Simulation and Analysis of Direct Torque Controlled Induction Motor

G. Pandian¹, Dr. S. Rama Reddy²

¹Research Scholar, Electrical and Electronics Engineering Department, Bharath University, Chennai, India
²School Electrical and Electronics Engineering Department, Jerusalem College of Engineering, Chennai, India

Abstract: This paper presents the Simulation of Direct Torque Control (DTC) algorithm for Induction Motor Drives using Very high speed integrated circuits Hardware Description Language (VHDL). A binary format is used with variable word size approach, which permits to reduce the calculation processes resulting in smaller errors without increasing hardware area in the prototyping of DTC Control. The results of VHDL Simulation for the DTC using Xilinx are presented.

Keywords: Direct Torque Control, VHDL, VSI, Induction Motor

1. Introduction

DC motors have been used during the last century in industries for variable speed control applications, because its flux and torque can be controlled easily by means of changing the field and armature currents respectively. Furthermore, operation in the four quadrants of the torque speed plane including temporary standstill was achieved. The advancement of power electronics has made it possible to vary the frequency of the voltage supplies relatively easy, thus has extended the use of induction motor in variable speed drive applications [1]. But due to the inherent coupling of flux and torque components in induction motor, it could not provide the torque performance as good as the DC motor.

The DTC scheme requires flux linkage and electromagnetic torque estimators. However, it is not necessary to monitor the stator voltage since they can be reconstructed by using the inverter switching modes and the monitored d.c links voltage. The electromagnetic torque can be estimated by using closed loop speed control can be obtained by using a speed controller whose output gives the torque reference, and the input to the speed controller is the difference between the reference speed and the actual speed. The required optimal switching voltage vectors can be selected by using a so called optimum switching voltage vector look up table. The simulation waveforms of DTC are not presented in the literature [1-14]. In the present work an attempt is made to simulate DTC system.

2. DTC Principle

Figure 1 shows the schematic of one simple form of the DTC induction motor drive, employing a voltage source inverter (VSI). In this scheme the stator flux is the controlled flux, thus it will be referred to as a stator flux based DTC induction motor drive. The voltage source six pulse inverter fed stator flux based DTC induction motor drive is shown [3]. Direct torque control involves the separate control of the stator flux and the torque through the selection of optimum inverter switching modes the optimum switching table had been shown in Table 1. The reference value of the stator flux linkage space vector modules is compared with the actual value and the electromagnetic torque error signed is into the three level torque hysteresis comparator. The outputs of the flux and torque comparators are used in the inverter optimal switching table which also uses the information on the position of the stator flux linkage space vectors [5]. The flux linkage and electromagnetic torque error are restricted within their respective hysteresis bands.

The DTC drive consists of DTC controller, torque and flux calculator, and a voltage source inverter. The configuration is much simpler than the FOC system due to the absence of frame transformer, pulse width modulator and position encoder, which introduce delays and requires mechanical transducer. The implementation of DTC is simple in structure and requires a fast processor to perform on-line calculations of electromagnetic torque and stator flux based on sampled terminal variables [7]. If a three phase VSI is connected to an induction motor, there can be eight possible configurations of six switching devices within the inverter. As a result, there are eight possible input voltage vectors to the induction motor.

DTC utilizes the eight possible stator voltage vectors, two of which are zero vectors, to control the stator flux and torque to follow the reference value within the hysteresis bands. The voltage space vector of a three-phase system is given by:

$$\vec{V}_s(t) = \frac{2}{3}(\vec{v}_{xa}(t) + av_{xB}(t) + a^2\vec{v}_C(t))$$

(1)

where

<table>
<thead>
<tr>
<th>Counter Clockwise</th>
<th>Sec I</th>
<th>Sec II</th>
<th>Sec III</th>
<th>Sec IV</th>
<th>Sec V</th>
<th>Sec VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc Flux (0)</td>
<td>Inc T(01)</td>
<td>100</td>
<td>110</td>
<td>010</td>
<td>011</td>
<td>001</td>
</tr>
<tr>
<td>Dec Flux (1)</td>
<td>Inc T(01)</td>
<td>110</td>
<td>010</td>
<td>011</td>
<td>001</td>
<td>101</td>
</tr>
</tbody>
</table>

Dec T(00)

| Inc Flux (0) | Inc T(01) | 111 | 000 | 111 | 000 | 111 | 000 |
| Dec Flux (1) | Inc T(01) | 111 | 000 | 111 | 000 | 111 | 000 |

