
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 10, October 2015
Licensed Under Creative Commons Attribution CC BY

SCahS: Synchronized Caching Strategies for

Incremental Computations on Hadoop

Shakil B. Tamboli
1
, Smita Shukla Patel

2

1Student of MEIT, Department of Information Technology, Smt.Kashibai Navale College of Engineering, Pune, India

2Assistant Professor, Department of Information Technology, Smt.Kashibai Navale College of Engineering, Pune, India

Abstract: Data for various applications are evolving continuously either online or offline way. The business communities extract this

available big data and search the potential business opportunities using it. For sophistication of this huge data many data processing

systems are designed by software companies; but neither fulfills efficient updates or enhance efficiency as expected by business

community’s demand. These systems lack in performance and do not support compatibility with existing distributed computing

environments like Hadoop MapReduce. In addition to these drawbacks it requires to develop only application specific algorithms which

need to be replaced dynamically by programmers resulting creating complexity in design and code. The solution is planned to minimize

computational time, wastage of input and output bandwidth and optimize resources namely central processing unit, memory utilization for

incremental data. Another aspect is also taken care is that the design of proposed system will be simple, easy to understand and execute and

fulfill the expectations demanded by users. The system saves intermediately generated data for a specific application by caching it. The

result obtained from the proposed system reduces significant computational time and saves memory space.

Keywords: MapReduce, Hadoop, Caching, Distributed Processing, Big Data, Incremental Computation, Recursive Queries

1. Introduction and Background

The amount of data generated by machines is greater than

people. Machine logs, RFID readers, sensor networks,

vehicle GPS traces, retail transactions generate lots of data.

This volume of data is made publicly available so that

organizations extract value from their and other

organizations‟ data to succeed in business to make

unexpected and hitherto unimaginable applications.

Massive scale data intensive applications like web data

analysis, click stream analysis, network monitoring log

analysis and analysis of high throughput data from sensors

and devices need highly scalable parallel data processing

platforms. Some known examples will give us the flood of

data becoming available from sources like The New York

Stock Exchange generates one terabyte of new trade data

per day and Facebook manages uploading of nearly 10

billion photos requires one petabyte of storage [1], [2]. This

large volume of data is not simple enough to measure,

capture, process, analyze and store electronically. The

important attributes of these applications are that they are

incremental in nature.

MapReduce framework is implemented on distributed

systems as a batch query processor with the ability to run an

ad hoc query against whole dataset and get the results in a

reasonable time. A MapReduce framework has

characteristic as computation should be moved towards

data. The ever growing gap between the computation and

input output disk is taken at top priority for minimization so

that speedup can be achieved. The framework changes the

way of computation and unlocks data that was previously

archived on tape or disk. It gives opportunity to people for

innovation with data irrespective of formats either

structured, unstructured or semi structured. The framework

implements linearly scalable programming approach in

which developer introduces two functions called map and

reduce. These functions are unaware about the size of data

or cluster on which they are processing so remain

unchanged irrespective of data size. The framework has the

inherent capability to process data with simple

programming way by hiding complexity of infrastructure

needed for parallelization, data transfer, scalability, fault

tolerance and scheduling [3].

However it is observed that the framework is inefficient for

incremental nature of workloads. Some problems need to be

solved to improve performance of systems like how to

avoid reloading and reprocessing of unchanged data during

successive iterations in order to avoid wastage of input,

output, processor and memory resources and network

bandwidth and how to optimize and decide fix point

termination [4]. Therefore a system is proposed to reduce

completion time and storage space overhead for Hadoop

jobs using synchronized caching strategies or mechanisms.

The other objectives kept in mind to improve efficiency,

performance, avoid duplication of operations for same data

and schedule the jobs efficiently [5].

The proposed system has suggested following techniques to

overcome observed drawbacks and challenges. Cache

strategies are much in use since long years in computing

communities to enhance the performance of operations by

applying them in the form of data structure, programming

policies, separate speedup frameworks and systems. Cache

has properties to access data faster than disk. Cache boosts

memory access with optimal architectures and cost in which

data is duplicated or partitioned among different layers

easily. The important cohesion property of cache retains

data consistently on memory. The locality principles retain

data within certain regions of time and space.

