysis, respectively, of division code are as shown under.

Parameters	Floating
Min. Period (ns)	Not Found
Min. i/p arrival time before clock (ns)	Not Found
Max. o/p required time after clock (ns)	Not Found
Max. combinational path delay (ns)	177.221

Table 6: Division Code Area Parameters

Parameters	Floating
Total Number of 4-input LUTs	1352 out of 7168 (18%)
Number of occupied Slices	700 out of 3584 (19%)
Total Gate Count	11,991

4. Results

The simulation waveforms of add/subtract, multiplication and division codes of floating point arithmetic core are shown in Fig.3, Fig.5 and Fig.7, respectively, along with their respective RTL top level schematics in Fig.4, Fig.6 and Fig.8 below-

4.1 Add/subtract

Inputs-> mantissa_a => 000007 exponent_a => 05 opa => 02800007 mantissa_b => 000038 exponent_b => 05 opb => 02800038 Output-> add_out => 0280003F

www.ijser.in ISSN (Online): 2347-3878 Volume 2 Issue 5, May 2014

📃 /add_subb/clk	0	normaliane - In-			
H <mark>-</mark> /add_subb/opa	FFFFFFFF	02800007	02814007	F2814007	FFFFFFF
- /add_subb/opb	FFFFFFFF	02800038	02830038	F2830038	FFFFFFF
- /add_subb/add_out	7FFFFFE	0280003F	0284403F	F284403F	(7FFFFFE
- /add_subb/mantissa_a	7FFFFF	000007	014007		7FFFFF
- /add_subb/mantissa_b	7FFFFF	000038	1 030038		7FFFFF
- /add_subb/exponent_a	FF	05		E5	FF
/add_subb/exponent_b	FF	05		Æ5	FF
/add_subb/horm_exponent_a	7E	84		64	7E
/add_subb/norm_exponent_b	7E	84		64	7E

Figure 3: Simulation Waveform of Add/Subtract Code

RTL Top Level Schematic->

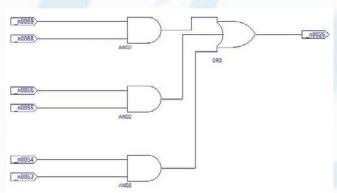


Figure 4: RTL Top Level Schematic of Add/Subtract Code

4.2 Multiplication

Inputs-> mantissa_a => 00001F exponent_a => 06 opa => 0300001F mantissa_b => 000007 exponent_b => 1E opb => 0F000007 Output-> multiply_out => 120000D9

FFF 0300001F FFF 0F000007 001 120000D9	E300001F CF000007 320000D9	E301601F CF016007	FFFFFFF	
GENOLULE CONTRACTOR			FFFFFFFF	
001 120000D9	320000000	provide a statistical state of the		
	132000003	323440D9	7F000001	
F 00001F	for star stars at	01601F	7FFFFF	
F 000007		016007	7FFFFF	
06	C6		FF	
1E	,9E		FF	
X				
24	64		,FE	
	F 000007 06 1E XX	000007 C6 1E 9E XX	000007 016007 06 C6 1E 39E XX	#F 000007 7FFFFF 06 C6 FF 1E 39E FF XX Image: Section of the section of

Figure 5: Simulation Waveform of Multiplication Code

RTL Top Level Schematic->

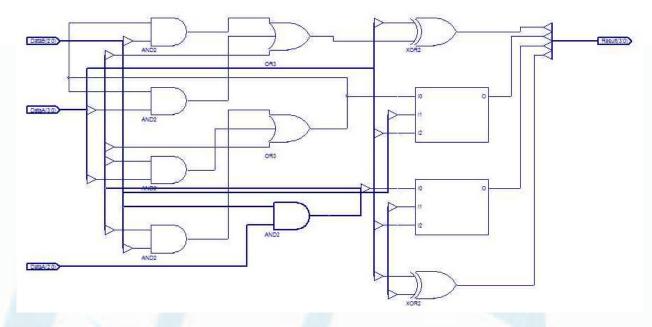
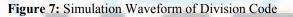



