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Abstract: In this study a viscous incompressible heat generating fluid flow past an infinite vertical porous plate with radiation absorption 

was investigated. The flow was unsteady and restricted to laminar domain. The equations governing the flow were solved using explicit 

finite difference method. The influences of the various parameters such as the Eckert number, Grashof number, modified Grashof number, 

Prandtl number, Schmidt number and Hatman number on the incompressible heat generating fluid past an infinite vertical porous plate in 

the laminar boundary layers were considered. An analysis of the effects of the parameters on velocity and temperature profiles was done 

with the aid of graphs and tables. It was found that an increase in mass diffusion parameter Sc, leads to a decrease in both primary and 

secondary velocity profiles and also concentration profile. However an increase in mass diffusion parameter leads to an increase in the 

temperature profile. It was also noted that an increase in the viscous dissipative heat Ec, causes an increase in concentration profile. 

Finally the results obtained are presented using graphs and tables. 
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1. Introduction 
 

The study of viscous incompressible heat generating fluid 

past an infinite vertical porous plate has applications in 

many areas of science and engineering. This includes the 

MHD power generation and hall accelerator. The influence 

of magnetic field on the flow of electrically viscous fluid 

with mass transfer and radiation absorption is also useful in 

planetary research. Such phenomena are observed in 

buoyancy induced motions in the atmosphere, in bodies of 

water/ quasi-solid bodies such as earth. In natural processes 

and industrial applications, many transport processes exists 

where transfer of heat and mass takes place simultaneously 

as a result of combined buoyancy effects of thermal 

diffusion and diffusion of chemical species. 

 

The study of magneto hydrodynamic laminar boundary 

layer flow of a viscous incompressible heat generating past 

an infinite vertical porous plate find useful application in 

many engineering problems such as MHD generator, 

plasma studies, nuclear reactors, geothermal extractors and 

boundary layer control in the field of aeronautics and 

aerodynamics. It serves as the basis of understanding some 

of the important phenomena occurring heat exchange 

devices. The influence of magnetic field of the flow of an 

electrically conducting fluid with radiation absorption, hall 

and ion slip current is also useful in planetary atmosphere 

research (Shercliff J.A. 1965). 

 

Kinyanjui M. et al (2001) considered magneto 

hydrodynamics free convection heat and mass transfer of a 

heat generating fluid past an impulsively started infinite 

vertical porous plate with Hall current and radiation 

absorption. The governing equations for the problem were 

solved by finite different scheme. The influences of the 

various parameters on the convectively cooled or 

convectively heated plate in the laminar boundary layer 

were considered. It was found that an increase in diffusion 

parameter Sc time, t and removal of the suction causes an 

increase in velocity wo and in concentration profile. Also an 

increase in the radiation absorption parameter Q, leads to a 

slight decrease in the primary velocity profile. An increase 

in hall parameter m causes an increase in the primary 

velocity profile but leads to a decrease in secondary 

velocity profile. 

 

Saha L. K. et al (2007) investigated the effect of hall current 

on the MHD laminar natural convection flow from a 

vertical permeable flat plate with uniform surface 

temperature with appropriate transformations the boundary 

layer equations were reduced to  local non similarity 

equations and the solutions were obtained employing four 

distinct methods namely; regular perturbation method for 

small transpiration parameter, asymptotic solutions for large 

transpiration rate, implicit finite difference method together 

with Keller-box scheme and the local non similar method 

for any transpiration rate. Effects of the magnetic field, M, 

and the hall parameter, m, on the local skin friction and 

local rate of heat transfer groups were shown graphically 

for smaller values of the prandtl number, Pr (0.1, 0.01) that 

represent liquid metals. 

 

Mbeledogu I. U. and Ogulu A. (2007) considered heat and 

mass transfer of an unsteady MHD natural convection flow 

of a rotating fluid past a vertical porous flat plate in the 

presence of radiative heat transfer. The results obtained 

showed that the decrease in temperature boundary layer 

occurs when the prandtl number and the radiation parameter 

are increased and the flow velocity approaches steady state 

as the time parameter, t, is increased. The Laplace transfer 

technique was employed and the leading equations were 

solved analytically in the complex plate. It was found that 

radiation affects the temperature and therefore the velocity 

hence the skin friction. As the radiation parameter is 

increased it is accompanied by a decrease in the 

temperature and increase in velocity, when the plate is 

cooled by convection currents, Gr>0. Increase in the 

schmidt number results in the rare constant results in the 

negligible change in the concentration. The flow velocity 
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approaches steady state conditions as time parameter t, is 

increased to about 12. 

 

Murali G. et al (2012) considered finite element solution of 

thermal radiation effect on unsteady MHD flow past a 

vertical porous plate with variable suction. The non-

dimensional governing equations were formed with the help 

of suitable dimensionless governing parameter. The 

resultant coupled non dimensional governing equations 

were solved by a finite element method. The velocity, 

temperature and concentration distributions were derived, 

discussed numerically and their profiles were shown 

through graphs. It was observed that, when radiation 

parameter increases, the velocity and temperature increases 

in the boundary layer. Also an increase in the magnetic field 

leads to decrease in the velocity field and rise in the thermal 

boundary thickness. The velocity increases with an increase 

in the permeability of the porous medium parameter. 

Increasing the prandtl number substantially decreases the 

translational velocity and temperature function. The 

velocity as well as concentration decreases with an increase 

in the Schmidt number. 

 

Seddeck M. A. and Faiza A. S (2009) investigated the 

effects of temperature depending on viscosity and thermal 

conductivity or unsteady MHD convectional heat transfer 

past a semi-infinite vertical porous moving plate with 

variable suction. The governing equations for the flow were 

transformed into a system of nonlinear ordinary differential 

equations by perturbation technique and were solved 

numerically by using shooting method. The results 

indicated that  the velocity increases with increase in 

variable viscosity, thermal conductivity, the exponential 

index, porous medium, Grashof number and plate moving 

velocity, but it decreases as the magnetic field parameter 

increases. Also the temperature increases as the variable 

thermal conductivity and the exponential index increases. 

The surface skin friction decreases as the plate moving 

velocity increases but it increases as the exponential index 

parameter increases. 

 

Amkadni M. et al (2008) considered on the exact solution 

of laminar MHD flow over a stretching steady flat plate. It 

was shown that in the presence of a vertical inverse-linear 

magnetic field, we establish a sufficient condition for the 

existence of exact solution of the problem with the respect 

to the three parameters; the magnetic parameter M, the 

suction or injection parameter   and the stretching 

parameter . A pseudo-similarity transformation was 

employed to reduce the governing partial deferential 

equation into an ordinary deferential equation. It was shown 

that to obtain the exact solution of the problem the 

temperature  log(x) must be added to the usual form of the 

stream function. It was shown that the temperature solutions 

if  >0 and M<2 and the exactualy two solution for any 

M>2. 

 

Ravikumar V. et al (2012) considered heat and mass 

transfer effect on MHD flow of viscous fluid through non-

homogenous porous medium in presence of temperature 

dependent on heat source. It was observed that the primary 

velocity increases with an increase in magnetic parameter 

M where as it decreases as Grashof number (Gr) increased. 

An increase in the Schmidt number (Sc) results in the 

decrease in the concentration. 

 

Das S.S. et al (2009) considered mass transfer effects on 

MHD flow and heat transfer past a vertical porous plate 

through a porous medium under oscillatory suction and heat 

source. It was found that magnetic parameter and Schmidt 

number retard velocity of the flow while the Grashof 

number for the heat and mass transfer, the porosity 

parameter and the heat some parameter hence accelerating 

effect on the velocity of the flow field at all points. Further 

the Prandtl number reduces the temperature and the 

Schmidt number diminishes the concentration distribution 

of the flow field at all points. 

 

Mbeledogu I. U. et al (2007) considered unsteady MHD 

free convective flow of a compressible fluid past a moving 

vertical plate in the presence of radiative heat transfer, 

where the viscosity of the fluid   and its thermal 

conductivity k in this model were assumed to be functions 

of temperature. Under suitable non dimensionlization the 

governing non-linear, coupled, partial differential equations 

were solved employing a perturbation technique based on 

the assumption that the fluid flow field is made up of a 

steady part and a transient. It was found that for a single 

pulse; the temperature boundary layer increases as the 

radiation parameter and the time period are increased, 

increase in prandtl number is accompanied by a decrease in 

the temperature, variation of the exponential index   has 

little effect on the temperature or the velocity distributions, 

the velocity increases as Gr, Pr, and M are increased, and 

the skin friction for a compressible fluid such as air Pr = 

0.71, is lower than the skin friction for an incompressible 

fluid such a water Pr = 7. 

 

Takahashi F. et al (2001) investigated effects of boundary 

layers on magnetic field behavior in an MHD dynamo 

model. The emphasis was put in an important role of 

boundary layer which arises for the no-slip boundary 

condition. The results of computation showed that the 

dipole field was dominant and that the magnetic field is 

concentrated in the convection columns. Also the effects of 

magnetic diffusion were more significant than that of 

magnetic induction near the spherical surfaces. To 

investigate a fine structure inside the boundary layers a 

finite different method in the radial direction in which grid 

intervals are made variable was used and it was found that 

the dipole magnetic field is dominant outside the spherical 

shell both for the no-slip and the stress-free boundary cases, 

where as there are differences between the structures of 

magnetic field inside the spherical shell for the two cases; a 

strong toroidal magnetic field appears, for the no-slip case, 

at mid and high latitude near the outer surface, due to shear 

flow there. 