The system caches the data locally on DataNode and

distributed over the clients or dedicated servers or storage

devices which forms a single cache for effective

management. This local cached data then moved to the

NameNode so that it can be accessed from all available

locations to form a single cache or global cache. Hence

decisions of caching data can be taken by cache manager

Paper ID: IJSER15507 39 of 45

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 10, October 2015
Licensed Under Creative Commons Attribution CC BY

available on central coordinator or DataNodes with

additional protocols.

Caching of data is made faster and easier by the reference

caching principle in which a HDFS block is formed with

two files namely Meta file and block file. Meta file is used

for checksum value of data and block file for actual data. So

if these files references are cached, it helps in locating the

files faster.

The remaining part of paper presented in following manner.

The proposed system overview and design is discussed in

section II. Section III describes details of proposed system.

Section IV and V have a note on implementation and

experimental setting procedures. Section VI highlights

results obtained during the performance of experiments.

The conclusion is given in section VII and in section VIII

analyzes related work from earlier systems.

2. Proposed System Overview and Design

The design implemented the concept of self-adjusting

computation in Hadoop framework by verifying file names

which are uploaded by same names from a single or

different machine and maintains transparency with HDFS

through an append only file system.

System resources are optimized through keeping the input

and intermediate data in memory for MapReduce job‟s

whole life cycle. For example, in Word Count, the

intermediate buffer will keep a pointer to a string in the

input data as a key, instead of copying the string to another

buffer. It is implemented in the RecordReader interface to

process a piece of input split generated from the InputSplit

interface.

Reusing intermediate data provides opportunities to save

the expensive operations such as concurrent memory

allocation and need of building additional data structures.

Data Locality is improved using temporal and spatial

locality principles; in which temporal locality sequentially

touches the whole input data only once in the Map phase

and randomly touches discrete parts of intermediate data

multiple times of Reduce phase for generating final results

and spatial locality improves locality for data parallel

applications. The proposed system architecture is presented

in figure 1.

Figure 1: Proposed System Architecture

3. Details of Proposed System

A. Proposed Methodology of System

The system allows caching of data blocks by each

DataNode of HDFS and facilitates reads of these blocks by

other DataNodes, The custom data structure called

synchronized caching strategy is created to speed up

dynamic word files by caching memory objects in RAM

and hence reducing the number of times the word files must

be read. A block cached at a data node is registered in to the

hash table. It stores each entry as a key value pair, where

key is the block ID to be accessed and value is the

DataNode ID where the block is cached. Sufficient amount

of RAM memory is reserved at each node to serve as local

cache. The system keep a log of the most recently cached

blocks in the entire system with the corresponding node

where the block is cached.

When a particular node is in need of a data block it

generates two simultaneous requests where one is directed

at local system which returns the address of the node that

has a cached version of the block in question and the other

is forwarded to the NameNode that provides the requester

with the whereabouts of a replica of the block.

The system implemented synchronized caching strategies

which are the combination of two simple greedy caching

policies. The first one is to cache an object locally

whenever a node needs it and called receiver only greedy

caching policy and it helps to serve future block requests

for the same block at the same node. The second is for a

node to cache an object whenever some other node requests

for it and the object is in the NameNode called sender only

greedy caching. When compared and evaluated it has been

observed that the synchronized caching strategy performs

better on existing system and results in less cache misses

per job execution.

B. Execution Flow

The data flow for Hadoop job is shown in figure 2. The

jobtracker is responsible for scheduling the job to run by

assigning map and reduce tasks available on task trackers.

