
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 10, October 2015
Licensed Under Creative Commons Attribution CC BY

Review of Querying RDF Techniques with SPARQL

in Semantic Web Technologies

Vijayanathan Senthooran

Faculty of Applied Science, Vavuniya Campus, University of Jaffna, Sri Lanka

Abstract: Efficient querying RDF triples with SPARQL plays an important role in Semantic Web data management. This paper presents

a short review of an efficient RDF query to evaluate SPARQL queries, where the reversed index structure is engaged for indexing RDF

triples. First, we review the design and implementation of operators on query optimization and evaluation then how it transforms a

SPARQL query graph into the optimal query plan by effectively reducing the search space to determine the optimal joining order. This

research study is to investigate the performance of the Semantic Data models and patterns for querying RDF data with SPARQL and

enrich the techniques to improve performance of the models and patterns efficiently.

Keywords: RDF, SPARQL, semantic web, Jena framework, ontology

1. Introduction

The Semantic Web, which is intended to establish a machine-

understandable Web, is currently changing from being an

emerging trend to a technology used in complex real-world

applications. Semantic data is represented in Resource

Description Framework (RDF), the standard language for

annotating resources on the Web, and queried using the

SPARQL query language for RDF that has been recently

proposed by the World Wide Web Consortium. RDF data is a

collection of statements, called triples, of the form <s, p, o>,

where s is a subject, p is a predicate and o is an object, and

each triple states the relation between the subject and the

object. Such collection of triples can be represented as a

directed graph, in which nodes represent subjects and objects,

and edges represent predicates connecting from subject nodes

to object nodes. SPARQL allows the specification of triple and

graph patterns to be matched over RDF graphs. Increasing

amount of RDF data on the Web drives the need for its

efficient and effective management. Clearly, querying

performance has become a key issue for Semantic Web

applications. The objective of this research is to investigate the

performance of the Semantic Data models and patterns for

querying RDF data with SPARQL and enrich the techniques to

improve performance of the models and patterns efficiently.

2. Background

Methods for query processing are an essential part of database

and information systems. Queries are not only used to access

information, but also for structuring and integrating

information. On the World Wide Web, effective query

processing used to be impossible due to the lack of data

structures and scheme information. The ability to efficiently

access information in a query-like fashion had been sacrificed

for the ease of authoring and publishing information. When we

talk about the Semantic Web today, then we mainly refer to an

effort of bringing back structure to the Information that is

available on the World Wide Web. This time, structures do not

come in the shape of well-defined database schemas but in

terms of semantic annotations that conform to a specific, often

loosely defined schema or even to an explicit specification of

the intended meaning of a piece of information, called

ontology. The first real results of semantic web research are

languages for encoding these three components: The resource

description framework RDF provides a language to encode

semantically annotated information, the RDF vocabulary

(formerly RDF schema) [Brickley and Guha 2002] is a

language for capturing schema information in terms of a typing

system with inheritance and typed relations. Finally, the

Ontology Web Language OWL [McGuiness and van Harmelen

2002] is a logical language that can be used to describe

ontologies that further constrain the possible interpretations of

terms used to annotate information. This return of structure to

the World Wide Web enables us to re-consider the issue of

query processing. Having a closer look at the nature of the

information on the web and the languages used to impose

structure on this information, we have to recognize that

conventional database techniques are not sufficient to make

query effective and efficient processing on the Semantic Web

possible. In this research, we have to discuss the specific

characteristics of the semantic web that force us to consider

new techniques for query processing. We base the discussion

of these characteristics on experience gained when

experimenting and theoretically investigating the issue of

query processing on the semantic web. We mention some

approaches to overcome existing problems whenever they

exist.

3. Short Review of RDF with SPARQL

The Semantic Web as an evolution of the World Wide Web

aims to create a universal medium for the exchange of

semantically described data. The idea of representing this

information by means of directed labeled graphs, RDF, has

been widely accepted by the scientific community. However

querying RDF data sets to find the desired information often is

highly time consuming due to the number of comparisons that

are needed. In this article we propose indexes on RDF to

reduce the search space and the SPARQL query processing

time. Our approach is based on materialized queries, i.e., pre

computed query patterns and their occurrences in the data sets.

We provide a formal definition of RDFM at View indexes for

SPARQL queries, a cost model to evaluate their potential

impact on query performance, and a rewriting algorithm to use

indexes in SPARQL queries. We also develop and compare

Paper ID: IJSER15499 36 of 38

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 10, October 2015
Licensed Under Creative Commons Attribution CC BY

different approaches to integrate such indexes into an existing

SPARQL query engine. Our preliminary results show that our

approach can drastically decrease the query processing time in

comparison to conventional query processing.