 

Kumarar V. et al (2001) considered MHD flow past 

stretching permeable sheet where the effects of magnetic, 

suction injection, linear/nonlinear stretching parameters on 

the stream function and skin friction are shown graphically 

and discussed. The results obtained shows that in the 

presence of a magnetic field, the streamline are steeper and 

thus make the boundary layer thinner. The skin friction (-

w ) is increased. The streamline are affected significantly 
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by stretching and cross flow parameters near the wall rather 

than away from the wall, and the location of backflow 

advances (b<0). Furthermore, the streamlines near the wall 

for increasing x get closer, showing the effects of quadratic 

stretching and linear mass flux. 

 

Rehena Nasrin and Alim M.A. (2012) investigated control 

volume finite elements simulation of MHD forced and 

natural convection in a vertical channel with heat-

generating pipe using the Gale kin weighted residual 

control volume finite element method, the effects of 

magnetic field and joule heating on combined convection 

flow and heat transfer characteristics inside an octagonal 

vertical channel containing a heat generating hollow 

circular pipe at the centre is performed. The flow enters at 

the bottom and exists from the top surface. All solid walls 

of the octagon are considered to be adiabatic. Graphical 

representation of streamlines, isotherms, average Nassult 

number and maximum temperature of fluid for different 

combination of Hartman number (Ha), joule heating 

parameter (J) and Richardson number (Ri) are displayed. 

The results indicate that the flow and the thermal fields in 

the vertical channel depend markedly on the above 

mentioned parameters. In addition rate of heat is obtained 

optimum in the absence of both MHD and joule heating 

effects. It was concluded that, the influence of the aforesaid 

parameters on velocity field is remarkable. Particularly, the 

size of vortex devalues due to the hindrances of imposed 

magnetic field at all convection regions. On the other hand, 

joule heating plays a significant role on streamlines. The 

changes of temperature field with the mentioned parameters 

are not worthy. Mainly, the thermal boundary layer 

thickness reduces for mounting Ha. The isothermal lines 

move from the Centre of heat source as J increases. The 

nature of thermal plume rise from the body changes 

radically with the escalating RI. The heat transfer rate 

decreases with rising Ha and J. The maximum temperature 

of the fluid goes down and goes up for rising values of Ha 

and J, respectively. 

 

Tezer-Sergim M. and Dost S. (1994) considered boundary 

element method for MHD channel flow with arbitrary wall 

conductivity where a boundary element formulation was 

presented to obtain the solution in terms of velocity and 

induced magnetic field for the steady MHD flow through a 

rectangular channel having arbitrary conducting walls, with 

an external magnetic field applied transverse to the flow. 

The fluid is viscous, incompressible, and electrically 

conducting. The boundary element method (BEM) with 

constant element has been used to cast the problem into the 

form of an integral equation over the boundary and to 

obtain a system of algebraic equations for the boundary 

unknown values only. Computations were carried out for 

several values of Hartman number (1m 10) and 

conductivity parameter (0     ). Selected graphs were 

given showing the behavior of velocity field and induced 

magnetic field which are the flattening tendency for an 

increase in M or a decrease in   and were in agreement 

with the exact solutions. It was concluded that the BEM 

solutions can be used to obtain reasonable accurate results 

for steady MHD channel flow problems with arbitrary 

shapes and wall conductivity. That was not possible to do 

analytically even for some special cases. Unfortunately, 

accuracy decreases with the increasing Hartman number. 

This is due to rapid variations in velocity and magnetic field 

near the boundary. Comparing the time taken in obtaining 

the BEM solution and numerical results either from the 

exact solutions or from other numerical methods, the BEM 

solutions consumes negligible time. This was due to the fact 

that the boundary element does not need domain 

discretization. 

 

The problem investigated here is the study on a viscous 

incompressible heat generating fluid past an infinite vertical 

porous plate with radiation absorption. 

 

2. Mathematical Formulation 
 

Governing Equations 
 

General equation governing the flow of electrically 

conducting fluid in the presence of strong magnetic field 

are; momentum equation, the equation of continuity, 

equation of conservation of  energy, the concentration 

equation and Maxwell’s equation. The velocity, pressure 

and temperature at any point of fluid vary smoothly with 

time and space since the flow is laminar. 

 

These equations are described by partial differential 

equations expressing the laws of conservation of mass, 

momentum and energy. The following are the equations; 

 

Momentum Equation 
 

It is based on the Newton’s second law of motion which 

states the total body force and surface forces acting on a 

system is equal to the rate of momentum of a system. Its 

general form is given as: 

 

ρ  
∂ui

∂t
+ uj

∂uj

∂xj
 = ρFi + 

∂σji

∂xi
                         (1) 

 

Since the fluid is viscous, the stress tensor is given by: 

 

σji = −pσji +    
∂uj

∂xj
+

∂ui

∂xi
                         (2) 

 

Substituting (2) into (1), then the incompressible fluid with 

constant velocity, the momentum equation becomes 

 

ρ  
∂uj

∂t
+  uj

∂ui

∂xj
 = −

∂ρ

∂xi
+ ρv∇2uj + Fi           (3)  

 

Taking into account both the gravitational force g and the 

electromagnetic force so that the volume density of the 

external force is given by (Moreau 1990) as 

 

BJgFi                              (4) 

 

Substituting (3.4) into (3.3) we obtain 

 

BJgu
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u
u

t

u
j
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j
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
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
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


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(5) 
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The Equation of Continuity 

 

The equation is based on the law which states that mass can 

neither be heated nor destroyed and is given as 

 

( )
0

j

i

u

t x

 
 

 
                           (6) 

 

For an incompressible fluid density is assumed to be 

constant and equation (3.6) reduces to 

 

0
j

i

u

x





                                   (7) 

 

Where j =1, 2, 3 along the x, y and z axes respectively. 

 

Equation of Conservation of Energy 

 

This equation is derived from the first law of 

thermodynamics in the form 

 

dQ dE dW 
                              (8) 

 

Where E is the internal energy, Q is the heat added to the 

system and dW is the work done by the system. If heat 

produced by external forcers is ignored then it’s written in 

tensor form as  

 

( ) ( )
[ ]

j j j

j j j

u u qh

t x t x x

 
 

   
    

    
    (9)

 

 

where  

j

j

x

u




     is the viscous dissipation function. 

The viscous dissipation function   in three dimensions is given by 
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                       (10) 

 

 

Equation (9) can be simplified by the thermodynamic 

definition of h,  

 



p
Eh                                    (11) 

 

Where E is the specific internal energy 

 

Equation (3.11) in differential form is 

 













1
p

dp
dEdh                       (12) 

 

The Maxwell’s thermodynamics relation is 

 













1
pdTdsdE  

 

Substituting in equation (12) yields 

 



dp
pdpdTdsdh 



















11
 



dp
Tdsdh                            (13) 

 

Where s is the entropy 

 

Taking s (p, T) and on differentiating yields 

 

dp
p

s
dT

T

s
ds

Tp

























                     (14) 

 

By using the generalized thermodynamics relations 

 

T

C

T

s

p

s

p

p

T































                              (15) 

 

Where   is the coefficient of volumetric expansion. 

 

Substituting equation (15) into equation (14) we obtain 

 

dpdT
T

C
ds

p






                         

(16) 

 

Substituting equation (3.16) into equation (3.13) results to 

 

 dpTCdh p 


 1
1

                      (17) 

 

Where Cp is the specific heat capacity at constant pressure 

 

Using Fourier’s law of heat conduction given by 

 

j

j
x

T
kq



                                   (18) 
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Where k is the thermal conductivity 

 

Substituting equation (17) and (18) into equation (9) the 

energy equation reduces to 

 

Q
Dt

Dp
TQTk

Dt

DT
C o

p   2
        (19) 

 

Where Q
o
 is the dissipation function which is as a result of 

electromagnetic interactions. By considering electrical 

dissipation, which is the heat energy produced by the work 

done by electrical currents and is given by 
𝐽2

𝜎
 equation (19) 

becomes 

 

Q
J

x

u

x

u
Tk

Dt

DT
C

i

j

j

i

p 



























2
2

2
 (20) 

 

Neglecting the electrical dissipation function and 

electromagnetic dissipation terms, the energy equation 

reduces to 

 

  Tk
Dt

DT
C p

2
                  (21) 

 

The Concentration Equation 

 

The equation is based on the principal of mass conservation 

for each species in a fluid mixture, for the fluid flow in 

consideration the tensor form of the diffusion is 

 

j

j

x

J

Dt

DCj




                               (22)   

 

Maxwell’s Equation 
 

This equation provides connection between the electric and 

magnetic field without considering the properties of the 

matter, Pai (1962), Moreau (1990). It is summarized in four 

equations: 

 

eD

t

t

D

B
E

B

JH

































0

                        (23) 

Since the displacement current D


 is negligible with 

respect to 
t

D
J





,  is negligible with respect to J


and 

H


 and since e is usually not known, then the last 

equation of (23) will not be utilized. The Maxwell’s 

equation reduces to the following set [Moreau, (1990)]. 

 

t

B
E

B

JH
























0
                          

(24) 

 

Thus 

t

B
E








  is the Faraday’s law which states that the 

induced electromotive force in any closed circuit is equal to 

the negative of the time rate of change of the magnetic flux 

through the circuit. 

 

eD 


 is the Coulombs law which  states that the 

magnitude of the electromotive force of interaction between 

two point charges is directly proportional to the scalar 

multiplication of the magnitudes of charges and inversely 

proportional to the square of the differences between them 

 

and  

 

0


 B  is the magnetic field continuity 

 

Ohm’s Law 

 

This law characterizes the ability of materials to transport 

electric charge under the influence of an applied electric 

field. For electrically conducting material at rest, the current 

density is given by  

 

EJ


                                       (25) 

 

In moving electrically conducting fluids the magnetic field 

induces a voltage in the conductor of magnitude Bq


  

The generalized Ohm’s law is given by 

 


















BqEJ                             (26) 

 

3. Approximations and Assumptions 
 

Every mathematical description of natural phenomenon is 

based on certain approximations and assumptions. In this 

study the following Assumptions and approximations are 

made. 