The map tasks close to their corresponding InputSplits must

next read input data. If the data is in HDFS reading requires

network communication with the NameNode. The map

tasks de serializes the input data to generate a stream of

key/value pairs that is passed into the mapper. The mapper

outputs key/value pairs, which are immediately serialized

and placed in a buffer. While in the buffer, Hadoop may run

the user‟s combiner to combine values associated with

equivalent keys. When the buffer fills up, they are sorted

and flushed out to local disk [6].

Once map output has been flushed out to disk, reducer tasks

start fetching their input data. This requires disk and

network I/O. Each reducer outputs a sequence of key/value

pairs that is sent to the OutputFormat for output. The data is

written out to the local DataNode replicated to a

configurable number of other DataNodes for further use.

Paper ID: IJSER15507 40 of 45

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 10, October 2015
Licensed Under Creative Commons Attribution CC BY

Figure 2: Data flow in a Hadoop system

The data flow in proposed system is shown in figure 3. The

cache in proposed system is mostly transparent to the user,

as it is intended to work with unmodified Hadoop jobs.

Figure 3: Data Flow in Proposed System

The system provides an in-memory key/value cache

between multiple jobs in a job sequence for effective

communication. The system provides RecordReader to read

in data and de serializes it into a key/value sequence of

client. It caches the key/value pairs in memory (related with

the input file name) before passing to mapper. Thus in a

subsequent job, when the same input is requested, this data

will be directly obtained from the cache.

The engine makes effort to avoid the time and space

overhead of de serialization by locally shuffling data. The

system allows programmer to control keys partitioning

among reducers. The default implementation uses a hash

function to map keys to partitions. The system provides

partition guarantee by mapping partitions to places in

deterministic strategy.

C. Models Created in Proposed System

Following models are created to achieve better results.

1. Preprocessing File- In file preprocessing stop words are

removed and stemming is performed so that proper

collection of words on which operations are performed

will be retained.

2. File Vector- When collection of words activity ends in

preprocessing, it is very important to evaluate how

important a word is to a document in a collection or

corpus. The significance increases equivalently to the

number of times a word appears in the document but is

offset by the frequency of the word in the corpus. Tf-idf

(Term Frequencies Inverse Document Frequencies)

algorithm [7] is a statistical measurement weight of about

the importance of word in a document often used in

search engine, web data mining, text similarity

computation and other applications. So file vector

manages above details.

3. Create Signature- To find similar file it should be

compared with existing files available among the millions

of files to make comparison process faster. To create

signature bit vector is used and initialized to zero first

then hashed with file vector so that decision will be taken

regarding whether existing file to be incremented or

decremented.

4. Use Locality sensitive hashing to find nearest neighbor-

In large clustering environment to compare file signature;

locality sensitive hashing technique is used to ensure that

only nearest neighbor need to be checked to place file [8].

5. Store file with related files- Name Node maintains

subclustertable which store subclusterid and file placed

on that cluster and if subclusterid is not found then new

subcluster will be created.

The various data structures implemented are locality

sensitive hashing function, subclustering and storing

mapping information, cachetable, storing intermediate

result in the form of either array of structure or linked list or

object of classes.

D. Mathematical Model of Proposed System

Initialization of cache is done as per following procedure.

Consider there are n assigned cache nodes and the average

size of cache on each node is a, clearly, the total cache size

S in the cluster is:

S = n * a (1)

Let the size of file be l and k the unique words to be cached

are computed as:

k = S / l (2)

Algorithm for Updating the Cache is as per following

formula. Existing known cache updating algorithms only

take some single issues into consideration which make them

replace the cache in an incompetent way. Therefore, it is

recommended a methodology to calculate the value degree

Value i of a cache tuple i:

Value i = Fi × Ti / (Tci – Tli) (3)

where Fi is the frequency of tuple i being accessed, Ti is the

delay time of fetching tuple i from the disk, Tci is current

time and Tli is the last access time. As per Formula 3, it is

observed that Value i increases as the access frequency Fi

and delay time Ti increase and decreases as the interval of

fetching data (Tci-Tli) increases.

