
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 11, November 2015
Licensed Under Creative Commons Attribution CC BY

Participation of Testing to Attain a Degree of

Quality of Software

Mansi Sharma, Praveen Gupta

Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India

Abstract: Software quality is the characteristic of the software that defines how well the software meets the customer requirements,

business requirements, coding standards etc. It can be divided into two categories: Software Functional Quality: characteristics that

define how well the software meets functional requirements, and how well it satisfies the end-user. Software Non-Functional Quality:

characteristics that define how well structural requirements are met that support the delivery of functional requirements. It is usually

related to software code and internal structure. Testing is first step towards software quality this paper depicts how testing helps to

measure the software quality as objective of testing is to find the defect and get them fixed as early as possible. This paper also describes

how can we achieve quality assurance through use of selenium IDE tool and how communication take place between developer and

tester through bugzilla tool? The main focus of this paper will be on the functional testing through the use of ORANGE HRM

application. Quality assurance main focus on preventing defects or bug in the system and testing is a part of quality assurance.

Keyword: Software quality, Quality assurance, Quality control, selenium IDE, Bugzilla, Software testing

1. Introduction

Software Quality

Here is definition of software quality according to IEEE

[1]

1) The degree to which a system, component, or process

meets specified requirements

2) The degree to which a system, component, or process

meets customer or user needs or expectation.

This definition gives us two alternative ways how we can

understand software quality.

First defines software quality based on specification

prepared during development of software or even before it.

This specification is formed by requirements based on

customer needs. We can find in some glossary what

exactly requirement means in this context. Here is

definition from ISTQB Glossary of Testing Terms [2]

Requirement is a condition or capability needed by a user

to solve a problem or achieve an objective that must be

met or possessed by a system or system component to

satisfy a contract, standard, specification, or other formally

imposed document.

First approach means that errors included both in

requirements and software specifications do not reduce

software quality.

Second definition is very customer oriented; it is focused

on achieving customer satisfaction. As Daniel Galin wrote

in his book Software Quality Assurance, from theory to

implementation [3] adopting the second approach demands

that the developer invests significant professional efforts in

examining and in correcting, if necessary, the customer’s

requirements specifications. As a result, difficulties are

expected to arise during the development process of the

projects, especially when attempting to prove how well the

program fulfils the user’s needs.

Software Quality Assurance

Definition from IEEE [1]

1. A planned and systematic pattern of all actions

necessary to provide adequate confidence that an item or

product conforms to establish technical requirements.

2. A set of activities designed to evaluate the process by

which the products are developed or manufactured.

Contrast with quality control.

This IEEE definition is limited to the development process

of software product and also to the technical aspects of the

functional requirements.

Second definition comes from book Software Quality

Assurance, from theory to implementation [3]. Author

extends IEEE definition and adds SQA more space in

development process. Definition by Galim[3]

Software Quality Assurance Is:

A systematic, planned set of actions necessary to provide

adequate confidence that the software development

process or the maintenance process of a software system

product conforms to establish functional technical

requirements as well as with the managerial requirements

of keeping the schedule and operating within the

budgetary confines.

According to this expanded definition SQA should be

extended to cover the long years of service subsequent to

product delivery. It also should include activities that deal

with scheduling and the budge.

Software Quality Assurance encompasses the entire

software development life cycle and the goal is to ensure

that the development and/or maintenance processes are

continuously improved to produce products that meet

specifications/requirements.

The process of Software Quality Control (SQC) is also

governed by Software Quality Assurance

Paper ID: IJSER15553 22 of 26

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 11, November 2015
Licensed Under Creative Commons Attribution CC BY

2. Quality Assurance versus Quality Control

Quality Assurance Quality Control

1. Quality Assurance helps us

to build processes.

1. Quality Control helps us to

implements the build processes.

2. It is the Duty of the

complete team.

2. It is only the Duty of the

Testing team.

3. QA comes under the

category of Verification.

3. QC comes under the

category of Validation.

4. Quality Assurance is

considered as the process

oriented exercise.

4. Quality Control is considered

as the product oriented

exercise.

5. It prevents the occurrence of

issues, bugs or defects in the

application.

5. It always detects, corrects

and reports the bugs or defects

in the application.

6. It does not involve

executing the program or code.

6. It always involves executing

the program or code.

7. It is done before Quality

Control.

7. It is done only after Quality

Assurance activity is

completed.

8. It can catch an error and

mistakes that Quality Control

cannot catch, that is why

considered as Low Level

Activity.