 

1. The fluid is incompressible (density is assumed to be 

constant) 

2. The fluid flow is laminar 
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3. There is no external applied electric field, 0


E  

4. Viscosity   is assumed to be constant 

5. Liquid metals and ionized gases have permeability e , 

so that HB e



   in any frame of reference. 

6. Thermal conductivity k is assumed constant. 

7.  The induced magnetic field is negligible. 

8. The fluid is assumed to be electrically neutral. 

9. The electrical dissipation is negligible. 

10. The electric displacement current is zero since the flow 

velocity is small relative to the speed of light. 

11. The internal heat generation is assumed to be of the 

form 

 

 QTTQ 


 
 

 

Specific Equations 

 

The x-axis is taken along the plate in vertical upward 

direction, which is the direction of flow. The y-axis is taken 

normal to the plate, since the plate is infinite in length and 

for a two dimensional free convective fluid flow the 

physical variables are functions of x, y and t. The fluid is 

permeated with a strong magnetic field. 

 

 
Figure 1: Flow configuration 

 

The continuity equation for the fluid flow under 

consideration is given by,  

 

𝜕𝑉

𝜕𝑦
= 0                                (27)  

 

Since the fluid particles equal to zero because of no-slip 

condition. On integration equation gives the constant 

suction velocity 

 

V=-V0                                                 (28)  

 

As the fluid is in motion it possesses momentum, hence we 

consider the equation of momentum. 

 

Momentum Equation 

 

The momentum equation as given in equation (5) is  

 

𝜌  
𝜕𝑢𝑗

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
 = −

𝜕𝜌

𝜕𝑥𝑗
+ 𝜌𝑣𝛻2𝑢𝑗  – 𝜌𝑔 + 𝐽 × 𝐵     (29) 

The velocity profile at various x-positions depends on y co-

ordinates. 

 

 𝑢𝑗
𝜕𝑢 𝑖

𝜕𝑥𝑗
 = 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
                      (30) 

 

𝑣𝛻2𝑢𝑗 = 𝑣
𝜕2𝑢𝑗

𝜕𝑦2                           (31) 

 

Substituting (30) and (31) into (28) gives 

 

𝜌  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
 = −

𝜕𝜌

𝜕𝑥𝑗
+ 𝜌𝑣

𝜕2
𝑢𝑗

𝜕𝑗 2 − 𝜌𝑔 + 𝐽 × 𝐵 (32) 

 

To determine the pressure gradient from equation is 

evaluated at the edge of the boundary layer 𝜌 → 𝜌∞ and u → 

0. This is because at the boundary layer the velocity of the 

fluid is at its minimum. 

 

The pressure term in x- direction is,  

 
𝜕𝑝

𝜕𝑥
= 𝜌∞𝑔 

 

which results from the change in elevation and 𝜌∞ is the 

density near the plate.  

 

The body force term in equation (32) along negative x-

direction is – 𝜌𝑔.Combining the pressure term and body 

force term yields,  

 

-𝜌𝑔 −  −𝜌∞  

=𝜌∞𝑔 − 𝜌𝑔 = 𝑔 𝜌∞ − 𝜌                    (33) 

 

Substituting equation (33) into (32) yields 

 

𝜌  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝑉0

𝜕𝑢

𝜕𝑦
 = 𝜌𝑣  

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + 𝑔 𝜌∞ − 𝜌 + 𝐽 ×

𝐵   

(34) 

 

If the volumetric coefficient 𝛽 of thermal coefficient is 

defined as 

 

𝛽 =
1

𝑉
 
∆𝑣

∆𝑇
 =

1

𝑉

𝜕𝑣

𝜕𝜌

𝜕𝜌

𝜕𝑇
 

𝑉 =
𝑀𝑎𝑠𝑠

𝐷𝑒𝑛𝑠𝑖𝑡𝑦
For unit mass 

 

Thus 𝛽 = 𝜌  −
1

𝜌2

𝜕𝑝

𝜕𝑇
 = −

1

𝜌

𝜕𝜌

𝜕𝑇
 

𝛽 = −
1

𝜌

𝜕𝜌

𝜕𝑇
= −

1

𝜌
 
𝜌∞−𝜌

𝑇∞−𝑇
 =

1

𝜌
 
𝜌∞−𝜌

𝑇−𝑇∞
                         (35) 

 

And the volumetric coefficient of expansion due to 

concentration gradient of the fluid is given by 

 

𝛽∗ = −
1

𝜌
 
∆𝜌

∆𝐶
 = −

1

𝜌
 
𝜌∞−𝜌

𝐶∞−𝐶
 =

1

𝜌
 
𝜌∞−𝜌

𝐶−𝐶∞
              (36) 

 

On simplifying equation (34) and (35) we get 

 

 

𝛽𝜌 𝑇 − 𝑇∞ = 𝜌∞ − 𝜌                                 (37) 

 

                    𝛽∗𝜌 𝐶 − 𝐶∞ = 𝜌∞ − 𝜌 
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The total change in density due to temperature and 

concentration is given by 

 

∆𝜌 = 𝛽𝜌 𝑇 − 𝑇∞ + 𝛽∗ 𝐶 − 𝐶∞               (38) 

 

Substituting equation (3.38) into (3.34) gives 

 

𝜌  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝑉0

𝜕𝑢

𝜕𝑦
 

= 𝜌𝑣  
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
 + 𝛽𝜌𝑔 𝑇 − 𝑇∞ 

+ 𝛽∗𝜌𝑔 𝐶 − 𝐶∞ + 𝐽 × 𝐵 

 

Dividing both sides by 𝜌 we obtain 

 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝑉0

𝜕𝑢

𝜕𝑦
 = 𝑣  

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + 𝛽𝑔 𝑇 − 𝑇∞ +

𝛽∗𝑔 𝐶 − 𝐶∞ +
𝐽×𝐵

𝜌
                            

(39) 

 

From Ohm’s law 𝐽 = 𝜎 𝐸 + 𝑞 × 𝐵    where 𝐽  is the current 

density, 𝐽 =  𝐽 𝑥,𝐽 𝑦 , 𝐽 𝑧  and 𝐵   is the magnetic induction, 

𝐵  =  𝜇𝑒𝐻    .From figurer 1 𝐵   in component form is given as 

 

𝐵  𝑥 = 0, 𝐵  𝑦 = 𝜇𝑒𝐻𝑦  𝑎𝑛𝑑𝐵  𝑧 = 0. 

 

Thus 

 

𝐽 = 𝜎  

𝑖𝑗𝑘
𝑢𝑉0  𝑤

0  𝐵  𝑦   0

 = 𝜎 −𝑤𝐵  𝑦 𝑖 + 𝑢𝐵  𝑦𝑘                            (40) 

 

𝐽 = 𝜎𝐵  𝑦 −𝑤𝑖 + 𝑢𝑘                          (41) 

 

Thus the term 𝐽 × 𝐵 is given by 

𝐽 × 𝐵 =  

𝑖      𝑗      𝑘

𝐽 𝑥     0     𝐽 𝑧
0   𝜇𝑒𝐻𝑦   0

  

 

𝐽 × 𝐵 = −𝑖𝐽 𝑧𝜇𝑒𝐻𝑦   + 𝑘𝐽 𝑥𝜇𝑒𝐻𝑦                  (42) 

 

From equation of conservation of electric charge𝛻 ∙ 𝐽 = 0, 

gives𝐽 𝑦= constant, this constant must be zero since 𝐽 𝑦 = 0  

at the plane which is electrically non-conducting hence 

𝐽 𝑦 = 0 everywhere in the flow. 𝐵  𝑥  and 𝐵  𝑧  are equal to zero 

due to zero due to the geometrical nature of this problem. 

 

Substituting equation (42) into (39) for 𝐽 × 𝐵 we obtain 

 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝑉0

𝜕𝑢

𝜕𝑦
 = 𝑣  

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + 𝛽𝑔 𝑇 − 𝑇∞ +

𝛽∗𝑔 𝐶 − 𝐶∞ −
𝜇𝑒𝐻𝑦 𝐽𝑧

𝜌
        

 (43) 

 

and 

 

 
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
− 𝑉0

𝜕𝑤

𝜕𝑦
 = 𝑣  

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2  +
𝜇𝑒𝐻𝑦 𝐽𝑥

𝜌
              

              (44) 

 

From equation (15) the value for 𝐽𝑥  and 𝐽𝑧  are 

 

𝐽𝑥 = −𝜎𝜇𝑒𝐻𝑦𝑤                                                    (45) 

 

           𝐽𝑧 = 𝜎𝜇𝑒𝐻𝑦𝑢 

 

Substituting (45) into (43) and (44) for 𝐽𝑥  and 𝐽𝑧  gives 

 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝑉0

𝜕𝑢

𝜕𝑦
 = 𝑣  

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + 𝛽𝑔 𝑇 − 𝑇∞ +

𝛽∗𝑔 𝐶 − 𝐶∞ − 𝜎
𝜇𝑒

2𝐻𝑦
2𝑢

𝜌
(46) 

(46) 

 

and 

 

 
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
− 𝑉0

𝜕𝑤

𝜕𝑦
 = 𝑣  

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 − 𝜎
𝜇𝑒

2𝐻𝑦
2𝑤

𝜌
   (47) 

 

Energy Equation 

 

If the energy equation is considered since the fluid 

possesses energy then 

 

𝜌𝐶𝑝
∆𝑇

∆𝑡
= 𝑘𝛻2𝑇 + 𝜇  

𝜕𝑢

𝜕𝑦
+

𝜕𝑤

𝜕𝑦
 +

𝐽2

𝜎
+ 𝜑             (48) 

 

Neglecting the electrical dissipation function and 

electromagnetic terms equation (48) becomes 

 

 
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
− 𝑉0

𝜕𝑇

𝜕𝑦
 =

1

𝜌𝐶𝑝
 𝑘  

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 + 𝑄 +

𝜇   
𝜕𝑢

𝜕𝑦
 

2

+  
𝜕𝑤

𝜕𝑦
 

2

                             

 (49) 

 

Concentration Equation 

 

The concentration equation is given by 

 
𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑥
− 𝑉0

𝜕𝑐

𝜕𝑦
= 𝐷  

𝜕2𝑐

𝜕𝑥2 +
𝜕2𝑐

𝜕𝑦2                (50)   

 

Non-Dimensiolization           

 

The non-dimensiolization process of the equations is 

important because the results obtained for a surface 

experiencing one set of conditions can be applied to a 

geometrically similar surface experiencing entirely different 

conditions. These conditions vary with the nature of the 

fluid, the fluid velocity or the size of the surface. The 

process also normalizes the boundary layer equations and 

makes the solution bounded. For example non-

dimensionalizing velocity such that it varies from 0 to 1. 