Paper ID: IJSER15507 41 of 45

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 10, October 2015
Licensed Under Creative Commons Attribution CC BY

The data saved on a node modifies endlessly in the real

situation, so as to timely cache the aggregated data it

requires regularly update the cache. At the time of update,

we substitute the last n tuples ranking with the value degree

computed with Formula 3. The last n tuples cached on the

nodes but seldom used in aggregate computation. These

tuples are substituted by some other data stored on the disk.

This operation is executed during process of periodic

update [9].

The theorems described here prove and compares the initial

run time and memory and for fresh updated dynamic

reduced time and memory overhead. The various notations

used in theorems are th for the time it takes to hash data and

tm for the time it takes to send a short message (one that

does not contain entire inputs and outputs of tasks). The

bounds depend on the total number of map tasks; written

NM and the total number of reduce tasks written NR.

Similarly ni and nO denotes the total size of the input and

output respectively, nm to denote the total number of key-

value pairs output by Map phase, and nmk to denote the set

of distinct keys emitted by the Map phase [10].

Theorem 1 (Initial Run: Time and Overhead). Assuming

that Map, Combine, and Reduce functions take time

asymptotically linear in their input size and that Combine

functions are monotonic, the total time for performing an

incremental MapReduce computation with an input of size

ni, where nm key-value pairs are emitted by the Map phase

is

O(tm ・ (NM +NR+NC)).

Theorem 2 (Initial Run: Space). The total storage space

for performing computation with an input of size ni, where

nm key-value pairs are emitted by the Map phase, and where

Combine is monotonic is O(ni+nm+no).

Theorem 3 (Dynamic Update: Space and Time). The

dynamic update with fresh tasks F requires time

O(tm (NM + NC + NR) +∑t(a)). The total storage

requirement is the same as an initial run.

Theorem 4 (Number of Fresh Tasks). If the Map function

generates k key-value pairs from a single input record, and

the Combine function is monotonic, then the number of

fresh tasks, |F|, is at most O(k log nm + k).

Maintenance of the Cache Coherency is managed as per

following procedure. Cache the same data on a backup node

and put the backup node into the cluster as a reserve by

adding a flag in the aggregation result files to label whether

a word has already been cached. If a node is in fail state,

then find the backup of data files on the failed node in the

cluster and re cache it as per the flag. With this approach,

the cached data can be recovered in a short time.

E. Improvements in Hadoop

The data is stored after its initial operation in cache created

at local as well as global level. The contributions added to

improve the system are basically remote memory caching,

more data local jobs and reference caching. In remote

memory caching, caching of input data at the DataNode

level lowers job execution time. A distributed cache

structure is adopted so that DataNodes caches are

maintained by Cache Managers. Performance is improved

by adding more slots instead of nodes which helps in more

map and reduce tasks to be scheduled parallel. Better

execution time is obtained with more data local tasks.

TaskTracker contacts JobTracker to check availability of

slot. If slot is available task is scheduled. If input for task is

on a different node, then it is rack local and data is streamed

from other node. But with caching, tasks scheduled

completed earlier. And in reference caching, initial request

attended by the references cached contributed to the

improvement because these references assist the system to

find the data into cache faster.

4. Implementation

Synchronized caching strategies are implemented by

extending Hadoop components. Cache manager

communicates with task trackers and provides cache items

on receiving requests which are implemented in the system.

The cache manager uses HDFS, the DFS component of

Hadoop, to manage the storage of cache items. In order to

access cache items, the mapper and reducer tasks first send

requests to the cache manager.

Mapper and Reducer classes only accept key value pairs as

the inputs which are fixed by Hadoop interface. An open

accessed component InputFormat class allows application

developers to split the input files of the MapReduce job to

multiple file splits and parse data to key value pairs. The

component TaskTracker class is responsible for managing

tasks, understand file split and bypass the execution of

mapper classes entirely. TaskTracker also manages reducer

tasks. Similarly, it could bypass reducer tasks by utilizing

the cached results.