8. It can catch an error that

Quality Assurance cannot

catch, that is why considered as

High Level Activity.

9. It is human based checking

of documents or files.

9. It is computer based

execution of program or code.

10. Quality Assurance means

Planning done for doing a

process.

10. Quality Control Means

Action has taken on the process

by execute them.

11. Its main focuses on

preventing Defects or Bugs in

the system.

11. Its main focuses on

identifying Defects or Bugs in

the system.

12. It is not considered as a

time consuming activity.

12. It is always considered as a

time consuming activity.

13. Quality Assurance makes

sure that you are doing the

right things in the right way

that is the reason it is always

comes under the category of

verification activity.

13. Quality Control makes sure

that whatever we have done is

as per the requirement means it

is as per what we have

expected, that is the reason it is

comes under the category of

validation activity.

14. QA is Pro-active means it

identifies weaknesses in the

processes.

14. QC is Reactive means it

identifies the defects and also

corrects the defects or bugs

also.

3. Problem Statement

The problem is that how to attain a quality of a software. It

can achieve by software testing but software testing has

various bottlenecks like process, planning, technology and

process related. The main problem of quality arises due to

lack of communication between tester and developer.

Sometimes, the developers see the testers as their

adversaries. Problem arises when the existing tester left the

job and when new tester arrives. If everything is verbally,

not on paper how can a new tester understand test

environment? Another problem is when to use regression

testing and how much regression testing is enough?

4. Proposed Solution

Software testing is first step towards quality. This paper

describes how to selenium IDE tool helps in achieving

quality within short time span. Communication between

tester and developer can improve by the use of bugzilla

tool, which is a defect tracking tool. In my thesis i will

describe how communication takes place between tester

and developer through use of Bugzilla?

This thesis work will also discuss about when to automate

the testing process and when to use regression testing and

how much regression testing is enough?

Selenium IDE

Selenium integrated development environment, acronym

as Selenium IDE is an automated testing tool that is

released as a Firefox plug-in. It is one of the simplest and

easiest tools to install, learn and to go ahead with the

creation of test scripts. The tool is laid on a record and

playback fundamental and also allows editing of the

recorded scripts.

Figure 1: Snapshots of selenium IDE to record and run the

test suit with an application of an ORANGEHRM

BUGZILLA

Bugzilla is web-based project management software that is

being published as Open source software. Bugzilla is

used to manage software development and help you get a

handle on the software development process. Bugzilla is

powerful & commanding tool that will allow your team to

get organized and communicate effectively. It is allow

tracking the bugs & code changes efficiently. This is

developed by the Mozilla foundation. This Bug Tracking

Tool is used many of top rated organizations like Mozilla,

Facebook, NASA, Open Office, RedHat etc.

Bugzilla can Successful projects often are the result of

successful organization and communication.

Benefits of Bugzilla:

Help to increase product quality, get better communication

with team members, using bugzilla helps to improve

customer satisfaction; Bugzilla can increase the

productivity of software development process.

Paper ID: IJSER15553 23 of 26

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 11, November 2015
Licensed Under Creative Commons Attribution CC BY

Figure 2: Snapshot of Bugzilla tool

Software Testing:

Ron Patton in his book Software Testing [4] defines

testing as

The goal of a software tester is to find bugs, find them as

early as possible, and make sure they get fixed.

A software quality assurance person’s main responsibility

is to create and enforce standards and methods to improve

the development process and to prevent bugs from ever

occurring. In real organizations, there the activities of

testers.

Definition by IEEE [1]:

1. The process of operating a system or component under

specified conditions, observing or recording the results,

and making an evaluation of some aspect of the system

or component.

2. The process of analyzing a software item to detect the

differences between existing and required conditions

(that is bugs), and to evaluate the features of the

software item.

Software testing is area that is a quite huge. It is not easy

to describe it in a few sentences.

4.1 There are four software testing strategies:

Unit testing

It is done at the lowest level. It tests the basic unit of

software, which can be a module or component. Unit is the

smallest module i.e. smallest set of lines of code which can

be tested. Unit testing is just one of the levels of testing

which contribute to make the big picture of testing a whole

system. Unit testing is generally considered as a white box

test class.

Integration Testing

It is done when two or more tested units are combined into

a larger structure. This testing is often done on the

interfaces that are between the components and the larger

structure that is being constructed, if its quality property

cannot be properly assessed from its components.

