ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Neural Network Based Inverse Kinematics Solution for 6-R Robot Using Levenberg-Marquardt Algorithm

Prashant Badoni

Mechanical Engineering Department, Graphic Era University, Dehradun - 248002, India

Abstract: The traditional approaches are insufficient to solve the complex kinematics problems of the redundant robotic manipulators. To overcome such intricacy, ANNs are used nowadays. The performance of the neural network is affected by the training algorithm and network topology. There are numerous training algorithms which are used in the training of neural networks. In this paper, Levenberg-Marquardt is used in training algorithm and its effect on the performance of the neural network on the inverse kinematics model learning of a 6-R robot is studied.

Keywords: Inverse Kinematics Solution, MATLAB Toolbox, Neural Networks, Robot manipulator, Training Algorithm.

1.Introduction

Neural network is one of the prominent artificial intelligent techniques used in the robotics to accomplish more intelligence in systems with high degree of autonomy. ANN incorporates learning ability which provides flexibility to the robotic systems. Neural network can be implemented using MATLAB software. Procedure to train the neural network model is as follows:

- Data collection
- Network creation
- Network configuration
- Initialization of the weights and biases
- Network training
- Network validation
- Use the network

The working principal of a neural network is based on learning from the formerly obtained data set known as training set, and then go through the success of system using test data. The learning algorithm affects the employment of the neural network greatly. In this study, the effects of Levenberg-Marquardt learning algorithm have been tested for the inverse kinematics solution of a six joint robotic manipulator.

This paper is organized as follows: Section II provides the kinematics analysis of the 6-R robot. Section III of the paper deals with the neural network based inverse kinematics solution. Section IV describes training and testing. Section V gives results and a discussion, and finally Section VI concludes the paper.

2. Kinematic Analysis of 6-R Robot

A Robot manipulator is composed of a group of links (rigid bodies) connected together by revolute or prismatic joints which allow motion for the desired link. Robot Kinematics refers to the analytical study of the motion of a robot manipulator without regard to any factor (like force) which influence the robot movement. Robot Kinematics can be split into forward and inverse kinematics. In the forward kinematics problem, the end effector's location in the work space, that is position and orientation, is determined based on the joint variables [1] [2] [3]. The forward kinematics problem may express mathematically as follows:

 $F(\theta_1, \theta_2, \theta_3..., \theta_n) = [p_x, p_y, p_z, R]$

Where, θ_1 , θ_2 , θ_3 ... θ_n are the input variables, $[p_x, p_y, p_z]$ are desired position and R is the desired rotation.

The inverse kinematics problem refers to finding the values of the joint variables that allows the manipulator to reach the given location. The inverse kinematics problem can be expressed mathematically as follows:

$$\mathbf{F} \left[\mathbf{p}_{\mathbf{x}}, \, \mathbf{p}_{\mathbf{y}}, \, \mathbf{p}_{\mathbf{z}}, \, \mathbf{R} \right] = \left(\theta_1, \, \theta_2, \, \theta_3 \dots \theta_n \right)$$

The joint variables are the link extension in the case of prismatic joints, or the angles between the links in case of rotational joints.

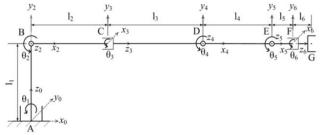


Figure 1: D-H coordinates of the robot

Figure 1 depicts the structure and coordinates of 6-DOF robot manipulator which is studied in during the work.

The D-H parameters of the manipulator are listed in Table1.

Table 1: D-H parameters of the manipulator	Table 1: D-H	parameters of the manipulator
---	--------------	-------------------------------

Tuble	Tuble 1. D II parameters of the manipulator							
Joints	a _{i-1}	a_{i-1}	di	θi				
1	0	0	0	θ_1				
2	0	π/4	0	θ_2				
3	l_2	π/4	l_1	θ_3				

	4	l_3	$-\pi/4$	0	θ_4
	5	0	0	0	θ_5
ſ	6	l_5	π/4	l_4	θ_6

According the Denavit-Hartenberg method, the transformation can be formulated in the chain product of six successive homogeneous matrices ${}^{i-1}T$.

 ${}^{i-1}T$ is the homogeneous transformation matrix relating the ith coordinate frame to the (i-1)th coordinate frame [4].

 ${}^{0}_{i}T = {}^{0}_{1}T {}^{1}_{2}T \dots {}^{5}_{6}T (1)$

Equation (1) contains a large set of trigonometric functions:

 $sin\theta_i = S_i$ and $cos\theta_i = C_i$.