5. Experimental Settings

The experimental setup configured for the proposed system

is a machine with 3 cores CPU, each core running at 2.10

GHz, 3GB memory, and a SATA disk along with

installation of Ubuntu operating system, Hadoop 2.0

framework, Java 6, Net beans editor with Maven build

project enviornment. The number of mappers, reducers and

replication factors are set by Hadoop framework are default.

The application to benchmark the speedup of synchronized

caching strategy over Hadoop is word count. It counts the

number of unique words in large input text files, searches

and sorts the pattern matching words along with their

quantity. It is an IO intensive application requires loading

and storing a sizeable amount of data during the processing.

6. Results and Discussion

The results obtained from proposed synchronized caching

strategy have shown remarkable improvements. The

execution time differs between default Hadoop and

proposed system as file size increases. Issuing data from

cache is faster than disk as requests are served from

references. The overall execution time is reduced if the

blocks are sent from cache (local or remote) for processing.

Paper ID: IJSER15507 42 of 45

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 10, October 2015
Licensed Under Creative Commons Attribution CC BY

Figure 4, 5, 6, 7 and 8 shows the size of data input for

processing and reduction in time which are computed as

ratio between the input and time of a dynamic run using

SCahS i.e. proposed system in this paper and those of

Hadoop. The findings of these experimental results are

stated in following way: (i) SCahS obtain better

performance improvements for all applications when there

are incremental changes to the input data. (ii) Higher

reduction in computational time for computation intensive

applications and for data intensive applications also. (iii) As

the size of the incremental data varies there is decrease as in

computational time because larger changes allow fewer

computation results from previous runs to be reused.

Figure 4: Response time of Hadoop for WC application

Figure 5: Response time of SCahS for WC application

Figure 6: Comparison of Response time between Hadoop

and SCahS for WC application

Figure 7: CPU load during operations on SCahS system

Figure 8: Memory load during operations on SCahS system

7. Related Work

Active research to improve performance of data intensive

applications is adopted by scientific and research

communities.

The Incoop system [10] notices changes in input

automatically update the output by providing an efficient,

fine grained result reuse mechanism with the help of

programming methods and task level memorization

techniques, storage systems, contraction phase for reduce

Paper ID: IJSER15507 43 of 45

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 10, October 2015
Licensed Under Creative Commons Attribution CC BY

tasks and affinity based scheduling algorithms. In [11]

EFind recommended index structure based on statistical

adaptive optimization to improve performance of big data

queries. In [12] two partitioning algorithms called XTrie

and ETrie developed to improve load balancing for

distributed applications.

In paper [13] the cache based design to store intermediate

data generated by MapReduce to reduce completion time of

big data job‟s is proposed along with cache request and

reply protocol. In the system cache manager customizes the

indexing of data objects for applications to describe their

operations and contents of their partial results.

Tiled-MapReduce (TMR) [14] implemented the prototype

called Ostrich for iteratively processing small pieces of data

so as to process an enormous amount of data at one time on

shared memory multicore platforms at faster speeds.

However there are more design constraints regarding the

size of iteration window and whether to copy keys/values at

large quantity or not.

In[15] to reduce the gap in disk access time and bandwidth

for big cluster based systems, the system design provides

proactive fetching and caching mechanism based on

Memcached distributed caching system. The system

adopted two level greedy caching strategy in which initially

cache an object locally whenever a node needs it and

unavailable in local cache called receiver only greedy

caching and later cache an object whenever some other

node requests for it and the object is in the file system but

not in the local cache called sender only greedy caching.

In [16] the Redoop infrastructure is validated. Redoop

presents Window Semantic Analyzer for optimization,

Dynamic Data Packer as partition executor, Execution

Profiler gathers the statistics, Local Cache Manager and

Window Aware Cache Controller to maintain window

aware metadata of reduce input and output data which is

cached on any of the task nodes‟ local file systems.

In [17] PACMan implemented two cache replacement

policies LIFE and LFU-F which are designed to reduce

average completion time of jobs and maximize output of the

cluster using all or nothing property described as retaining

inputs of jobs with low wave widths and maximizing

retention of frequently used inputs.