More formally, this paper reviews the present solutions to the

following problems.

Generation of execution plans to cover a query. Given a query

Q for a data graph G and the set I of all indexes on G, the first

step is to define which indexes are usable for speeding up Q.

To this end, we need to generate all possible mappings

between the index pattern and the query.

Definition of a cost model to assess different query execution

plans. Each plan differs from the others according to the parts

of the query that are covered by indexes, which in turn leads to

different sizes of intermediate results and different parts of the

query that need to be executed and combined with the

materialized parts. The objective of the cost model is to assess

all possible plans and to find those with minimal estimated

cost.

Rewriting of a SPARQL query to substitute covered query

patterns by RDFMatView indexes. When a combination of

RDFMatView indexes is selected, its materialized results must

combine to occurrences of the covered query pattern.

There are two different cases how this may happen:

1. The combination of indexes completely covers the query

pattern. Thus, the solution to the query can be generated

completely by joining the indexes.

2. The combination of indexes only partially covers the query

pattern. Then, the query solution needs to be generated by

joining the results of the chosen indexes with the residual

parts of the query pattern.

We presented a theoretical framework for using materialized

SPARQL queries as indexes in [10]. In the present work, we

show the practical applicability of this framework by

describing and comparing several ways to integrate

materialized views into an existing SPARQL query processor

and by providing an evaluation on the speed-ups that can be

achieved using our methods. Clearly, in a setting such as ours

it is also important to provide algorithms to keep materialized

queries up-to-date, and to give a user hints on which queries

should be materialized to best (best in terms of space/cost-

efficiency) support a given workload. However, these

questions are out-of-scope of our current research.

4. Methodology

Step 01: Provide a formal representation of RDF to reduce

space and time complexity.

First formal study of the basic principles of RDF statements

and how they can define data graphs then how RDF data

models are semantically encoded using RDFS and OWL then

build own basic ontology gradually. This is leading to enrich

more semantics efficiently.

Step 02: Define physical operators as novel to implement

SPARQL efficiently.

Developing SPARQL queries step by step then executing

SPARQL queries on RDF data set then investigate and

optimize the query processing on RDF dataset with SPARQL.

We focus on three areas to accomplish the above steps:

physical management of the RDF data, its indexing, and query

optimization.

3.1 Native Storage of RDF Data

A native RDF database has the advantage that it can exploit

the specific characteristics of the RDF data model, the RDF

data, and the query language. We develop an RDF database

that takes advantage of the following characteristics:

 A resource is uniquely identified by its URI

 A resource is typically subject of many statements, e.g., it

has many properties

 Most queries contain a star-like pattern or a set of connected

star-like pattern

The main principle of the native RDF store is to achieve high

data locality, e.g., we arrange statements on database pages so

that a query engine needs to access only a few of them to

answer a query. The placement works as follows:

 All statements with the same subject can be found on the

same page

 A page contains only resources of the same type

 A page contains an “optimum” number of resources

Additional placement strategies can be applied to reduce

further the number of read pages: If it is known that pieces of

information are likely to be accessed together (e.g., the address

of a person) then these pieces are stored together on the same

database page – we refer to it as semantic closure.

3.2 Constructing a Query Execution Plan

Storing the RDF data effectively is only one aspect of

improving query execution. Another one is to optimize the

query itself and to construct a good query execution plan

(QEP). Typically the process of query execution is divided

into four phases: query parsing, query rewriting, QEP

generation, and QEP execution. Although we focus our

research on query rewriting we developed the SPARQL Query

Graph Model (SQGM) for representing SPARQL queries and

supporting all phases of query processing. This model forms

the key data structure for storing information that is relevant

for query optimization and for transforming the query. The

basic elements are the following:

 Operators consist of a head (provided variables), a body

(performed operations), and additional annotations.

 Data flows indicate that an operator consumes the output of

another one.

Paper ID: IJSER15499 37 of 38

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 10, October 2015
Licensed Under Creative Commons Attribution CC BY

3.3 Query Rewriting

In the query rewriting phase, an SQGM is transformed into a

semantically equivalent one to achieve a better execution

strategy when the query optimizer generates query execution

plans. For instance, transformation rules may aim at

simplifying complex queries by merging graph patterns, e.g.,

avoiding join operations, and eliminating redundant or

contradicting restrictions. Transformation rules change an

SQGM only locally, i.e., an operator and its immediate

neighbors are affected. For example, a transformation rule can

merge two graph pattern operators and a join operator into a

single graph pattern operator (see figure below). Rewrite

strategies are more complex and affect the complete SQGM.

Every rewrite strategy follows a certain goal, e.g., merge as

many graph pattern operators as possible. To reach a goal it

may be necessary to apply a single or a sequence of

transformation rules several times. For example, query

rewriting can be used to support the fast path algorithm

implemented in the Jena Semantic Web Framework or the

selection of indexes.