System Testing

It tends to test the end-to-end quality of the entire system.

System test is often based on the functional and

requirement specifications of the system. Non-functional

quality attributes, such as security, reliability, and

maintainability, are also checked.

Acceptance Testing

It is done when the complete system is handed over to the

customers or users from developer side.

Figure 3: Software testing strategies

The aim of acceptance testing is to give assure that the

system is working rather than to find errors.

4.2 Testing Methodology:

4.3 Testing Principles:

A principle is an accepted rule or method for application in

action that has to be, or can be desirably followed. Testing

Principles offer general guidelines common for all testing

which assists us in performing testing effectively and

efficiently. Principles for software testing are:

1) Test a Program to Try to make it Fail: Testing is the

process of executing a program with the intent of finding

errors [5]. Our objective should be to demonstrate that a

program has errors, and then only true value of testing can

be accomplished. We should expose failures (as many as

possible) to make testing process more effective.

2) Start Testing Early: If you want to find errors, start as

early as possible. This helps in fixing enormous errors in

early stages of development, reduces the rework of finding

the errors in the initial stages. Fixing errors at early phases

cost less as compared to later phases. For example, if a

problem in the requirements is found after releasing the

product, then it would cost 10–100 times more to correct

Paper ID: IJSER15553 24 of 26

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 11, November 2015
Licensed Under Creative Commons Attribution CC BY

than if it had already been found by the requirements

review. Figure 1 depicts the increase in cost of fixing bugs

detected/fixed in later phases.

Figure 4: Depicts the increase in cost of fixing bugs

detected/fixed in later phases

3) Testing is Context Dependant: Testing is done

differently in different contexts. Testing should be

appropriate and different for different points of time. For

example, safety-critical software is tested differently from

an e-commerce site. Even a system developed using the

waterfall approach is tested significantly differently than

those systems developed using agile development

approach. Even the objectives of testing differ at different

point in software development cycle. For example, the

objective of unit and integration testing is to ensure that

code implemented the design properly. In system testing

the objective is to ensure the system does what customer

wants it to do [6]. Type of testing approach that will be

used depends on a number of factors, including the type of

system, regulatory standards, user requirements, level and

type of risk, test objective, documentation available,

knowledge of the testers, time and budget, development

life cycle.

4) Define Test Plan: Test Plan usually describes test

scope, test objectives, tes strategy, test environment,

deliverables of the test, risks and mitigation, schedule,

levels of testing to be applied, methods, techniques and

tools to be used. Test plan should efficiently meet the

needs of an organization and clients as well. The testing is

conducted in view of a specific purpose (test objective)

which should be stated in measurable terms, for example

test effectiveness, coverage criteria. Although the prime

objective of testing is to find errors, a good testing strategy

also assesses other quality characteristics such as

portability, maintainability and usability.

5) Design Effective Test Cases: Complete and precise

requirements are crucial for effective testing. User

Requirements should be well known before test case

design. Testing should be performed against those user

requirements. The test case scenarios shall be written and

scripted before testing begins. If you do not understand the

user requirements and architecture of the product you are

testing, then you will not be able to design test cases which

will reveal more errors in short amount of time. A test case

must consist of a description of the input data to the

program and a precise description to the correct output of

the program for that set of input data. A necessary part of

test documentation is the specification of expected results,

even if providing such results is impractical [5]. These

must be specified in a way that is measurable so that

testing results are unambiguous.

6) Test for Valid as Well As Invalid Conditions: In

addition to valid inputs, we should also test system for

invalid and unexpected inputs/conditions. Many errors are

discovered when a program under test is used in some new

and unexpected way and invalid input conditions seem to

have higher error detection yield than do test cases for

valid input conditions [5]. Choose test inputs that possibly

will uncover maximum faults by triggering failures.

7) Review Test Cases Regularly: Repeating same test

cases over and over again eventually will no longer find

any new errors. Therefore the test cases need to be

regularly reviewed and revised, and new and different tests

need to be written to exercise different parts of the

software or system to potentially find more defects. We

should target and test susceptible areas. Exploratory

Testing can prove very useful. Exploratory testing is any

testing to the extent that the tester actively controls the

design of the tests as those tests are performed and uses

information gained while testing to design new and better

tests[7].