C-Aware cache management and storage algorithm

proposed in paper [18]. The speed of cache media and

network load conditions considered for establishing this

strategy. The system analyzes historical information of

accessed cached data from network and forecasts the future

access to the cache and storage server performance based on

historical information.

In paper [19] collaborative caching approach adopted to

lower job execution times on DataNode. In collaborative

caching mechanism cache distributed over the clients,

dedicated servers or storage devices form a single cache to

fulfil the requests. Effective data local jobs techniques is

achieved in this arrangement. Local as well as remote data

was cached on DataNodes and supplied as an input to

MapReduce jobs. The global cache is formed from all the

participating DataNode‟s machines. Smart cache solution

from paper [20] implements two phase structure, but takes

care to avoid unnecessary searching overhead in the second

phase. SmartCache‟s success observed from key principle

which states that if one itemset is very close to, although not

above, the threshold, it might exceed the threshold in other

splits.

HaLoop system is presented in paper [21] to efficiently

handle the iterative nature of applications. HaLoop insisted

on two simple intuitions for better performance by

MapReduce. In first iteration a MapReduce cluster can

cache the invariant data and then reuse that data in further

iterations. And in second stage a MapReduce cluster can

cache reducer outputs making checking for a fix point more

efficient, without an extra MapReduce job. The paper makes

contributions by designing new Programming Model and

Architecture for Iterative Programs with the help of

programming interface to express iterative data analysis

applications. Loop Aware Task Scheduler to enable data

reuse across iterations by physically colocating tasks in

different iterations. Caching for Loop invariant data by

caching and indexing data that are invariant across iterations

in cluster nodes during the first iteration of an application.

And caching to Support fix point evaluation at the reducer‟s

local output.

8. Conclusion

Synchronized caching strategy is designed, implemented

and evaluated by extending Hadoop framework for

provisioning incremental processing for big data

applications. The proposed synchronized caching strategy is

powerful for cache management. The new value degree

cache replacement algorithm is implemented to serve as

eviction policy. The results obtained during the

experiments; shown that there is substantial improvement in

performance of Hadoop jobs in the form of reduction in

completion time and storage overhead for big data

application.

In the future, it is decided to plan proposed system for more

general application scenarios.

References

[1] Executive Office of the President “ Big Data: Seizing

Opportunities, Preserving Values” May 2014.

[2] James Manyika, Michael Chou, Brad Brown, Jacques

Bughin, Rihards Dobbs, Charlas Roxburgs, Angela

Hung Bayer “Big data: The next frontier for

innovation, competition, and productivity” McKinsey

Global Institute, May 2011.

[3] Min Chen, Shiwen Mao, Yunhao Liu “Big Data: A

Survey” Published online: 22 January 2014 © Springer

Science+Business Media New York 2014.

[4] Tom White “Hadoop: The Definitive Guide”,Third

edition,Oreilly, ISBN: 978-1-449-31152-0.

[5] Venkatesh Nandakumar “Transparent in-memory cache

for Hadoop-MapReduce” A thesis submitted in

conformity with the requirements for the degree of

Master of Applied Science Graduate Department of

Electrical and Computer Engineering University of

Toronto, 2014.

Paper ID: IJSER15507 44 of 45

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 10, October 2015
Licensed Under Creative Commons Attribution CC BY

[6] Avraham Shinnar, David Cunningham, Benjamin

Herta, Vijay Saraswat “M3R: Increased Performance

for InMemory Hadoop Jobs”, roceedings of the VLDB

Endowment, Vol. 5, No. 12,38th International

Conference on Very Large Data Bases, Istanbul,

Turkey, August 27th 31
st
 2012.

[7] Ritu A.Mundada, Aakash.A.Waghmare “Cache

Mechanism To Avoid Duplication Of Same Thing In

Hadoop System To Speed Up The Extension”, IJRET:

International Journal of Research in Engineering and

Technology, Volume: 03 Issue: 11, Nov-2014.