 

In order to bring out the essential features of the flow 

problems in MHD, it is desirable to find important non-

dimensional parameters which characterize these flow 

problems. The following are some important parameters 

used in this study 

 

Eckert Number (Ec) 

 

It is the ratio of kinetic energy of the flow reactive to 

thermal energy. 
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𝐸𝑐 =
𝑈2

𝐶𝑝 𝑇𝑤
+ − 𝑇∞

+ 
 

 

Grashof Number (Gr) 

 

It occurs in natural convection problems. It Is the ratio of 

buoyancy forces. The larger it is the stronger is the 

convectional current. 

𝐺𝑟 =
𝜈𝑔𝛽 𝑇𝑤

+ − 𝑇∞
+ 

𝑈3
 

 

3.4.3. Prandtl Number (Pr) 

 

It is the measure of the viscous force to the thermal force. It 

is large when thermal conductivity is less than one and 

viscosity is large. The number is small when viscosity is 

less than the one and thermal conductivity is larger. 

 

𝑃𝑟 =
𝜇𝐶𝑝

𝑘
 

 

Reynolds Number (Re) 

 

It is one of the most important parameters of a viscous flow 

and is measured as the ratio of inertia force to the viscous 

force. For any flow this number is small then inertia force is 

negligible. It is large vicious force is ignored and the fluid 

can be taken as inviscid. 

 

𝑅𝑒 =
𝜌𝑈𝐿

𝜇
=

𝑈𝐿

𝜈
 

 

Hartman Number, M 
 

It is the ratio of magnetic force to the viscous force 

 

𝑀2 =
𝜎𝜇𝑒

2𝐻𝑦
2𝜈

𝑈2𝜌
 

 

Schmidt Number, Sc 

 

This provides a measure of the relative effectiveness of 

momentum and mass transport by diffusion in the velocity 

and concentration boundary layers respectively 

 

𝑆𝑐 =
𝜈

𝐷
 

 

In this study, all the variables with the superscript (+) plus 

will represent dimensional variables and non-dimensional 

variables and non-dimensionalization is based on the 

following sets of scaling variables. 

 

𝑡 =
𝑡+𝑈2

𝜈
,      𝑥 =

𝑥+𝑈

𝜈
,   𝑦 =

𝑦+𝑈

𝜈
,    𝑢 =

𝑢+

𝑈
,              𝑉0 =

𝑉0
+

𝑈
,     

𝑤 =
𝑤+

𝑈
,                   𝜃 =

𝑇+−𝑇∞
+

𝑇𝑤
+−𝑇∞

+,                      𝐶 =
𝐶+−𝐶∞

+

𝐶𝑤
+−𝐶∞

+,                   

𝜎 =
𝑄+𝜈2

𝐾𝑈2  

 

Where 

 

U is the characteristic velocity 

𝑇𝑤
+ − 𝑇∞

+ is the temperature difference between the surface 

and free stream  temperature 

 

𝐶𝑤
+ − 𝐶∞

+  is the concentration difference between the 

concentration at the surface and the free stream 

concentration. 

 

Equation (46), (47), (48) and (49) can be written using 

dimensional variables as  

 

 
𝜕𝑢+

𝜕𝑡+
+ 𝑢+

𝜕𝑢+

𝜕𝑥+
− 𝑉0

𝜕𝑢+

𝜕𝑦+
 

= 𝑣  
𝜕2𝑢+

𝜕𝑥+2
+

𝜕2𝑢+

𝜕𝑦+2
 + 𝛽𝑔 𝑇+ − 𝑇∞

+ 

+ 𝛽∗𝑔 𝐶+ − 𝐶∞
+ − 𝜎

𝜇𝑒
2𝐻𝑦

2𝑢+

𝜌
 

(51)   

                         

 
𝜕𝑤+

𝜕𝑡+
+ 𝑢+

𝜕𝑤+

𝜕𝑥+
− 𝑉0

+
𝜕𝑤+

𝜕𝑦+
 

= 𝑣  
𝜕2𝑤+

𝜕𝑥+2
+

𝜕2𝑤+

𝜕𝑦+2
 − 𝜎

𝜇𝑒
2𝐻𝑦

2𝑤+

𝜌
 

(52) 

 

 
𝜕𝑇+

𝜕𝑡+ + 𝑢+ 𝜕𝑇+

𝜕𝑥+ − 𝑉0
+ 𝜕𝑇+

𝜕𝑦+ =
1

𝜌𝐶𝑝
 𝑘  

𝜕2𝑇+

𝜕𝑥+2 +
𝜕2𝑇+

𝜕𝑦+2 + 𝑄+ +

𝜇   
𝜕𝑢+

𝜕𝑦+ 
2

+  
𝜕𝑤+

𝜕𝑦+ 
2

                     

(53) 

 
𝜕𝑐+

𝜕𝑡+ + 𝑢+ 𝜕𝑐+

𝜕𝑥+ − 𝑉0
+ 𝜕𝑐+

𝜕𝑦+ = 𝐷  
𝜕2𝑐+

𝜕𝑥+2 +
𝜕2𝑐+

𝜕𝑦+2         (54) 

 

Non-dimensionalizing equation (51) we have 

 

𝜕𝑢+

𝜕𝑡+
=

𝜕𝑢+

𝜕𝑡
∙

𝜕𝑡

𝜕𝑡+
=

𝜕 𝑢𝑈 

𝜕𝑡
×

𝑈2

𝜈
=

𝑈3

𝜈

𝜕𝑢

𝜕𝑡
 

𝑢+
𝜕𝑢+

𝜕𝑥+
= 𝑢+

𝜕𝑢+

𝜕𝑥
∙

𝜕𝑥

𝜕𝑥+
= 𝑢𝑈

𝜕(𝑢𝑈)

𝜕𝑥
×

𝑈

𝜈
=

𝑢𝑈3

𝜈

𝜕𝑢

𝜕𝑥
 

𝑉0
+

𝜕𝑢+

𝜕𝑦+
= 𝑉0

+
𝜕𝑢+

𝜕𝑦

𝜕𝑦

𝜕𝑦+
=

𝑉0𝑈𝜕(𝑢𝑈)

𝜕𝑦
×

𝑈

𝜈
=

𝑉0𝑈
3

𝜈

𝜕𝑢

𝜕𝑦
 

𝜕2𝑢+

𝜕𝑦+2
=

𝜕

𝜕𝑦+
 
𝜕𝑢+

𝜕𝑦+
 =

𝜕

𝜕𝑦+
 
𝑈2

𝜈

𝜕𝑢

𝜕𝑦
 =

𝜕

𝜕𝑦
 
𝑈2

𝜈

𝜕𝑢

𝜕𝑦
 

𝜕𝑦

𝜕𝑦+

=
𝑈3

𝜈2

𝜕2𝑢

𝜕𝑦2
 

𝜕2𝑢+

𝜕𝑥+2
=

𝜕

𝜕𝑥+
 
𝜕𝑢+

𝜕𝑥+
 =

𝜕

𝜕𝑥+
 
𝑈2

𝜈

𝜕𝑢

𝜕𝑥
 =

𝜕

𝜕𝑥
 
𝑈2

𝜈

𝜕𝑢

𝜕𝑥
 

𝜕𝑦

𝜕𝑥+

=
𝑈3

𝜈2

𝜕2𝑢

𝜕𝑥2
 

𝑇+ − 𝑇∞
+ =  𝑇𝑤

+ − 𝑇∞
+ 𝜃 

𝐶+ − 𝐶∞
+ =  𝐶𝑤

+ − 𝐶∞
+ 𝐶 

Thus we have 

 

𝑈3

𝜈

𝜕𝑢

𝜕𝑡
+

𝑢𝑈3

𝜈

𝜕𝑢

𝜕𝑥
+

𝑉0𝑈
3

𝜈

𝜕𝑢

𝜕𝑦

=  
𝑈3

𝜈2

𝜕2𝑢

𝜕𝑦2
+

𝑈3

𝜈2

𝜕2𝑢

𝜕𝑥2
 + 𝛽𝑔 𝑇𝑤

+ − 𝑇∞
+ 𝜃

+ 𝛽∗𝑔 𝐶𝑤
+ − 𝐶∞

+ 𝐶 −
𝜎𝜇𝑒

2𝐻𝑦
2𝑢𝑈

𝜌
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Dividing through by 
𝑈3

𝜈
 yields  

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝑉0

𝜕𝑢

𝜕𝑦

=  
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
 +

𝜈𝛽𝑔 𝑇𝑤
+ − 𝑇∞

+ 𝜃

𝑈3

+
𝜈𝛽∗𝑔 𝐶𝑤

+ − 𝐶∞
+ 𝐶

𝑈3
−

𝜎𝜇𝑒
2𝐻𝑦

2𝑢𝜈

𝑈2𝜌
 

 

