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Abstract: Many filter design techniques in Digital Signal Processing applications were based on second order statistics which include 

channel equalization, echo cancellation and system modeling. In these applications filters with adjustable coefficients, called Adaptive 

Filters were employed. Such Filters incorporate algorithms that allow the filter coefficients to adapt to signal statistics. Adaptive filtering 

techniques are used in a wide range of applications including echo cancellation, linear prediction, adaptive equalization, adaptive noise 

cancellation and adaptive beam forming. The design of adaptive filter includes i) Determination of Cost functions like Minimum Square 

Error (MSE) criterion and exponentially weighted Least Square Error criterion. ii) The performance of adaptive filtering algorithm which 

depends on the factors like Rate of convergence, misadjustment, tracking capability, computational requirement, and numerical 

robustness. iii) Structure determination which is inter related with the algorithm. Four common structures namely direct, parallel, cascade 

and lattice form structures were used. Here in this present paper the basic Least Mean Square Algorithm which is based on gradient 

optimization for determining the coefficients was observed. We considered the basic Widrow’s Least Mean Square Algorithm in which we 

study optimization criterion, Adaption procedure and Performance Analysis. The two important Performance measures in LMS algorithms 

are Rate of Convergence and Misadjustment. 
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1. Introduction 
 

Discrete-time (or digital) filters are ubiquitous in today’s 

signal processing applications. Filters are used to achieve 

desired spectral characteristics of a signal, to reject 

unwanted signals, like noise or interferers, to reduce the bit 

rate in signal transmission, etc. The notion of making filters 

adaptive, i.e., to alter parameters (coefficients) of a filter 

according to some algorithm, tackles the problems that we 

might not in advance know, e.g., the characteristics of the 

signal, or of the unwanted signal, or of a systems influence 

on the signal that we like to compensate. Adaptive filters 

can adjust to unknown environment, and even track signal 

or system characteristics varying over time [5]. 

 

Adaptive filtering techniques are used in a wide range of 

applications, including echo cancellation, adaptive 

equalization, adaptive noise cancellation, and adaptive 

beam forming [1]. Under this condition, a significant 

improvement in performance can be achieved by using 

adaptive rather than fixed filters. An adaptive filter is a self-

designing filter that uses a recursive algorithm (known as 

adaptation algorithm or adaptive filtering algorithm) to 

“design itself.” The algorithm starts from an initial guess, 

chosen based on the a priori knowledge available to the 

system, then refines the guess in successive iterations, and 

converges, eventually, to the optimal Wiener solution in 

some statistical sense [3]. An Adaptive Filter is a time-

variant filter whose coefficients are adjusted in a way to 

optimize a cost function or to satisfy some predetermined 

optimization criterion. 

 

2. Methods 
 

Characteristics of adaptive filters are- they can 

automatically adapt (self-optimize) in the face of changing 

environments and changing system requirements They can 

be trained to perform specific filtering and decision-making 

tasks according to some updating equations (training rules). 

Adaptive filters are used because they can automatically 

operate in changing environments (e.g. signal detection in 

wireless channel), non-stationary signal/noise conditions 

(e.g. LPC of a speech signal) and time-varying parameter 

estimation (e.g. position tracking of a moving source) [2]. 

 

Block diagram of a typical Adaptive filter is shown below 

 

 
Figure 1(a) 

 

From the above figure 1(a), x (k) is input signal; y (k) is 

filtered output; d (k) is desired response and h (k) is impulse 

response of adaptive filter. Here the cost function is defined 

as E {e
2
 (k)} or e

2
 (k)  

 

2.1 Design Considerations of the Adaptive Filter 

Include 

 

2.1.1 Cost Function: 

 

Choice of cost functions depends on the approach used and 

the application of interest [6]. Some commonly used cost 

functions are 
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Mean square error (MSE) criterion: minimizes E{e
2
(k)} 

where E denotes expectation operation, e(k)=d(k)-y(k) is 

the estimation error, d(k) is the desired response and y(k) is 

the actual filter output  

 

Exponentially weighted least squares criterion: 

Minimizes  where N is the total 

number of samples and λ denotes the exponentially 

weighting factor whose value is positive close to 1. 

 

2.1.2 Algorithm  

 

Depends on the cost function used and 

 

i) Rate of convergence: This corresponds to the time 

required for the algorithm to converge to the optimum least 

squares/Wiener solution.  

 

ii) Misadjustment: Excess mean square error (MSE) over 

the minimum MSE produced by the Wiener filter, 

mathematically it is defined as 

 
iii) Tracking capability: This refers to the ability of the 

algorithm to track statistical variations in a non-stationary 

environment.  

 

iv) Computational requirement: It is the number of 

operations, memory size, investment required to program 

the algorithm on a computer.  

 

v) Numerical robustness: This refers to the ability of the 

algorithm to operate satisfactorily with ill-conditioned data, 

e.g. very noisy environment, change in signal and/or noise 

models 

 

2.1.3 Structure  
 

Structure and algorithm are inter-related. Choice of 

structures is based on quantization errors, ease of 

implementation, computational complexity, etc. Four 

commonly used structures are direct form, cascade form, 

parallel form, and lattice structure [4]. Advantages of 

lattice structures include simple test for filter stability, 

modular structure and low sensitivity to quantization 

effects. 

 

2.2 Widrow’s Least Mean Square (LMS) 

Algorithm 

 

The study of LMS algorithm is based upon Optimization 

criterion, Adaption Procedure and Performance Analysis. 

 

2.2.1. Optimization Criterion 

 

This is used to minimize the mean square error E {e
2
 (n)} 

 

 

 

 

2.2.2. Adaptation Procedure  

 

It is an approximation of the steepest descent method where 

the expectation operator is ignored, i.e. 