T can be calculated by following:

$${}_{i}^{0}T = \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2)

In (2), n_x , n_y , n_z , o_x , o_y , o_z , a_x , a_y , a_z show the rotational elements of the transformation matrix and p_x , p_y , p_z refer to the elements of the position vector.

$$\begin{split} n_x &= -\operatorname{C_1S_2C_3C_{45}S_6} + \operatorname{S_1S_3C_{45}S_6} - \operatorname{C_1C_2S_{45}S_6} - \operatorname{C_1S_2S_3C_6} - \\ \operatorname{S_1C_3C_6} \\ n_y &= -\operatorname{S_1S_2C_3C_{45}S_6} - \operatorname{C_1S_3C_{45}S_6} - \operatorname{S_1C_2S_{45}S_6} - \operatorname{C_1S_2S_3C_6} + \\ \operatorname{C_1C_3C_6} \\ n_z &= \operatorname{C_2C_3C_{45}S_6} - \operatorname{S_2S_{45}S_6} + \operatorname{C_2S_3C_6} - \\ \operatorname{C_1C_2S_{45}S_6} - \operatorname{C_1S_2C_3C_{45}S_6} + \\ \operatorname{S_1C_3S_6} \\ o_y &= -\operatorname{S_1S_2C_3C_{45}C_6} - \operatorname{C_1S_3C_{45}C_6} - \\ \operatorname{S_1C_2S_4} - \\ \operatorname{S_1S_2C_3C_{45}C_6} - \\ \operatorname{S_2S_{45}C_6} - \\ \operatorname{S_2S_{45}} - \\ \operatorname{S_2S_$$

The inverse kinematics solution for the robot is indicated as follows:

$$\cos\theta_4 = -(l_{23}^2 + l_4^2 - d^2) / 2 l_{23} l_4 (3)$$

The equation obtained from (2) as:

$$(S_{45} l_5 + S_4 l_4)^2 + (C_{45} l_5 + C_4 l_4 + l_{23})^2 = p_x^2 + p_y^2 + (p_z - l_1)^2$$
(4)

Then,

 $\begin{array}{l} \theta_{5} = \mbox{arcsin} \, \left[\left\{ p_{x} \,\,^{2} + \, p_{y} \,\,^{2} + \left(p_{z} - l_{1} \right)^{2} - \, l_{5}^{2} - \, S_{4}^{\ 2} \, \, l_{4}^{\ 2} - \left(C_{4} \, \, l_{4} + \, l_{23} \right)^{2} \right\} / \\ A \right] - \mbox{arctan} \, \left[\left(C_{4} \, \, l_{4} + \, l_{23} \right) \, / \, S_{4} \, \, l_{4} \right] - \, \theta_{4} \left(\textbf{5} \right) \end{array}$

We could also obtain the following expressions:

 $\theta_2 = \arcsin \left[(C_{45} l_5 + C_4 l_4 + l_{23}) / \sqrt{(p_z - l_1)^2 + p_x^2} \right] - \arctan \left[p_x / (p_z - l_1) \right]$

 $\theta_1 = arcsin \; [(S_2C_3S_4 - C_2C_4 - C_2l_{23}) \; / \; \sqrt{\;(\; p_x - a_x\; l_5)^2 \; + \; (p_y - a_y\; l_5)^2]}$ - $arctan\; [(p_x - a_x\; l_5) \; / \; (p_y - a_y\; l_5)]$

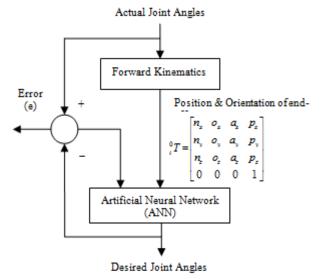
 $\theta_{3}{=}\ arcsin\ [(C_{1}{+}\ p_{x}{-}\ a_{x}\ l_{5})\ /\ S_{1}S_{4}l_{4}\ (a_{z}{-}\ S_{2}C_{45})]$ - arctan $[(p_{x}{-}a_{x}\ l_{5})\ /\ (p_{y}{-}a_{y}\ l_{5})]$

The strategy to solve inverse kinematics problem tend to be time consuming, so there is usually low interest in applying this technique for kinematic calculations. The trained neural network can give the inverse kinematics solution quickly for any given Cartesian coordinate in a robotic system.