But 𝐺𝑟 =
𝜈𝛽𝑔  𝑇𝑤

+−𝑇∞
+ 

𝑈3 , 𝐺𝑐 =
𝜈𝛽∗𝑔 𝐶𝑤

+−𝐶∞
+ 

𝑈3  and 𝑀2 =
𝜎𝜈 𝜇𝑒

2𝐻𝑦
2

𝑈2𝜌
 

 

Hence the overall equation reduces to 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝑉0

𝜕𝑢

𝜕𝑦
=  

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + 𝐺𝑟𝜃 + 𝐺𝑐𝐶 − 𝑀2𝑢   (55) 

 

Non-dimensionalizing equation (3.52) we obtain 

 

𝜕𝑤+

𝜕𝑡+
=

𝜕(𝑤𝑈)

𝜕𝑡
∙

𝜕𝑡

𝜕𝑡+
=

𝑈𝜕𝑤

𝜕𝑡
∙
𝑈2

𝜈
=

𝑈3

𝜈

𝜕𝑤

𝜕𝑡
 

𝑢+
𝜕𝑤+

𝜕𝑥+
=

𝑢𝑈𝜕𝑤+

𝜕𝑥
∙

𝜕𝑥

𝜕𝑥+
=

𝑢𝑈 𝑤𝑈 

𝜕𝑥
×

𝑈

𝜈
=

𝑢𝑈3

𝜈

𝜕𝑤

𝜕𝑥
 

𝑉0
+

𝜕𝑤+

𝜕𝑦+
=

𝑉0𝑈𝜕𝑤+

𝜕𝑦
∙

𝜕𝑦

𝜕𝑦+
=

𝑉0𝑈𝜕 𝑤𝑈 

𝜕𝑦
∙
𝑈

𝜈
=

𝑉0𝑈
3

𝜈

𝜕𝑤

𝜕𝑦
 

𝜕2𝑤+

𝜕𝑦+2
=

𝜕

𝜕𝑦+
 
𝜕𝑤+

𝜕𝑦+
 =

𝜕

𝜕𝑦
 
𝑈2

𝜈

𝜕𝑤

𝜕𝑦
 

𝜕𝑦

𝜕𝑦+
=

𝑈3

𝜈2

𝜕2𝑤

𝜕𝑦2
 

𝜕2𝑤+

𝜕𝑥+2
=

𝜕

𝜕𝑥+
 
𝜕𝑤+

𝜕𝑥+
 =

𝜕

𝜕𝑥
 
𝑈2

𝜈

𝜕𝑤

𝜕𝑥
 

𝜕𝑦

𝜕𝑥+
−

𝑈3

𝜈2

𝜕2𝑤

𝜕𝑥2
 

 

Thus equation (52) becomes 

 

𝑈3

𝜈

𝜕𝑤

𝜕𝑡
+

𝑢𝑈3

𝜈

𝜕𝑤

𝜕𝑥
−

𝑉0𝑈
3

𝜈

𝜕𝑤

𝜕𝑦

=  
𝑈3

𝜈

𝜕2𝑤

𝜕𝑥2
+

𝑈3

𝜈

𝜕2𝑤

𝜕𝑦2
 −

𝜎𝜇𝑒
2𝐻𝑦

2𝑤𝑈

𝜌
 

 

Multiplying through by 
𝜈

𝑈3 we obtain 

 

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
− 𝑉0

𝜕𝑤

𝜕𝑦
=  

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
 −

𝜎𝜇𝑒
2𝐻𝑦

2𝑤

𝜌𝑈2
 

 

But 𝑀2 =
𝜎𝜇𝑒

2𝐻𝑦
2𝜈

𝜌𝑈2  

 

Thus the equation reduces to 

 
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
− 𝑉0

𝜕𝑤

𝜕𝑦
=  

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2  − 𝑀2𝑤                           

(56) 

 

Non-dimensionalizing equation (53) we have 

𝜕𝑇+

𝜕𝑡+
=

𝜕𝑇+

𝜕𝜃
∙
𝜕𝜃

𝜕𝑡
∙

𝜕𝑡

𝜕𝑡+
=

𝑈2 𝑇𝑤
+ − 𝑇∞

+ 

𝜈

𝜕𝜃

𝜕𝑡
 

𝑢+
𝜕𝑇+

𝜕𝑥+
= 𝑢𝑈

𝜕𝑇+

𝜕𝜃
∙
𝜕𝜃

𝜕𝑥
∙

𝜕𝑥

𝜕𝑥+
= 𝑢𝑈 𝑇𝑤

+ − 𝑇∞
+ 

𝜕𝜃

𝜕𝑥
∙
𝑈

𝜈

=
𝑢𝑈2 𝑇𝑤

+ − 𝑇∞
+ 

𝜈

𝜕𝜃

𝜕𝑥
 

𝑉0
+

𝜕𝑇+

𝜕𝑦+
= 𝑉0𝑈

𝜕𝑇+

𝜕𝜃
∙
𝜕𝜃

𝜕𝑦
∙

𝜕𝑦

𝜕𝑦+
= 𝑉0𝑈 𝑇𝑤

+ − 𝑇∞
+ 

𝜕𝜃

𝜕𝑦
∙
𝑈

𝜈

=
𝑉0𝑈

2 𝑇𝑤
+ − 𝑇∞

+ 

𝜈

𝜕𝜃

𝜕𝑦
 

𝜕2𝑇+

𝜕𝑦+2
=

𝜕

𝜕𝑦+
 
𝜕𝑇+

𝜕𝑦+
 =

𝜕

𝜕𝑦
 
𝑈 𝑇𝑤

+ − 𝑇∞
+ 

𝜈
 

𝜕𝑦

𝜕𝑦+

=
𝑈2

𝜈2
 𝑇𝑤

+ − 𝑇∞
+ 

𝜕2𝜃

𝜕𝑦2
 

𝜕2𝑇+

𝜕𝑥+2
=

𝜕

𝜕𝑥+
 
𝜕𝑇+

𝜕𝑥+
 =

𝜕

𝜕𝑥
 
𝑈 𝑇𝑤

+ − 𝑇∞
+ 

𝜈
 

𝜕𝑦

𝜕𝑥+

=
𝑈2

𝜈2
 𝑇𝑤

+ − 𝑇∞
+ 

𝜕2𝜃

𝜕𝑥2
 

 
𝜕𝑢+

𝜕𝑦+
 

2

=  
𝜕𝑢+

𝜕𝑦
∙

𝜕𝑦

𝜕𝑦+
 

2

=  𝑈
𝜕𝑢

𝜕𝑦
∙
𝑈

𝜈
 

2

=
𝑈4

𝜈2
 
𝜕𝑢

𝜕𝑦
 

2

 

 
𝜕𝑤+

𝜕𝑦+
 

2

=  
𝜕𝑤+

𝜕𝑦
∙

𝜕𝑦

𝜕𝑦+
 

2

=  𝑈
𝜕𝑤

𝜕𝑦
∙
𝑈

𝜈
 

2

=
𝑈4

𝜈2
 
𝜕𝑤

𝜕𝑦
 

2

 

𝑄+ =
𝐾𝑈2𝛿

𝜈2
 

Substituting them back in equation (53) yields 

 

𝑈2 𝑇𝑤
+ − 𝑇∞

+ 

𝜈

𝜕𝜃

𝜕𝑡
+

𝑢𝑈2 𝑇𝑤
+ − 𝑇∞

+ 

𝜈

𝜕𝜃

𝜕𝑥

+
𝑉0𝑈

2 𝑇𝑤
+ − 𝑇∞

+ 

𝜈

𝜕𝜃

𝜕𝑦

=
𝑘

𝜌𝐶𝑝

 
𝑈2

𝜈2
 𝑇𝑤

+ − 𝑇∞
+ 

𝜕2𝜃

𝜕𝑦2

+
𝑈2

𝜈2
 𝑇𝑤

+ − 𝑇∞
+ 

𝜕2𝜃

𝜕𝑥2
 +

𝑘𝑈2𝛿

𝜌𝐶𝑝𝜈2

+
𝜇

𝜌𝐶𝑝

 
𝑈4

𝜈2
 
𝜕𝑢

𝜕𝑦
 

2

+
𝑈4

𝜈2
 
𝜕𝑤

𝜕𝑦
 

2

  

 

Dividing through by 
𝑈2 𝑇𝑤

+−𝑇∞
+ 

𝜈
 results to  

 
𝜕𝜃

𝜕𝑡
+ 𝑢

𝜕𝜃

𝜕𝑥
− 𝑉0

𝜕𝜃

𝜕𝑦
=

𝑘

𝜌𝐶𝑝
 
𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2 +
𝑘

𝜌𝐶𝑝 𝜈 𝑇𝑤
+−𝑇∞

+ 
+

𝑈2𝜇

𝜌𝐶𝑝  𝑇𝑤
+−𝑇∞

+ 
  

𝜕𝑢

𝜕𝑦
 

2

+  
𝜕𝑤

𝜕𝑦
 

2

  

 