[8] Sayali Ashok Shivarkar “Speed-up Extension to

Hadoop System”, International Journal of Engineering

Trends and Technology (IJETT), Volume 12 Number

2, Jun 2014.

[9] Dunlu Peng, Kai Duan and Lei Xie “Improving the

Performance of Aggregate Queries with Cached Tuples

in MapReduce”, International Journal of Database

Theory and Application Vol. 6, No. 1, February, 2013.

[10] Pramod Bhatotia, Alexander Wieder, Rodrigo

Rodrigues, Umut A. Acar, Rafael Pasquini “Incoop:

MapReduce for Incremental Computations” Max

Planck Institute for Software Systems (MPI-SWS)

SOCC‟11, Cascais, Portugal, October 27–28, 2011.

[11] Zhao Cao, Shimin Chen, Dongzhe Ma, Jianhua Feng,

Min Wang “Efficient and Flexible Index Access in

MapReduce” Published in Proc. 17th International

Conference on Extending Database Technology

(EDBT), Athens, Greece, March 24-28, 2014.

[12] Kenn Slagter, Ching-Hsien Hsu,Yeh-Ching Chung

Daqiang Zhang “An improved partitioning mechanism

for optimizing massive data analysis using

MapReduce” Published online: 11 April 2013 ©

Springer Science+Business Media New York 2013.

[13] Yaxiong Zhao, Jie Wu, and Cong Liu “Dache: A Data

Aware Caching for Big-Data Applications Using the

MapReduce Framework” Tsinghua Science and

Technology ISSNl l1007-0214l l05/10l lpp39-50

Volume 19, Number 1, February 2014.

[14] Rong Chen, Haibo Chen, and Binyu Zang “Tiled-

MapReduce: Optimizing Resource Usages of Data-

parallel Applications on Multicore with Tiling” Parallel

Processing Institute Fudan University PACT‟10,

September 11–15, 2010.

[15] Gurmeet Singh, Puneet Chandra and Rashid Tahir “A

Dynamic Caching Mechnism for Hadoop using

Memcached” Department of Computer Science,

University of Illinois at Urbana Champaign.

[16] Chuan Lei, Zhongfang Zhuang, Elke A. Rundensteiner,

and Mohamed Y. Eltabakh “Redoop Infrastructure for

Recurring Big Data Queries” Worcester Polytechnic

Institute, Worcester, MA USA VLDB „14, Hangzhou,

China, September 15, 2014.

[17] Ganesh Ananthanarayanan, Ali Ghodsi, AndrewWang,

Dhruba Borthakur, Srikanth Kandula, Scott Shenker,

Ion Stoica “PACMan: Coordinated Memory Caching

for Parallel Jobs” University of California, Berkeley,

Facebook, Microsoft Research, KTH/Sweden.

[18] Zhu Xudong, Yin Yang, Liu Zhenjun, and Shao Fang

“C-Aware: A Cache Management Algorithm

Considering Cache Media Access Characteristic in

Cloud Computing”, Research Article, Hindawi

Publishing Corporation, Mathematical Problems in

Engineering, Article ID 867167, 13 pages, Volume

2013.

[19] Meenakshi Shrivastava, Dr. Hans-Peter Bischof

“Hadoop-Collaborative Caching in Real Time HDFS”

Computer Science, Rochester Institute of Technology,

Rochester, NY, USA.

[20] Dachuan Huang, Yang Song, Ramani Routray, Feng

Qin “SmartCache: An Optimized MapReduce

Implementation of Frequent Itemset Mining” The Ohio

State University, IBM Research – Almaden.

[21] Yingyi Bu, Bill Howe, Magdalena Balazinska, Michael

D. Ernst “HaLoop: Efficient Iterative Data Processing

on Large Clusters” Department of Computer Science

and Engineering University of Washington, Seattle,

WA, U.S.A. 36th International Conference on Very

Large Data Bases, September 1317, 2010, Singapore

Paper ID: IJSER15507 45 of 45