3.Neural Network based Inverse Kinematics Solution

Neural networks are generally used in the modeling of nonlinear processes. ANN is a parallel-distributed information processing system. To form a trainable nonlinear system, it stores the samples with distributed coding. Training of a neural network can be expressed as a mapping between any given input and output data set. Neural networks have some advantages, such as adoption, learning and generalization. Implementation of a neural-network model requires us to decide the structure of the model, the type of activation function and the learning algorithm.

In Figure 3, the schematic representation of a neural network based inverse kinematics solution is given. The solution system is based on training a neural network to solve an inverse kinematics problem based on the prepared training data set using direct kinematics equations. In Figure 2, "e" refers to error – the neural network results will be an approximation, and there will be an acceptable error in the solution.



International Journal of Scientific Engineering and Research (IJSER) <u>www.ijser.in</u> ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Figure 2: ANN based inverse kinematics solution system [5]

The designed neural-network topology is given in Figure 3. A feed-forward multilayer neural-network structure was designed including 12 inputs and 6 outputs. Only one hidden layer was used during the study.

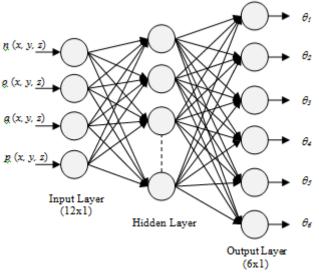


Figure 3: Structure of neural network used in this study

4. Training Method

To train the network we must provide the ANN with the dataset. ANN is trained with the data which is generated by a fifth-order polynomial trajectory planning algorithm. The equation for fifth-order polynomial trajectory planning is given in following equation:

$$\theta_{i}(t) = \theta_{io} + 10/t_{f}^{3}(\theta_{if} - \theta_{io}) t^{3} + 15/t_{f}^{4}(\theta_{if} - \theta_{io}) t^{4} + 6/t_{f}^{5}(\theta_{if} - \theta_{io}) t^{5}; i = 1, 2, 3, \dots, n$$
 (6)

Where,

$$\begin{split} \theta_i \left(t \right) &= angular \ position \ at \ time \ t \\ \theta_{io} &= \ initial \ position \ of \ the \ i^{th} \ joint \\ \theta_{if} &= \ final \ position \ of \ the \ i^{th} \ joint \\ n &= number \ of \ joints \\ t_f &= \ arrival \ time \ from \ initial \ position \ to \ the \ target \end{split}$$

Initial and final angular positions are defined to produce data in the workspace of robot. After gathering data from the whole network is trained in the back propagation mode and all the weighs are updated according to the new training data. For the training, 100 data values corresponding to the (θ_1 , θ_2 , $\theta_3...,\theta_6$) joint angles according to the different (n_x , o_x , a_x , p_x , n_y , o_y , a_y , p_y , n_z , o_z , a_z , p_z) Cartesian coordinate parameters were generated by using (6) based on kinematic equations given in (2). A sample data set produced for the training of neural networks is given in Table 2 and 3.

Inputs											
n _x	n _y	nz	0 _x	o _y	Oz	a _x	a _y	az	p _x	py	pz
-0.9467	-0.0186	-0.3216	-0.3188	-0.0909	0.9435	-0.0468	0.9957	0.0802	10.7388	18.5368	-3.6269
0.4031	-0.4414	-0.8017	-0.8689	-0.4595	-0.1839	-0.2872	0.7707	-0.5688	-15.6523	-7.3269	7.3444
-0.9209	0.3787	-0.0921	-0.3898	-0.8943	0.2199	0.0009	0.2384	0.9712	1.0641	2.808	-13.0244
0.7646	-0.3951	-0.5091	0.6249	0.6478	0.4358	0.1576	-0.6514	0.7422	-9.4243	-0.5505	7.7646
0.2783	0.4263	-0.8607	0.9056	-0.4151	0.0872	-0.32	-0.8037	-0.5016	5.307	-5.8058	-0.9137
0.1042	-0.5075	-0.8553	0.0489	0.8616	-0.5053	0.9934	0.0108	0.1146	-1.071	1.0777	-3.8184
-0.7806	0.5435	0.3086	0.4541	0.1539	0.8775	0.4295	0.8251	-0.367	-2.8101	-1.7129	4.4017
-0.4807	0.2339	-0.8451	0.6899	0.6958	-0.1999	0.5413	-0.6791	-0.4958	2.7343	5.3178	2.8208
-0.7663	-0.6233	-0.1561	-0.4972	0.4213	0.7585	-0.407	0.6588	-0.6327	-8.1384	2.135	0.6667
-0.4693	0.873	-0.1325	0.8665	0.4264	-0.2594	-0.1699	-0.2366	-0.9566	-7.5946	2.9237	3.6417
-0.5937	-0.5062	-0.6255	-0.7906	0.5119	0.3361	0.1501	0.694	-0.7041	-4.8593	-1.8317	8.8997