But 𝑃𝑟 =
𝜇𝐶𝑝

𝑘
=

𝜌𝜈 𝐶𝑝

𝑘
 

𝐸𝑐 =
𝑈2

𝐶𝑝 (𝑇𝑤
+−𝑇∞

+)
        and    

𝑄 =
𝛿𝐾𝑈2

𝜈2
 

 

Hence we have  
𝜕𝜃

𝜕𝑡
+ 𝑢

𝜕𝜃

𝜕𝑥
− 𝑉0

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟
 
𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2 +
𝛿

𝑃𝑟
𝜃 + 𝐸𝑐   

𝜕𝑢

𝜕𝑦
 

2

+

 
𝜕𝑤

𝜕𝑦
 

2
                             

(57) 

 

Non-dimensionalizing equation (54) we have 

 

𝜕𝑐+

𝜕𝑡+
=

𝜕𝑐+

𝜕𝑐
∙
𝜕𝑐

𝜕𝑡
∙

𝜕𝑡

𝜕𝑡+
=

𝑈2

𝜈
 𝐶𝑤

+ − 𝐶∞
+ 

𝜕𝑐

𝜕𝑡
 

𝑢+
𝜕𝑐+

𝜕𝑥+
= 𝑢𝑈2

𝜕𝑐+

𝜕𝑐
∙
𝜕𝑐

𝜕𝑥
∙

𝜕𝑥

𝜕𝑥+
=

𝑢𝑈

𝜈
 𝐶𝑤

+ − 𝐶∞
+ 

𝜕𝑐

𝜕𝑥
 

𝑉0
+

𝜕𝑐+

𝜕𝑦+
= 𝑉0𝑈

2
𝜕𝑐+

𝜕𝑐
∙
𝜕𝑐

𝜕𝑦
∙

𝜕𝑥

𝜕𝑦+
=

𝑉0𝑈

𝜈
 𝐶𝑤

+ − 𝐶∞
+ 

𝜕𝑐

𝜕𝑦
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𝜕2𝑐+

𝜕𝑦+2
=

𝜕

𝜕𝑦+
 
𝜕𝑐+

𝜕𝑦+
 =

𝜕

𝜕𝑦
 
𝑈

𝜈
 𝐶𝑤

+ − 𝐶∞
+ 

𝜕𝑐

𝜕𝑦
 

𝜕𝑦

𝜕𝑦+

=
𝑈2

𝜈2
 𝐶𝑤

+ − 𝐶∞
+ 

𝜕2𝑐

𝜕𝑦2
 

𝜕2𝑐+

𝜕𝑥+2
=

𝜕

𝜕𝑥+
 
𝜕𝑐+

𝜕𝑥+
 =

𝜕

𝜕𝑥
 
𝑈

𝜈
 𝐶𝑤

+ − 𝐶∞
+ 

𝜕𝑐

𝜕𝑥
 

𝜕𝑥

𝜕𝑥+

=
𝑈2

𝜈2
 𝐶𝑤

+ − 𝐶∞
+ 

𝜕2𝑐

𝜕𝑥2
 

 

Substituting back in equation (54) we obtain  

𝑈2

𝜈
 𝐶𝑤

+ − 𝐶∞
+ 

𝜕𝑐

𝜕𝑡
+

𝑢𝑈2

𝜈
 𝐶𝑤

+ − 𝐶∞
+ 

𝜕𝑐

𝜕𝑥

−
𝑉0𝑈

2

𝜈
 𝐶𝑤

+ − 𝐶∞
+ 

𝜕𝑐

𝜕𝑦

=
𝐷𝑈2

𝜈2
 𝐶𝑤

+ − 𝐶∞
+  

𝜕2𝑐

𝜕𝑥2
+

𝜕2𝑐

𝜕𝑦2
  

 

Dividing through by 
𝑈2 𝐶𝑤

+−𝐶∞
+ 

𝜈
 gives 

𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑥
− 𝑉0

𝜕𝑐

𝜕𝑦
=

𝐷

𝜈
 
𝜕2𝑐

𝜕𝑥2
+

𝜕2𝑐

𝜕𝑦2
  

 

Using Schmidt number 𝑆𝑐 =
𝜈

𝐷
 meaning 

1

𝑆𝑐
=

𝐷

𝜈
 thus the 

equation reduces to 

 
𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑥
− 𝑉0

𝜕𝑐

𝜕𝑦
=

1

𝑆𝑐
 
𝜕2𝑐

𝜕𝑥2 +
𝜕2𝑐

𝜕𝑦2                (58) 

 

4. Methodology 
 

Due to the non-linear nature of equations, an interactive 

procedure that is more accurate and flexible is employed. A 

numerical method of finding a solution is therefore 

employed in order to satisfy basic requirements such as 

consistency, stability and convergence. A method is said to 

be convergent if, as more grid points are taken or step size 

decreased, the numerical solution converge to the exact 

solution. A method is stable if the effect of any single fixed 

round off error is bounded. Lastly a method is consistent if 

the truncation error tends to zero as the step size decreases. 

The numerical error arises because in most computations 

we cannot exactly compute the difference solution as we 

encounter round off error. If the effects of the round off 

error remains bounded as the mesh point tend to infinity 

with fixed step size then the difference method is said to be 

stable. In order to approximate equations (29) to (32) by a 

set of finite difference equations, we define a suitable mesh 

point. 

 

The Numerical Method 

 

A Mesh Point 

 

In order to give a relationship between the partial 

derivatives in the differential equation and the function 

value at the adjacent nodal points we use a uniform mesh. 

Let x-y plane be divided into a network of uniform 

rectangular cells of width ∆𝑦 and height  ∆𝑥 as shown 

below, j and i refer to y and x respectively. 

 

 
Figure 2: Mesh point 

 

Let  ∆𝑦 represent increment in y and ∆𝑥 represent 

increment in x then y = j∆𝑦 and x = i∆𝑥. The finite 

difference approximation of the partial derivatives 

appearing in equation (55) to (58) are obtained by Taylor 

series expansion of the dependent variable about a grid 

point (j, i) as,  

 

𝜙 𝑗 − 1, 𝑖 = 𝜙 𝑗, 𝑖 − 𝜙 ′ 𝑗, 𝑖 ∆𝑦 +
1

2
𝜙" 𝑗, 𝑖  ∆𝑦 2 −

1

6
𝜙 ′′′ 𝑗, 𝑖  ∆𝑦 3 + ⋯                   

(59) 

 

𝜙 𝑗 + 1, 𝑖 = 𝜙 𝑗, 𝑖 + 𝜙 ′ 𝑗, 𝑖 ∆𝑦 +
1

2
𝜙" 𝑗, 𝑖  ∆𝑦 2 +

1

6
𝜙 ′′′ 𝑗, 𝑖  ∆𝑦 3 + ⋯                   

(60) 

 

On eliminating 𝜙"from equation (55) to (58) by subtraction 

we get  

𝜙 ′ 𝑗, 𝑖 =
𝜙 𝑗 +1,𝑖 −𝜙(𝑗−1,𝑖)

2∆𝑦
+Hot                 (61) 

 

On eliminating 𝜙 ′ from equation (55) to (58) by adding 

them we obtain 

𝜙 ′ =
𝜙 𝑗 +1,𝑖 −2𝜙(𝑗 ,𝑖)+𝜙(𝑗−1,𝑖)

(∆𝑦)2 +Hot                 (62) 

 

Similarly the central difference formulae for the first and 

second derivatives are 

𝜙 ′(𝑗, 𝑖) =
𝜙 𝑗 ,𝑖+1 −𝜙(𝑗 ,𝑖−1)

2∆𝑥
+Hot                  (63) 

𝜙 ′ =
𝜙 𝑗 ,𝑖+1 −2𝜙(𝑗 ,𝑖)+𝜙(𝑗 ,𝑖−1)

(∆𝑥)2 + Hot              (64) 

 

In this study we use subscripts to indicate spatial points and 

superscripts to indicate time. 

 

𝑇(𝑗 ,𝑖)
𝑛+1 = (𝑦𝑗 , 𝑥𝑖 , 𝑡𝑛+1). Let the mesh point variable at time 𝑡𝑛  

be denoted by 𝜙(𝑗 ,𝑖)
𝑛 . The forward difference for the first 

order derivatives with respect to time is given by 

 

𝜙(𝑗 ,𝑖)
′𝑛 =

𝜙(𝑗 ,𝑖)
𝑛 +1−𝜙(𝑗 ,𝑖)

𝑛

∆𝑡
+ Hot                        (65) 

 

Substituting finite difference equations for the first and 

second derivatives in equations          

          

(55) to (58) the final set of governing equations is 
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝑉0

𝜕𝑢

𝜕𝑦
=  

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + 𝐺𝑟𝜃 + 𝐺𝑐𝐶 − 𝑀2𝑢   

 

becomes  

 

𝑢(𝑗 ,𝑖)
𝑛+1 − 𝑢(𝑗 ,𝑖)

𝑛

∆𝑡
+ 𝑢(𝑗 ,𝑖)

𝑛  
𝑢(𝑗 ,𝑖+1)

𝑛 − 𝑢(𝑗 ,𝑖−1)
𝑛

2∆𝑥
 

− 𝑉0
𝑛  

𝑢(𝑗 +1,𝑖)
𝑛 − 𝑢(𝑗−1,𝑖)

𝑛

2∆𝑦
 

=  
𝑢(𝑗 ,𝑖+1)

𝑛 − 2𝑢(𝑗 ,𝑖)
𝑛 + 𝑢(𝑗 ,𝑖−1

𝑛 )

(∆𝑥)2
 

+  
𝑢(𝑗 +1,𝑖)

𝑛 − 2𝑢(𝑗 ,𝑖)
𝑛 + 𝑢(𝑗−1,𝑖)