3.4 Indexing

We assume that users create indexes for a basic graph pattern.

Creating an index means that all occurrences of the pattern in

the data graph are materialized. Thus, parts of a query that are

equivalent to an existing index need not to be computed at run

time and information about the frequency of matches of sub

graphs may be used to determine an optimal plan for query

evaluation.

Involving indexes the query processing works as follows:

 Determine all eligible indexes I for a query.

 Determine all maximal sets of overlapping indexes

contained in I.

 For each set estimate its selectivity.

3.5 Experimental design

We will implement the SQGM on top of Jena and ARQ.

ARQ is a query engine for Jena that supports the SPARQL

RDF Query language. SPARQL is the query language

developed by the W3C RDF Data Access Working Group.

Jena is a Java framework for building Semantic Web

applications. It provides a programmatic environment for

RDF, RDFS and OWL, SPARQL and includes a rule-based

inference engine.

Jena is open source and grown out of work with the HP Labs

Semantic Web Programme.

The Jena Framework includes:

 A RDF API

 Reading and writing RDF in RDF/XML, N3 and N-Triples

 An OWL API

 In-memory and persistent storage

 SPARQL query engine

Steps

 The ARQ query processor parses the query and generates a

query model specific to ARQ.

 Then, the generated query model is translated into an SQGM

 Heuristics are applied to provide a good basis for an

efficient query execution plan (QEP).

 Finally, the restructured SQGM is translated back into an

ARQ query model which is executed.

5. Conclusion

In this paper we presents a review of l RDF query engine for

efficient SPARQL query processing and the key points of our

work are: (1) an IR based solution for indexing triples and a

set of highly-efficient operators for query optimization and

evaluation, (2) a set of RDF statistics for estimating the

execution cost of the query plan, and (3) a main-tree-shaped

optimization algorithm for identifying the optimal query plan.

Currently we mainly focus the query optimization problem on

SPARQL basic graph patterns, and union and optional

patterns. In the future we plan to extend to develop an RDF

engine to support filter clause and named graph in the

SPARQL by extending the existing statistics, indexing scheme

and operators.

References

[1] Manola, F., Miller, E.: RDF Primer (February 2004) W3C

Recommendation.

[2] Wilkinson, K., Sayers, C, Kuno, H., Reynolds, D, Efficient RDF

storage and retrieval in Jena2. In: Proc. First International

Workshop on Semantic Web and Databases. (2003)

[3] Stephen Harris, N.G Efficient bulk rdf storage, in 1st

International Workshop on Practical and Scalable Semantic

Systems (PSSS’03). (2003)

[4] Groppe, S., Groppe, J., Linnemann, V.: Using an Index of

Precomputed Joins in order to speed up SPARQL Processing. In

Cardoso, J., Cordeiro, J., Filipe, J., eds.: Proceedings 9th

International Conference on Enterprise Information Systems

(ICEIS 2007 (1), Volume DISI), Funchal, Madeira, Portugal,

INSTICC (June 12 - 16 2007) 13–20

[5] Stocker, M., Seaborne, A., Bernstein, A., Kiefer C., Reynolds

.D. Sparql basic graph pattern optimization using selectivity

estimation. In: Proc. of WWW. (2008)

[6] Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y., Yong, Y.:

Semplore: An ir approach to scalable hybrid query of semantic

web data. In: Proc. Of ISWC. (2007)

[7] Harth, A., Umbrich, J., Hogan, A., Decker, S.:Yars2: A

federated repository for querying graph structured data from the

web. In: Proc. of ISWC.(2007)

[8] Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.:

Scalable semantic web data management using vertical

partitioning. In: VLDB ’07: Proceedings of the 33rd

international conference on Very large data bases, VLDB

Endowment (2007) 411–422

[9] Marcelo Arenas, Claudio Gutierrez and Jorge Perez,

Foundations of RDF Databases, Department of Computer

Science, Pontificia Universidad Catolica de Chile 2 Department

of Computer Science, Universidad de Chile

[10] Marcelo Arenas and Jorge Perez, Querying Semantic Web Data

with SPARQL: State of the Art and Research Perspectives,

Pontificia Universidad Catolica de Chile, Universidad de Chile

Paper ID: IJSER15499 38 of 38

http://openjena.org/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2001/sw/DataAccess/
http://www.w3.org/2001/SW/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2001/sw/WebOnt/
http://www.w3.org/TR/rdf-sparql-query/
http://www.opensource.org/
http://www.hpl.hp.com/semweb/
http://www.hpl.hp.com/semweb/
http://www.w3.org/TR/rdf-sparql-query/