Dec T(00)
Table 1: Switching Table

<table>
<thead>
<tr>
<th>Clockwise</th>
<th>Inc Flux (0)</th>
<th>Dec Flux (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inc T(10)</td>
<td>Dec T(00)</td>
</tr>
<tr>
<td>Sec I</td>
<td>001</td>
<td>000</td>
</tr>
<tr>
<td>Sec II</td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td>Sec III</td>
<td>100</td>
<td>000</td>
</tr>
<tr>
<td>Sec IV</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>Sec V</td>
<td>010</td>
<td>000</td>
</tr>
<tr>
<td>Sec VI</td>
<td>011</td>
<td>111</td>
</tr>
</tbody>
</table>

V_{sa}, V_{sb}, and V_{sc} are the instantaneous phase voltages. For the switching VSI, it can be shown that for a DC link voltage of V_d, the voltage space vector is given by:

\[\vec{v}_s(t) = \frac{\sqrt{3}}{2} V_d \left(S_a(t) + S_b(t)a + S_c(t)a^2 \right) \]

(2)

S_i(t), S_a(t) and S_b(t) are the switching functions of each leg of the VSI, such that,

\[S_i = \begin{cases} 1 & \text{when upper switch is on} \\ 0 & \text{when lower switch is on} \end{cases}, \quad i = a, b, c \]

3. DTC Architecture

DTC algorithm is implemented in an architecture composed by five main blocks: motor model, flux comparator, sector evaluation, torque comparator and switching table. The available processing time is dictated by the A/D converters, corresponding to 25μs. This time interval is partitioned into five time slots, allowing for the processing of input samples. The motor model module uses time slots 1 to 3. In the first time slot (id_1) 16-bit samples are read from the A/D converters. Modules flux comparator, sector evaluation and torque comparator are processed in parallel in the fourth time slot, while last time slot is used to compute the switching table (Cha, Chb, Chc). Motor model module has three 16-bit inputs supplied by A/D converters: i_1, i_2 and V_d and produces four outputs: torque, \(\lambda_a \), \(\lambda_b \) and \(\lambda \text{mod} \). The motor modeling equations are implemented according to the architecture. As can be observed, complex mathematical operations are performed such as multiplications and a square root. Sector evaluation is a module that receives stator flux components as inputs and determines the position of the flux vector in a plane divided into six sectors denominated sectors 1 to 6. To determine the position of stator flux, magnitude is compared with projection components in the axes \(\alpha \) and \(\beta \).

4. Simulation Results

The DTC architecture is simulated using Xilinx Package. The results of flux comparator are shown in figure 4. The results of torque comparator and sector evaluator are shown in figure 5 & 6. The switching table wave forms are shown in figure 7. The simulated wave forms of control signals are shown in figure 8. The results of DTC blocks are shown in figure 9. The actual torque is compared with set torque and the actual flux is compared set flux. The pulse width of the driving pulse is selected such that actual torque is equal to set torque. From the simulation results it is observed that the motor develops a torque equal to the set torque.
5. Conclusion

The architecture proposed is written in synthesizable VHDL. The actual torque is compared with set torque and the actual flux is compared set flux. The pulse width of the driving pulse is selected such that actual torque is equal to set torque. From the simulation results it is observed that the motor develops a torque equal to the set torque.

References

Author Profile

G. Pandian received the B.E degree in Electrical & Electronics Engineering from College of Engineering Anna University Chennai India in 1994 and MS degree in Electronics & Control from Birla Institute of Technology and Science Pilani India in 1998. He is currently pursuing PhD degree in Bharath University Chennai India and his research area is vector control of induction motor drives. He is working as Plant Manager in LPG Bottling Plant, Indian Oil Corporation Ltd Pondicherry. He was working in Electrical Engineering Dept. Dunlop India Ltd Chennai India. He is fellow member of Institution of Electronics and Telecommunication Engineers India, Member of Institution of Engineers (India), Member of Institution of Engineering & Technology, London and Senior Member of IEEE, USA. He is the Registered Chartered Engineer from Engineering Council, London and Chartered Electrical Engineer from Institution of Engineering & Technology, London.

Dr. S. Rama Reddy received the M.E degree from College of Engineering Anna University Chennai India in 1987. He received the PhD degree in the area of Resonance Converters from College of Engineering Anna University Chennai India in 1995. Presently he is working as Dean in Electrical & Electronics Dept. Jerusalem College of Engineering Chennai. He was working in Tata Consulting Engineers and Faculty of Electrical Engineering Dept. College of Engineering Anna University Chennai India. He is fellow member of Institution of Electronics and Telecommunication Engineers India, Life Member of Institution of Engineers (India), Member of ISTE, Member of CSI and Member of SPE, India. He has authored textbooks on Power Electronics, Electronic Circuits and Electromagnetic Field. He has published 30 research papers in reputed journals. His research areas are Power Electronics Converters, Machine Drives and FACTS.