 

 

 
 

2.2.3. Performance Analysis 

 

Two important performance measures in LMS algorithms 

are rate of convergence & misadjustment (relates to steady 

state filter weight variance). 

 

1. Convergence Analysis:  

 

For ease of analysis, it is assumed that W (n) is independent 

of X (n).  

 

Taking expectation on both sides of the LMS algorithm, we 

have 

 

 
Which is very similar to the adaptive equation in the 

steepest descent method. 

 

Following the previous derivation, W (n) will converge to 

the Wiener filter weights in the mean sense if 
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Define geometric ratio of the pth term as 

 

 
 

It is observed that each term in the main diagonal forms a 

geometric series 

 

 
 

Exponential function can be fitted to approximate each 

geometric series: 

 

 
 

where τp is called the p th time constant. 

 

For slow adaptation, i.e. 2μλp<<1, τp is approximated as 

 

 
 

Notice that the smaller the time constant the faster the 

convergence rate. Moreover, the overall convergence is 

limited by the slowest mode of convergence which in turns 

stems from the smallest eigenvalue of Rxx, λmin 

 

That is, 

 
 

In general, the rate of convergence depends on two factors: 

 

i) Step size μ: the larger the µ, the faster the convergence 

rate 

 

ii) Eigenvalue spread of Rxx, : the smaller χRxx, 

the faster the convergence rate. χRxx is defined as  

 

 
Notice that 1≤ χRxx<∞. It is worthy to note that although 

χRxx cannot be changed, the rate of convergence will be 

increased if we transform x(n) to another sequence, say, 

y(n), such that χRxx is close to 1. 

 

 

 

 

 

 

 

 

3. An Illustration of Eigen Value Spread for 

LMS Algorithm 

 

 
Figure 1(b) 

 

From fig 1 (b), we have, d (n) = h0x (n) + h1x (n-1) + q (n) 

y (n) = w0 (n) x(n) + w1(n) x(n-1) 

e(n) = d(n) – y(n) = d(n) – w0(n)x(n) – w1(n)x(n-1) 

w0 (n+1) = w0 (n) + 2u e (n) x (n)  

w1 (n+1) = w1 (n) + 2u e (n) x (n-1) 

 

3.1 The following is a sample program to illustrate the 

Eigen value spread for LMS algorithm 

 

Clear all 

N=1000; % number of sample is 1000  

np = 0.01; % noise power is 0.01 

sp = 1; % signal power is 1 which implies SNR = 20dB  

h= [1 2]; % unknown impulse response  

x = sqrt (sp).*randn (1, N);  

d = conv(x, h); 

d = d (1: N) + sqrt (np).*randn (1, N);  

w0 (1) = 0; % initial filter weights are 0  

w1 (1) = 0;  

mu = 0.005; % step size is fixed at 0.005  

y (1) = w0 (1)*x (1); % iteration at “n=0” 

e (1) = d (1) - y(1); % separate because “x(0)” is not defined  

w0 (2) = w0 (1) + 2*mu*e(1)*x(1); w1(2) = w1(1);  

for n=2: N % the LMS algorithm  

y (n) = w0 (n)*x(n) + w1(n)*x(n-1);  

e (n) = d (n) - y(n);  

w0 (n+1) = w0 (n) + 2*mu*e (n)*x (n);  

w1 (n+1) = w1 (n) + 2*mu*e (n)*x (n-1); end  

n = 1: N+1; 

subplot (2, 1, 1)  

plot (n, w0) % plot filter weight estimate versus time 

axis ([1 1000 0 1.2])  

subplot (2, 1, 2)  

plot (n, w1)  

axis ([1 1000 0 2.2]) 

figure (2)  

subplot (1, 1, 1) 

n = 1: N; semilogy (n, e.*e); % plot square error versus time  

 

4. Results 
 

From the following MATLAB Program we considered the 

number of samples equal to 1000 and signal power is 1.We 

get the output basing on the weight functions w0 and w1. 

They both converge at same speeds as mentioned below. 

Here n is the time period. 
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Figure 1(c) & (d) 

 

 
Figure 1(e) 

 

From Figures 1(c) & 1(d) we can observe that both filter 

weights w0 and w1 converge at similar speed with respect to 

time n because the eigenvalues of the Rxx are identical. 

From fig 1(e) depicts the Eigen value spread which is equal 

to unity and converges with same speed. 

 

We know that 

 

 
 

For white process with unity power, we have 

 

 
As a result, 

 

 
 

5. Future Scope 
 

Since the Eigen value spread of Newton based approach is 

1, we can combine the LMS algorithm and Newton’s 

Method to form “LMS/Newton” algorithm as follows, 

 

 
 

The result will be as follows 

 

i) The computational complexity of the LMS/Newton 

algorithm is smaller than the RLS algorithm but greater 

than the LMS algorithm. 

ii) When Rxx is not available, it can be estimated as follows 

 

 

Where  represents the estimate of Rxx(1) at time 

n and 0 < α < 1. 

 

6. Conclusion 
 

From the above algorithm we can conclude that if the Eigen 

values of Rxx are identical then both the filters converge at 

similar speed and the Eigen spread value χRxx is unity. If 

the signal speed is varied the Eigen values changes 

accordingly and the Eigen spread value increases and the 

weight function also varies depending on the Eigen values. 

 

Steepest descent method is simpler than the Newton method 

since no matrix inversion is required. The convergence rate 

of Newton method is much faster than that of the steepest 

descent method. However, both methods require exact 

values of Rxx and Rdx which are not commonly available in 

practical applications. This is the main advantage why we 

use LMS algorithm because it does not need statistics of 

signals, ie., Rxx and Rdx. Moreover LMS computations 

have low computational complexity and are simple to 

implement and they allow real-time operation 
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