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Abstract: The Autoregressive Integrated Moving Average (ARIMA) is normally used to fit data that are collected over time space in a 
stochastic process. The univariate Box- Jenkins Arima model technique was used to fit an appropriate model to the data set from two 
independent stochastic processes observed from a Poisson experiment. The fitted model to the count data help us to understand on how 
to generate a series of counted events within a time space and also to study the similar pattern and behavior of the random process 
observed during the analysis. 
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1. Introduction 
 
Autoregressive Integrated Moving Average (ARIMA) 
process is time series processes that behave as though they 
had no fixed mean. The behavior of this processes are 
homogeneity in nature in the sense that the trend in one 
part of the series behaves much like any other part of the 
processes. Thus, an ARIMA model helps to describe the 
non-stationary behavior that can be differenced to obtain a 
stationary process, by fitting data that are collected over 
time space. The main objective of this research of work is 
to draw inferences from the series of observation collected 
from a Poisson processes base on average customers 
waiting time observed from two automated teller machines 
(ATM) by comparing their average waiting time . For this 
to be achieve, we set up a hypothetical probability model 
to test the estimated parameters of the fitted model, check 
for adequacy of the model using goodness of fit to the 
data. In this paper, our focus is to find a good model that 
will be appropriate to represent the behavior of counting 
data. The univariate Box-Jenkins ARIMA modeling 
approach (Box and Jenkins, 1976) along with the model 
building approach of box and Hunter (1978) will be used 
to find an appropriate model to the count data series. 
 
2. Univariate Box-Jenkens-Arima Model 
 
The UBJ-ARIMA method applies only to stationary data 
series. A stationary time series has a mean variance and 
autocorrelation function that are essentially constant 
through time. The stationary assumptions helps to 
simplifies the theory of  UBJ-ARIMA model, when one 
which to estimates the parameters from a moderate 
number of observation. If a time series is stationary, then 
the mean and variance of any major subject of these 
should not differ significantly from the mean and variance 
of any other major subject of the time. Most time series 
data are non-stationary nature; its mean does not vary 
about a constant mean. It exhibit homogenous behavior in 
nature. 
 
A model that exhibit homogenous behavior non- stationary 
behavior can be defined as using Box-Jerkins and Reinsel 
(1994) 
 

  α (B) (1-B)dyt =θBat                              (1) 
 

Where yt is the response variable at time t 
 
α (B)t represent the AR process operator, 
 
θ(B) and the MA process operator, at represent the white 
noise, 
 
B is the backward shift operator and d is the number of 
times the data series must be differenced to induce a 
stationary mean – equation (1) is often re-written as  
 

 α (B)wt   = θ Bat                                 (2) 
 
Where Wt = (1-B)dyt  The operator α (B) and θ(B) are 
defined as 
 
α (B) = 1- α1(B) -……- α2(B)p  and  θ(B)=1-θ1(B) - 
θ2(B)2+-…..-θq(B)q  

(3) 
 
Therefore, homogenous non stationery behavior can 
sometimes be represented by a model that calls for the dth 
hyference of the process to be stationary, variable a is 
usually 0, 1 or 2 (Pavkartz, 1983). From the above 
ARIMA model can be defined as an order p, d, q or 
ARIMA (p, d, and q) process 
 
ARIMA (p, d. p) process can be defined by 
 
Wt =  α1wt-1 + α2wt-2 + ------------ + α1wt-1 + a2 -θtat-1- θ2at-2 
-…………-θqat-q 

(4) 
 
Where Wt=(1-B)dyt 
 
The non-stationary series can sometime transferred to 
stationary series througt dylevenseing(d). 
 