𝑛

(∆𝑦)2
 + 𝐺𝑟𝜃(𝑗 ,𝑖)

𝑛

+ 𝐺𝑐𝐶(𝑗 ,𝑖)
𝑛 − 𝑀2𝑢(𝑗 ,𝑖)

𝑛  

 

Making 𝑢(𝑗 ,𝑖)
𝑛+1 the subject  

𝑢(𝑗 ,𝑖)
𝑛+1 =

𝑢 𝑗 ,𝑖 
𝑛 +  −𝑢(𝑗 ,𝑖)

𝑛  
𝑢(𝑗 ,𝑖+1)

𝑛 −𝑢(𝑗 ,𝑖−1)
𝑛

2∆𝑥
 + 𝑉0

𝑛  
𝑢(𝑗+1,𝑖)

𝑛 −𝑢(𝑗−1,𝑖)
𝑛

2∆𝑦
 +

 
𝑢(𝑗 ,𝑖+1)

𝑛 −2𝑢(𝑗 ,𝑖)
𝑛 +𝑢(𝑗 ,𝑖−1)

𝑛

(∆𝑥)2  +

                               
𝑢(𝑗+1,𝑖)

𝑛 − 2𝑢(𝑗 ,𝑖)
𝑛 +𝑢(𝑗−1,𝑖)

𝑛

(∆𝑦)2  + 𝐺𝑟𝜃(𝑗 ,𝑖)
𝑛 +

𝐺𝑐𝐶(𝑗 ,𝑖)
𝑛 − 𝑀2𝑢(𝑗 ,𝑖)

𝑛    ∆𝑡                      (3.66) 

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
− 𝑉0

𝜕𝑤

𝜕𝑦
=  

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2  − 𝑀2𝑤 becomes 

𝑤(𝑗 ,𝑖)
𝑛+1 − 𝑤(𝑗 ,𝑖)

𝑛

∆𝑡
+ 𝑢(𝑗 ,𝑖)

𝑛  
𝑤(𝑗 ,𝑖+1)

𝑛 − 𝑤(𝑗 ,𝑖−1)
𝑛

2∆𝑥
 

− 𝑉0
𝑛  

𝑤(𝑗 +1,𝑖)
𝑛 − 𝑤(𝑗−1,𝑖)

𝑛

2∆𝑦
 

=  
𝑤(𝑗 ,𝑖+1)

𝑛 − 2𝑤(𝑗 ,𝑖)
𝑛 + 𝑤(𝑗 ,𝑖−1)

𝑛

(∆𝑥)2
 

+  
𝑤(𝑗 +1,𝑖)

𝑛 − 2𝑤(𝑗 ,𝑖)
𝑛 + 𝑤(𝑗−1,𝑖)

𝑛

(∆𝑦)2
 

− 𝑀2𝑤(𝑗 ,𝑖)
𝑛  

 

Making 𝑤(𝑗 ,𝑖)
𝑛+1 the subject  

𝑤(𝑗 ,𝑖)
𝑛+1 =

𝑤(𝑗 ,𝑖)
𝑛 +  −𝑢(𝑗 ,𝑖)

𝑛  
𝑤(𝑗 ,𝑖+1)

𝑛 −𝑤(𝑗 ,𝑖−1)
𝑛

2∆𝑥
 + 𝑉0

𝑛  
𝑤(𝑗+1,𝑖)

𝑛 −𝑤(𝑗−1,𝑖)
𝑛

2∆𝑦
 +

 
𝑤(𝑗 ,𝑖+1)

𝑛 −2𝑤(𝑗 ,𝑖)
𝑛 +𝑤(𝑗 ,𝑖−1)

𝑛

(∆𝑥)2  +

                                 
𝑤(𝑗+1,𝑖)

𝑛 −2𝑤(𝑗 ,𝑖)
𝑛 +𝑤(𝑗−1,𝑖)

𝑛

(∆𝑦)2  − 𝑀2𝑤(𝑗 ,𝑖)
𝑛  ∆𝑡                             

(67) 
𝜕𝜃

𝜕𝑡
+ 𝑢

𝜕𝜃

𝜕𝑥
− 𝑉0

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟
 
𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2 +
𝛿

𝑃𝑟
𝜃 + 𝐸𝑐   

𝜕𝑢

𝜕𝑦
 

2

+

 
𝜕𝑤

𝜕𝑦
 

2
  becomes 

𝜃 𝑗 ,𝑖 
𝑛+1 − 𝜃 𝑗 ,𝑖 

𝑛

∆𝑡
+ 𝑢 𝑗 ,𝑖 

𝑛  
𝜃 𝑗 ,𝑖+1 

𝑛 − 𝜃 𝑗 ,𝑖−1 
𝑛

2∆𝑥
 

− 𝑉0
𝑛  

𝜃 𝑗 +1,𝑖 
𝑛 − 𝜃 𝑗−1,𝑖 

𝑛

2∆𝑦
 

=
1

𝑃𝑟
 
𝜃(𝑗 ,𝑖+1)

𝑛 − 2𝜃(𝑗 ,𝑖)
𝑛 + 𝜃(𝑗 ,𝑖−1)

𝑛

(∆𝑥)2
 

+
1

𝑃𝑟
 
𝜃(𝑗 +1,𝑖)

𝑛 − 2𝜃(𝑗 ,𝑖)
𝑛 + 𝜃(𝑗−1,𝑖)

𝑛

(∆𝑦)2
 

+
𝛿

𝑃𝑟
𝜃(𝑗 ,𝑖)

𝑛 + 𝐸𝑐  
𝑢(𝑗 +1,𝑖)

𝑛 − 𝑢(𝑗−1,𝑖)
𝑛

2∆𝑦
 

2

+ 𝐸𝑐  
𝑤(𝑗 +1,𝑖)

𝑛 − 𝑤(𝑗−1,𝑖)
𝑛

2∆𝑦
 

2

 

 

Making 𝜃(𝑗 ,𝑖)
𝑛+1 the subject 

𝜃(𝑗 ,𝑖)
𝑛+1 =

𝜃(𝑗 ,𝑖)
𝑛 +  −𝑢(𝑗 ,𝑖)

𝑛  
𝜃(𝑗 ,𝑖+1)

𝑛 −𝜃(𝑗 ,𝑖−1)
𝑛

2∆𝑥
 + 𝑉0

𝑛  
𝜃(𝑗+1,𝑖)

𝑛 −𝜃(𝑗−1,𝑖)
𝑛

2∆𝑦
 +

1

𝑃𝑟
 
𝜃(𝑗 ,𝑖+1)

𝑛 −2𝜃(𝑗 ,𝑖)
𝑛 +𝜃(𝑗 ,𝑖−1)

𝑛

(∆𝑥)2  +

                               
1

𝑃𝑟
 
𝜃(𝑗+1,𝑖)

𝑛 −2𝜃(𝑗 ,𝑖)
𝑛 +𝜃(𝑗−1,𝑖)

𝑛

(∆𝑦)2  +
𝛿

𝑃𝑟
𝜃(𝑗 ,𝑖)

𝑛 +

 𝐸𝑐  
𝑢(𝑗+1,𝑖)

𝑛 −𝑢(𝑗−1,𝑖)
𝑛

2∆𝑦
 

2

+

                                 𝐸𝑐  
𝑤(𝑗+1,𝑖)

𝑛 −𝑤(𝑗−1,𝑖)
𝑛

2∆𝑦
 

2

 ∆𝑡(68) 

𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑥
− 𝑉0

𝜕𝑐

𝜕𝑦
=

1

𝑆𝑐
 
𝜕2𝑐

𝜕𝑥2 +
𝜕2𝑐

𝜕𝑦2  becomes 

𝐶 𝑗 ,𝑖 
𝑛+1 − 𝐶 𝑗 ,𝑖 

𝑛

∆𝑡
+ 𝑢 𝑗 ,𝑖 

𝑛  
𝐶 𝑗 ,𝑖+1 

𝑛 − 𝐶 𝑗 ,𝑖−1 
𝑛

2∆𝑥
 

− 𝑉0
𝑛  

𝐶 𝑗 +1,𝑖 
𝑛 − 𝐶 𝑗−1,𝑖 

𝑛

2∆𝑦
  

=
1

𝑆𝑐
 
𝐶(𝑗 ,𝑖+1)

𝑛 − 2𝐶(𝑗 ,𝑖)
𝑛 + 𝐶(𝑗 ,𝑖−1)

𝑛

(∆𝑥)2
 

+
1

𝑆𝑐
 
𝐶(𝑗 +1,𝑖)

𝑛 − 2𝐶(𝑗 ,𝑖)
𝑛 + 𝐶(𝑗−1,𝑖)

𝑛

(∆𝑦)2
  

 

Making 𝐶(𝑗 ,𝑖)
𝑛+1 the subject 

𝐶(𝑗 ,𝑖)
𝑛+1

= 𝐶(𝑗 ,𝑖)
𝑛

+  −𝑢(𝑗 ,𝑖)
𝑛  

𝐶(𝑗 ,𝑖+1)
𝑛 − 𝐶(𝑗 ,𝑖−1)

𝑛

2∆𝑥
 + 𝑉0

𝑛  
𝐶(𝑗 +1,𝑖)

𝑛 − 𝐶(𝑗−1,𝑖)
𝑛

2∆𝑦
 

+
1

𝑆𝑐
 
𝐶(𝑗 ,𝑖+1)

𝑛 − 2𝐶(𝑗 ,𝑖)
𝑛 + 𝐶(𝑗 ,𝑖−1)

𝑛

(∆𝑥)2
 

+                                
1

𝑆𝑐
 
𝐶(𝑗 +1,𝑖)