8) Testing must be done by different persons at

different levels: Different purposes are addressed at the

different levels of testing. Factors which decide who will

perform testing include the size and context of the system,

the risks, the development methodology used, the skill and

experience of the developers. Testing of individual

program components is usually the responsibility of the

component developer (except sometimes for critical

systems); Tests at this level are derived from the

developer’s experience. Testing at system/sub-system

level should be performed by the independent

persons/team. Tests at this level are based on a system

specification [8]. Development staff shall be available to

assist testers. Acceptance Testing is usually performed by

end user or customer. Release Testing is performed by

Quality Manager.

9) Test a Program Innovatively: Testing everything (all

combinations of inputs and preconditions) is not feasible

except for trivial cases. It is impossible to test a program

sufficiently to guarantee the absence of all errors [5].

Instead of exhaustive testing, we use risks and priorities to

focus testing efforts more on suspected components as

compared to less suspected and infrequently encountered

components.

10) Use both Static and Dynamic testing: Static testing

is good at depth; it reveals developers understanding of the

problem domain and data structure. Dynamic testing is

good at breadth; it tries many values, including extremes

that humans might miss. To eliminate as many errors as

possible, both static and dynamic testing should be used

[9].

11) Defect Clustering Errors tend to come in clusters. The

probability of the existence of more errors in a section of a

program is proportional to the number of errors already

found in that section [7], so additional testing efforts

Paper ID: IJSER15553 25 of 26

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 11, November 2015
Licensed Under Creative Commons Attribution CC BY

should be more for used on more error-prone sections until

it is subjected to more rigorous testing.

12) Test Evaluation We should have some criterion to

decide whether a test is successful or not. If limited test

cases are executed, the test oracle (human or mechanical

agent which decides whether program behaved correctly

on a given test [10]) can be tester himself/herself who

inspects and decides the conditions that makes test run

successful. When test cases are quite high in number,

automated oracles must be implemented to determine the

success or failure of tests without manual intervention.

One good criterion for test case evaluation is test

effectiveness (number of errors it uncovers in given

amount of time)

13) Error Absence Myth: System that does not fulfill

user requirements will not be usable even if it does not

have any errors. Finding and fixing defects does not help if

the system built does not fulfill the users’ needs and

expectations. In addition to positive software testing

(which verify that system does what it should do), we

should also perform negative software testing (which

verify that system does not do what it should not do).

14) End of Testing: Software testing is an ongoing

process, which is potentially endless but has to be stopped

somewhere. Realistically, testing is a trade-off between

budget, time and quality [11]. The effort spent on testing

should be correlated with the consequences of possible

program errors [12]. The possible factors for stopping

testing are:

1. The risk in the software is under acceptable limit.

2. Coverage of code/functionality/requirements reaches a

specified point.

5. Conclusion

Quality is the main focus of any software engineering

project. Without measuring, we cannot be sure of the level

of quality in software. So the methods of measuring the

quality are software testing techniques. In this paper i have

discuss about how SELENIUM IDE tool helps to achieve

quality and also describe how to communication take place

between tester an developer? My thesis work mainly

focuses on functional quality.

Reference

[1] IEEE Computer Society. IEEE Std. 610.12-1990,

IEEE Standard Glossary of Software Engineering

Terminology (1990). Available from World, Wide

Web: http://www.ieee.org/portal/site.

[2] ISTQB. International Software Testing Qualification

Board ISTQB [online] (2009) [cited 2009-11-30].

Available from World Wide Web:

http://www.istqb.org/index.htm

[3] Daniel Galin (2004). Software Quality Assurance,

from theory to implementation. Pearson Education

Limited.

[4] Ron Patton (2001). Software Testing. Sams

Publishing

[5] Myers et al. ―The art of software testing‖, New York:

Wiley, c1979. ISBN: 0471043281

[6] Shari Lawrence Pfleeger (2001). ―Software

Engineering, Theory and Practice‖, Pearson Education

[7] James Bach (4/16/03). ―Exploratory Testing

Explained‖, v.1.3

[8] Ian Somerville (2001). ‖ Software Engineering‖,

Addison-Wesley

[9] Programming Research Ltd, ―Static and Dynamic

Testing Compared‖.

[10] Antonia Bertolina (2003). ‖Software Testing Research

and Practice‖, Proceedings of the abstract state

machines 10th international conference on Advances

in theory and practice, 1-21.

[11] Rajat Kumar Bal, ‖ Software Testing‖.

[12] Peter Sestoft (2008-02-25). ‖ Systematic software

testing‖, Version 2

Paper ID: IJSER15553 26 of 26

http://www.ieee.org/portal/site
http://www.istqb.org/index.htm