The backshift operator B can also used in homogenous 
non- stationary model 
 

α (B)wt =θ(B)at                                 (5) 
 
Where 
 
Wt=(1-B) dyt,   
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 yt is the response variable at time t, θ(B) represent the MA 
process operator and is given by 
 
θ(B) = 1- θ1B - θ2B2---------- θqBq and α (B) represent the 
AR process operator and it is given by 
 
α (B)= 1- α1B - α2B2-----αpBp, at represents the white noise 
and d is the number of times the data services must be 
differenced to induced a stationary mean (Box et al. 1994) 
 
3. Steps in Modeling 
 
The classical method of model identification as described 
by Box and Jenkins (1970) is judge the appropriate of the 
plotted autocorrelation function (ACF) and partial 
autocorrelation function (PACF) The ACF at lag K is the 
correlation between the observed data, Yt say1 and Yt+k. 
this is given by: 
 

ρk = E [(Yt−µ)(Yt  +ik−µ)]
�E[(Yt−μ)2[(Yt +k−μ)2]

                            (6) 
 
Where K is the time lag and can take value from 0, 1, 2----
- and µ = E (Yt) =E[Yt+k] 
 
One important use of the ACF in modeling its use to 
determining whether a series is stationary or not. If the 
mean of a series is stationary then the estimated ACF’s of 
the series will drop all slowly toward zero. 
 
The partial Autocorrelation function (PACF) of a process 
Y at lag K, is devoted by ∝kk, is defined as the correlation 
between the adjusted value of Yt and Yt+k(Box et al. 1994). 
This can be defined as 
 
αkk=E [(Yt – Yt) (Yt+k – Yt-k)]  
              E[(Yt+k –Yt-k)2] 
 
Where yt = αk-1.1yt-1  + + αk-1.2yt-2 + --------- + αk-1.k-1 yt-k-1 and 
yt-k = αk-1.1yt-k+1 + αk-1.2yt-k-1 +………..+αk-1.k-1yt-1 
 
Note that at identification stage, the estimated ACF and 
PACF are compared to each other base on their theoretical 
characteristics to the common the time series model to find 
a match. 
 
The stage two is checking the models are the estimate 
coefficient significantly different from zero and the 
randomness of the residuals. The significance of the 
ARMA coefficients can be evaluated by comparing 
estimated parameters with the standards deviations. In this 
research work, the maximum likelihood approach which 
has been proved to reflect useful information about the 
parameter contained in the data is used. 
 
The third stage in model building is diagnostic check. The 
residual ACF is used as device for testing the independent 
assumption of the random shock can be defined as 
 

ρx (a) =  e[(ai  −a)(at+k−a)]
E[(at−a)2]

                             (8) 
 
 

4. Testing of Adequacy of the Fitted Model 
 
When one test for adequacy of the fitted model, the chi-
squared test for goodness of fit id used. This is called 
Ljung-Box test in the literature; see Ljung and Box (1978). 
The test is based on all the residual ACF as a set. 
 
Given K residual autocorrelations, the hypothesis to be 
tested is 
 
Statement of Hypothesis 
 
H0 : ρ1 (a) = ρ2 = - - - ρk (a) = 0 vs H1 not H0 
 
Test statistics   

Q = n (n + 2)�(n − k)−1 rk
2

R

k−1

 (a) 

Or 

Q = N�  rk
2

R

k−1

 

 
This statistic is referred to as the Portmanteau statistics, It 
follows a χ2 distribution with (k – p- q) degree of freedom, 
where  p and q are the AR and MA orders of the model 
and N is the length  of the time series. If the computed Q 
exceeds the value from the χ2  table for some specified 
significance level, we null hypothesis that the series of 
autocorrelation represents a random series is rejected at the 
level. The P- value gives the probability of exceeding the 
computed Q by chance alone, given a random series is 
rejected at that level. This non-random residual s give high 
Q and small P- value. The significance level is related to 
the p- value by: 
 
Significance level (%) = 100 (1- P) 
 
Application 
 
The data sets from  Poisson process on waiting time of 
student using automated teller machines (ATM) in kogi 
state polytechnic Lokoja (Ehimony, 2014) this  was 
conducted to determine the trend of average waiting time 
in a process. 
 