𝑛 − 2𝐶(𝑗 ,𝑖)
𝑛 + 𝐶(𝑗−1,𝑖)

𝑛

(∆𝑦)2
  ∆𝑡 

(69) 

 

The computations are performed using small values in ∆𝑥 

and ∆𝑦. Thus in this research we set ∆𝑥 = 0.012 and  

∆𝑦 = 0.25. The x-axis along the infinite vertical plate then 

x varies from 0 to infinity. Fixing y=3.1 for which j=31 as 

corresponding to 𝑦 = ∞ therefore set 𝑢 31,𝑖 
𝑛 = 𝑣 31,𝑖 

𝑛 =

𝐶 31,𝑖 
𝑛 = 𝜃 31,𝑖 

𝑛 = 0 because u, v, C and 𝜃 tend to zero 

around y=3.1.  
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The initial conditions are 

 

At  𝑦 = 0,    𝑢 0,𝑖 
0 = 1,   𝜃 0,𝑖 

0 = 1,    𝑤 0,𝑖 
0 = 1   𝐶 0,𝑖 

0 = 1     

  𝑦 > 0,    𝑢 𝑗 ,𝑖 
0 = 1,   𝜃 𝑗 ,𝑖 

0 = 1,    𝑤 𝑗 ,𝑖 
0 = 1   𝐶 𝑗 ,𝑖 

0 = 1     

 

𝑘 > 0 and all i the boundary conditions takes the form  

 

At 𝑦 = 0,    𝑢 0,𝑖 
𝑛 = 1,   𝜃 0,𝑖 

𝑛 = 1,    𝑤 0,𝑖 
𝑛 = 1   𝐶 0,𝑖 

𝑛 = 1     

𝑥 = 0,    𝑢 𝑗 ,0 
𝑛 = 1,   𝜃 𝑗 ,0 

𝑛 = 1,    𝑤 𝑗 ,0 
𝑛 = 1   𝐶 𝑗 ,0 

𝑛 = 1     

 

In this computation the Prandtl number is taken as 0.71 

which corresponds to air, magnetic parameter 𝑀2 = 5.0 

signifying strong magnetic field, Grashof number Gr = 1, 

modified Grashof  number Gc = 5, d = 5, V = 5 and Ec = 

100. To ensure stability and convergence of the finite 

difference method, the program is run using smaller values 

of ∆𝑥 and ∆𝑦.  

 

5. Observation and Discussion of Results 
 

A java program was written and run for various values of 

velocities, temperatures and concentrations for finite 

difference equation (3.66) to (3.69) for various values of 

Schmidt parameter (10 and 50) and also Eckert parameter 

(10 and 100).The primary velocity (u), secondary velocity 

(w), temperature (𝜃) and concentration (C) profiles are 

presented as shown in the figures and the tables below. 

 

5.1 Discussion of the Results 

 

Table 1: Primary velocity profile 

  Sc=10 Sc=50 

0 0 0 

1 -1.75E-06 -1.75E-06 

2 -5.26E-18 -5.26E-18 

3 -1.55E-29 -1.55E-29 

4 -4.43E-41 -4.43E-41 

5 -1.24E-52 -1.24E-52 

6 -3.32E-64 -3.32E-64 

7 -8.56E-76 -8.56E-76 

 

 
Figure 3: Primary velocity profile (u-graph) 

 

From table 1 and figure 3, it was observed that an increase 

in mass diffusion parameter Sc leads to a decrease in 

primary velocity profile as shown by the curves Sc=10 and 

Sc=50. This is because the mass diffusion parameter Sc is 

directly proportional to shear stresses and inversely 

proportional to the product of velocity profile, density 

which is assumed constant and mass diffusivity, therefore 

an increase in mass diffusion parameter leads to a decrease 

in the velocity profile. However as the fluid flows away 

from the plate, the trend reverses as the Sc parameter 

decreases and velocity profile starts increases since the two 

are inversely proportional 

 

Table 2: Secondary Velocity Profile 

 
Sc=10 Sc=50 

0 0 0 

1 -1.04E-02 -8.45E-03 

2 -1.14E-02 -9.39E-03 

3 -1.23E-02 -1.04E-02 

4 -1.31E-02 -1.14E-02 

5 -1.34E-02 -1.23E-02 

6 -1.30E-02 -1.31E-02 

7 -1.23E-02 -1.34E-02 

8 -1.02E-02 -0.0134 

9 -7.95E-03 -1.30E-02 

 

 
Figure 4: Secondary Velocity Profile (w-graph) 

 

From table 2 and figure 4, it was observed that an increase 

in mass diffusion parameter Sc causes a decrease in the 

secondary velocity profile as shown by the curves Sc=10 

and Sc=50.This is because the mass diffusion parameter is 

directly proportional to dynamic viscosity which is a 

measure of shear stresses and inversely proportional to the 

product of velocity profile, density which is assumed to be 

constant and mass diffusivity, therefore an increase in mass 

diffusion causes a decrease in secondary velocity profile 

 

Table 3: Temperature Profile 

 
Sc=10 Sc=50 

0 0.00E+00 0 

1 8.94E-03 8.94E-03 

2 9.86E-03 9.86E-03 

3 1.09E-02 1.09E-02 

4 1.19E-02 1.19E-02 

5 1.27E-02 1.27E-02 

6 1.33E-02 1.33E-02 

7 0.013467 0.013467 

8 0.013236 0.013236 
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Figure 5: Temperature profile (𝜃-graph) 

 

From table 3 and figure 5, it was observed that an increase 

in mass diffusion parameter Sc causes an increase in the 

temperature profile as shown by the curves Sc=10 and 

Sc=50. The mass diffusion parameter Sc gives the ratio of 

kinematic viscosity and mass diffusivity thus when mass 

diffusivity is increased, the temperature also increases since 

the two are directly proportional. 

 

Table 4: Concentration profile with Sc varying 

 
Sc=10 Sc=50 

0 0 0 

1 1.84E-13 3.67E-13 

2 9.74E-20 7.80E-19 

3 5.16E-26 1.65E-24 

4 2.71E-32 3.48E-30 

5 1.39E-38 7.16E-36 

6 6.95E-45 1.43E-41 

 
3.35E-51 

 
 

 
Figure 6.1: Concentration profile with Sc varying (c-

graph) 

 

From table 4 and figure 6.1, it was observed that a decrease 

in mass diffusion parameter Sc causes an increase in the 

concentration profile. This is because Sc is directly 

proportional to the dynamic viscosity which is a measure of 

shear stresses and inversely proportional to product of 

velocity profiles, density which is assumed to be constant 

and mass diffusivity. Since the mass diffusion parameter Sc 

is inversely proportional to mass diffusivity, then a decrease 

in Sc results into an increase in concentration profile. 

However as the fluid flows away from the plate the trend 

reverses and there is an increase in Sc which results into a 

decrease in the concentration profile. 

 

Table 5: Concentration profile with Ec varying 

 
Ec=10 Ec=100 

0 0 0 

1 1.84E-13 1.84E-13 

2 9.74E-20 9.74E-20 

3 5.16E-26 5.16E-26 

4 2.71E-32 2.71E-32 

5 1.39E-38 1.39E-38 

6 6.95E-45 6.95E-45 

 

 
Figure 6.2: Concentration profile with Ec varying (c-graph) 

 

From table 5 and figure 6.2, it was observed that as the 

Eckert parameter which provides a measure of kinetic 

energy to the flow relative to thermal energy decreases, the 

concentration profile increases. This is because a decrease 

in the Ec leads to an increase in thermal energy because 

they are inversely proportional hence an increase in the 

concentration of the fluid which results to an increase in the 

concentration profile. However, as fluid flows away from 

the plate, the trend reverses and this result into an increase 

in the Ec parameter which in turn reduces the concentration 

profile. 

 

6. Conclusions and Recommendations 
 

Conclusion 

 

An analysis of effects of various parameters on the 

velocities, temperature and concentration profiles on a 

viscous incompressible heat generating fluid flow past an 

infinite porous plate with radiation absorption has been 

carried out. In all the cases considered, the applied magnetic 

field was resolved into two components and our work 

restricted to laminar boundary layer. The equations 

governing the flow considered in our problem are non-

linear therefore in order to obtain their solutions; an 

efficient finite difference method has been used as outlined 

in chapter three. The results obtained for various values of 

Schmidt parameter Sc and Eckert Ec parameter were 

presented graphically and in table form. 

 

In this study the results obtained for mass diffusion 

parameter Sc, for Sc=10 and Sc=50 was investigated on 
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velocity profiles, temperature profile and concentration 

profile. In all the cases it was noted that an increase in mass 

diffusion parameter leads to a decrease in both primary and 

secondary profiles and also concentration profile. However 

an increase in mass diffusion parameter leads to an increase 

in the temperature profile. 

 

It was noted that an increase in radiation absorption leads to 

a decrease in primary velocity profile in the presence of 

heating of the plate by free convection currents. However in 

the presence of cooling of the plate by free convection 

currents, increase in radiation absorption leads to an 

increase in velocity profiles. It was also noted that an 

increase in the viscous dissipative heat Ec, causes an 

increase in concentration profile. 

 

7. Recommendations 
 

This work considered a viscous incompressible heat 

generating fluid flow past an infinite porous plate with 

radiation absorption. The flow was restricted to laminar 

boundary layer. It is recommended that this work be 

extended by considering the following; 

 

i) Varied viscosity and thermal conductivity 

ii) Compressible fluid 

iii) Periodic suction 

iv) Fluid flow in the turbulent boundary layer 

v) Investigating the exact implications of the decrease and 

increase in the parameters  
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