Figure 6: RTL Top Level Schematic of Multiplication Code

4.3 Division

Inputs-> x => 0000000D y => 0000003 Output-> z => 7F800000

	/divisionn/clk		0000000	E0000000	000000	1000000
n in L		0000000D		XE800000D	JOAOOAAOA	IFA00AA0A
	and a balance of the second se	00000003		A0000003	A0000000	A000000F
H	/divisionn/z	7F800000	7F800000		A9FEABEC	7F800000
		÷				

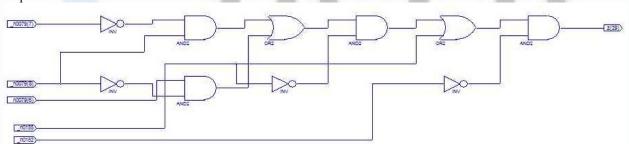


Figure 8: RTL Top Level Schematic of Division Code

5. Conclusion

From the timing and area analysis tables, we find that the timing and area performances of floating point

add/subtract code are **better** than the timing and area performances of floating point multiplication and division codes. But amongst multiplication and division codes, multiplication code is having an upper hand over division

www.ijser.in

ISSN (Online): 2347-3878 Volume 2 Issue 5, May 2014

code in case of less delay, while division code is **better** than multiplication code in case of less area consumption.

Hence, we can conclude that for less delay, less area consumption and high speed computation, floating point add/subtract code using CLA is the **best** amongst the three while floating point division code using binary division and exponent subtraction techniques is **better** in area than multiplication code while in case of timing performance, multiplication code is **better** to use than division code.

Acknowledgement

I would like to acknowledge my mentor Gaurav Jindal Sir and Kanchan Sengar Ma'am who supported me during the period in calculating my results and verifying codes.

References

- [1] Kahan W., "On the Cost of Floating-Point Computation Without Extra-Precise Arithmetic", 2012
- [2] Serene Jose, Sonali Agarwal, "Single Precision Floating Point Divider Design", International Journal Of Computational Engineering Research, 2(3), 955-958, 2012
- [3] Ganesh Kumar G. and Charishma V., Design of high Speed Vedic Multiplier using Vedic Mathematic Techniques, International Journal of Scientific and Research Publication, 2(3), 2012
- [4] Nicholas A.P., Williams K.R. and Pickles J., Application of Urdhava Sutra, Spiritual Study Group, Roorkee, India, 1984.
- [5] Hemraj Sharma, Gaurav K. Jindal and Abhilasha Choudhary, "Comparison Between Array Multiplier And Vedic Multiplier", International Journal of Computer Science information And Engg., Technologies, 4(1), 2014
- [6] Basavaraj B., Comparison of Vedic Multipliers With Conventional Hierarchical Array of Multipliers, International Journal of Engineering Research & Technology, 2(10), 2013
- [7] Sree Nivas A, Kayalvizhi N, Implementation of Power Efficient Vedic Multiplier, International Journal of Computer Applications, 43(16), 2012
- [8] Verma Pushpalata, Mehta K. K., Implementation of an Efficient Multiplier based on Vedic Mathematics Using EDA Tool, International Journal of Engineering and Advanced Technology (IJEAT), 1(5), 2012

Author Profile

Hemraj Sharma received the B. Tech. degree in Electronics and Communication Engineering from Rajasthan Technical University, Kota in the year 2012 and pursuing M. Tech. degree in VLSI Design from JECRC University, Jaipur, India

Rajasthan, India

Abhilasha received the B.Tech. and M.Tech. degrees in Electeonics and communication Engineering and VLSI Design respectively from Mody Institute of Technology and science, India in 2010 and 2012, respectively.

Currently she associate with JECRC University, Jaipur, Rajasthan, India