The data were collected over 30 runs from two automated 
teller machines (ATM) for Eco Bank and United Bank for 
African (UBA). We observed the average waiting time (in 
second) for the two machines see table below. 
 
 The observed average waiting 

times in (sec) 
Eco –Bank 2, 3, 1, 3, 2, 2, 2, 5, 3, 1, 2, 2, 1, 

3, 
3, 3, 2, 2, 4, 4, 2, 2, 2, 3, 2, 2, 3, 
2, 3, 2, 4, 3, 

UBA average waiting time (in 
sec) 

2, 2, 1, 2, 2, 2, 2, 4, 4, 1, 2, 
2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 
2, 2, 2, 1, 2 

Source: Ehimony (2014) 
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The graphical presentation describe a steady increase in 
the waiting time which is shown in figure I. the behavior 
of this series can be model as a time series model, since 
the behavioral pattern does not exhibit homogenous 
behavior of any kind, then the series us a non-stationary 
one. 

The current value, say Yt is been influenced by the lag 
value Yt-1.there is continuous increase in the waiting time 
observed from both machine due to uncontrollable factor 
known as while noise. 
 

Since the original time series 
Y1, Y2,……………………….Yn are stationary, we can 
now look at the sample autocorrelation function (ACF) 
and partial autocorrelation function( PACF) for a 
particular behaviors that indicate a  non seasonal 
theoretical Box- Jenkins model. The figures I and II shows 
the behaviors of the ACF and PACF which out off quickly 
after lag q for ACF while PACF cuts off quickly after lag 
p. The cutting off of both p and q shows that the average 
waiting time of both machines were not same due to 

uncontrollable force that influences the servers to operate 
at a steady rate. We need to note that every series that are 
not stationary are tend to follow first order autoregressive 
moving average of order  p and q with first order series, 
which can be defined as 
 

Yt = αt +α1yt-1+еt 
 
Final Estimates of Parameters 
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From the test of the significant of the estimated parameters 
of the model, we discovered that the average waiting time 
of ECO- BANK ATM were not stationary, there were 
significant difference between the time taken by each 
customer to withdrawn using ATM card see the model 
above. 
   
Differencing: 0 regular, 1 seasonal of order 12 
 
Number of observations:  Original series 30, after 
differencing 18 
 
Residuals:    SS =   18.8598  
                     MS =   1.1787   DF = 16 
 
Modified Box-Pierce (Ljung-Box) Chi-Square statistic 
 

 
 
Testing of adequacy of fitted model using Ljung-Box chi-
square, there was an evident that the model was sufficient 
enough to describe the average waiting the customer spend 
before it can be serve, since χ2(9.8)>p-value(0.461)see the 
table of modified Box-pierce above. 
 
ARIMA Model: UBA  
 
Final Estimates of Parameters 
 

 
The test of significant difference between the parameters 
in model, indicate that the estimated parameters in the 
model describe the effectiveness of the UBA ATM 
machine, the average waiting time were less i.e customer 
were served in quickly. 
 
Differencing: 0 regular, 1 seasonal of order 12 
Number of observations: Original series 30, after 
differencing 18 
Residuals:    SS =   16.3076    
                     MS =   1.0192   DF = 16 
 
Modified Box-Pierce (Ljung-Box) Chi-Square statistic 
 

 
 
The model was sufficient enough to described fitted model 
on average waiting time of the customers to be served, 
since χ2(6.6) > p-value(0.764).See modified Box-pierce 
above. 
 
5. Conclusion 
 
The fitted model for two experimental data from the 
Poisson process it indicate that the series there were steady 
increase in the average waiting time due to uncontrollable 
forces ( white noise)in the process. The information will 
helps to reducing queuing of customers to be served. The 
model fitted can be used to predict the average number of 
customers to be served within a short period of time. 
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