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Abstract: Let V be a finite set containing k points. )(Vf  is divided difference of f  at V. The m-th order Peano derivative of 

)}({ Vxf   is defined and is denoted by );( Vxfm . It is same as generalised divided diference which is defined in [1]. 

We have proved a decomposition theorem and a mean value theorem for this generalised divided diference. Also many of the 

properties are studied. 

 

1. Introduction 
 

Suppose V be a finite set, Vx  and }){( xVf   is divided difference of f . Let ),( Vxfm  is m-th order Peano 

derivative of }){( xVf   regarded as a function of x .In [1]  Fejzic, Svetic and Weil have termed the iterated limit of 

divided difference by generalized divided difference and use it to study the properties of n-convex functions. In this article 

we have studied the properties of that generalized divided difference, which is equivalent to ),( Vxfm . It is shown that 

);( Vxfm  can be written as a sum of an n-th order Peano derivative of a function and n-th order divided difference of 

another function. For an n-convex function the properties of repeated limits of );( Vxfm  are studied. 

 

In [2] Mukhopadhayay and Ray, a mean value theorem for divided difference is proved. Here we have presented a mean 
value theorem for this generalized divided difference. 
 

2. Definition and Notation 
 

Let Ef : , ExxV n },,{= 0   , then the divided difference of f  at V  is defined by  
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We write );( Vxf  instead of }){( xVf  .  

 

Let Ef : , and let Nn . Then f  is n-convex in E  if for each subset V of E  containing n+1 points , 

0)( Vf .  

 

Let VEx   be right hand limit point of E , then right Peano derivative of divided differences with respect to the set E 

is defined inductively as  
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and if );( Vxfr
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 exist for mr <1  then m-th order derivative  
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where  
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Here we assume );(=);(0 VxfVxf 
.  

If =V , then we write ),,( yxfm  instead of ),,,(  yxfm . In this case );( Vxfm


 is the usual right hand Peano 

derivative of f  at x  of order m and is denoted by )(xfm


. If VEx   be a left hand limit point. We define left 

hand Peano derivative of divided difference );( Vxfm


 in similar way. If x  is both sided limit point and );( Vxfm


 and 

);( Vxfm


both exist and );(=);( VxfVxf ii


 for i =1, 2 ,..., m, then f  is said to have the m-th order Peano 

derivative of divided difference );( Vxfm . Clearly for a fixed V E, );( Vxfm  is the m-th order Peano derivative of the 

function );( Vxf , regarded as a function of x . Hence for );(, VxfVx m  exists if and only if )(xfm  exists.  

 

Let Ef :  and EV   be finite and VEx   be a limit point of E. Let },,{ 1 kxx   be k distinct points in 

VE  . Then we define  
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In [1] , 
kVxf ],,[  is termed as generalized divided difference of order k. Clearly it is same as );( Vxfk . In what follows 

from now we shall drop Ey  under the limit notation.  

 

3. Properties of 
);( Vxfn  

  

Theorem 3.1 Let Ef :  and ExxxV n },...,,{= 10 . Let mf  exists on E and VEu   be both sided limit 

point of E, then  
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Proof. We prove the theorem by induction on ).,,,( Vyufm  We prove  
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So (1) is true for m=1. Let it is true for 1= rm . So putting m=r in (1) and letting Eyuy  , , since rf  exists we 

get 
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Hence (1) is true for m=r+1. So by induction (1) is true, now letting uy   we get  
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Theorem 3.2 Suppose Ef :  and EV   be finite set and VEx  , Then );( Vxfk  is divided difference of 

}){;( txfk  as a function of t .  

  

Proof. Let },...,,{= 10 nxxxV  , from Theorem 3.1 we get  
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The suffix k denotes the k-th order Peano derivative of the expression in bracket. Hence 
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);(= Vxfk  

.  

Theorem 3.3 Suppose Ef :  be continuous and EV   be a finite set and VEx   be right hand limit point 

of E. Now if );(1 Vxfk



  exists then 
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Proof. As in Newton divided difference interpolation formula we can write  
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Now 
 xu , we get the following result.  

  

Remark 3.4 Theorem 3.4 holds for left derivative also.  

  

Theorem 3.5 Let Nsnmr ,,,  and f  is n-convex on E, nsmr <  then  
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If nsmr = , then at the points Ex  where 1nf  exists ( by Corollary 6.7 in [1] it is except a countable set )   
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Proof. Suppose }.,...,,{= 21 myyyV  Since f  is n-convex, the divided difference ),...,,,,...,,( 2121 mmn yyyxxxf   

is nondecreasing function of each ix . so );( Vxf  is (n-m) convex. Suppose );(=)( Vxfx . So   is (n-m) convex. 

By Corollary 6.7 in [1] , )(=)]([ 11 xx rssr    for mnsr  < . So );(=)];([ 11 VxfVxf srsr  . 
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Also from Theorem and Remark, )(=);(!lim...lim 111
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This completes the proof for first part  

 

If nmsr = , then also except some countable points x , )(=)]([ 11 xx rssr    for mnsr  = . So as in first 

part we get the result replacing r by n-(m+s).  

 

Theorem 3.6 Suppose V  and W  are finite subsets of ],[ ba  with nWV == PPPP  and kf  exists on ],[ ba . Let 

);(0);( WxfVxf kk   for some ],[ bax . Then there is nAxbaA =},{],[ PP , such that 

,],[sup][inf AyWVyWV   and 0=);( Axfk .  
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Proof. From Theorem 3.1 we have 
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. So if }),{;(=)( txftg k  then g  has Darboux 

property in }{],[ xba  . Now by Theorem 3.3 , );( Vxfk  is divided difference of g  at the points of V . Hence by 

Theorem 3.1 of [2] the result follows.  
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