International Journal of Scientific Engineering and Research (IJSER) www.ijser.in

<u>www.ijser.in</u> ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

argets							
θ1	θ2	θ3	θ4	θ5	θ6		
169.779	74.3217	-79.0853	169.779	-6.3597	169.779		
176.5911	78.1062	-73.0301 176.5911 -2.1211		-73.0301 176.5911 -2.1		-2.1211	176.5911
183.4089	81.8938	-66.9699	183.4089	2.1211	183.4089		
190.221	85.6783	-60.9147	190.221	6.3597	190.221		
197.0165	89.4536	-54.8742	197.0165	10.588	197.0165		
203.7842	93.2135	-48.8585	203.7842	14.7991	203.7842		
210.5132	96.9518	-42.8772	210.5132	18.986	210.5132		
217.1925	100.6625	-36.94	217.1925	23.142	217.1925		
223.8114	104.3396	-31.0566	223.8114	27.2604	223.8114		
230.3591	107.9773	-25.2363	230.3591	31.3346	230.3591		
236.8254	111.5696	-19.4886	236.8254	35.358	236.8254		

similar.

Table 3: A sample target data set for the training of neural networks

Learning / Training Function

'Trainlm' from MATLAB toolbox is a network training function which updates weight and bias values according to Levenberg-Marquardt optimization [6]. It is the fastest back propagation algorithm in the MATLAB toolbox, and is immensely suggested as a first-choice supervised algorithm.

5. Result and Discussion

In this study, Neural Network Fitting Tool (using command: nftool) is used to create and train the network. The dataset is loaded into selected data window [6]. The network is trained using the input data and the performance plot, training state and regression plots are observed. In this training, Random (dividerand) rule divides the data where 70% data are assigned to training set, 15% to validation and 15% data to test set. As shown in Figure 4, this time the training continued for the maximum of 1000 iterations.

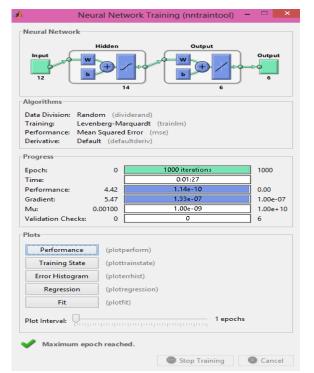


Figure 4: Neural Network Training

Gradient = 1.3338e-07, at epoch 1000 10¹⁰ aradient 10⁰ 10 Mu = 1e-09, at epoch 1000 10⁰ Ē 10 10 Validation Checks = 0, at epoch 1000 val fail 10 100 200 300 400 500 600 700 800 900 1000 1000 Epochs

From the training state plot it is seen that training continued

for iterations before the training stopped. The performance

plot shown in Figure 6 does not indicate any major problems

with the training. The validation and test curves are very

Figure 5: Training Plot

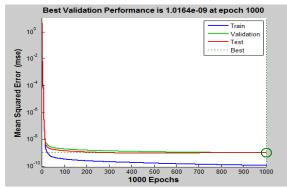


Figure 6: Performance Plot

6. Conclusion

Mostly mathematical models fail to simulate the complex nature of inverse kinematics problem. In contrast, ANN is based on the data input/output data pairs to determine the structure and parameters of the model. Also, ANN's can always be updated in order to achieve better results by ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

presenting new training examples as new data become available.

References

- M.W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modeling and Control, 1st Edition, Jon Wiley & Sons, Inc, 2005.
- [2] J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, 2nd Edition, Springer, 2003.
- [3] J. J. Crage, Introduction to Robotics Mechanics and Control, 3rd Edition, Prentice Hall, 2005.
- [4] J. Denavit and R. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices" of Applied Mechanics, pp. 215-221, 1955.
- [5] R. Köker, T. Çakar, Y. Sari, A neural-network committee machine approach to the inverse kinematics problem solution of robotic manipulators. Engineering with Computers, Springer-Verlag London, DOI 10.1007/s00366-013-0313-2, 2013.
- [6] The Mathworks Neural Network Toolbox user guide. Available on line on: http://www.mathworks.com/access/helpdesk/help/pdf_do c/nnet/nnet.pdf