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Abstract: This paper studies some finite difference approximations to find the numerical solution of first-order hyperbolic partial 

differential equation of mixed type. We are interested in the challenging issues in neuronal science stemming from the modeling of 

neuronal variability based on Stein’s Model [8]. The resulting mathematical model is a first order hyperbolic partial differential 

equation having point-wise delay and advance which models the distribution of time intervals between successive neuronal firings. We 

construct, analyze and implement explicit numerical scheme for solving such type of initial and boundary-interval problems. Analysis 

shows that numerical scheme is conditionally stable, consistent and convergent in discrete L norm. Some numerical tests are reported 

to validate the computational efficiency of the numerical approximation. 
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1. Introduction 
 

Partial differential-difference equations or more generally 

partial functional differential equations are of great 

importance, since they arise in many mathematical models of 

control theory, mathematical biology, climate models, 

mathematical economics, meteorology and many other areas, 

see [4]. Some differential models from population dynamics 

are given. The time dependent first-order hyperbolic partial 

differential equation (transport equation) is a general partial 

equation that describes the transport phenomena such as heat 

transfer, mass transfer, momentum transfer, etc. Some 

transport equations have multiple point-wise delay and 

advance which are classified as hyperbolic partial differential 

difference equations. These equations provide a tool to 

simulate several realistic physical and biological phenomena. 

For instance, in Stein’s model [8], the distribution of 

neuronal firing intervals satisfies a transport equation of 

mixed type with appropriate initial-boundary condition given 

by 

   
0( , ) ( / ) ( , ) [ ( 1, ) ( , )]

F F
t t pe F t F t

t

 
        

 
 

    0[ ( , ) ( , )],pi F t F t       (1) 

       
0( ,0) ( ),F F   

where tV  equal the depolarization at time t ; ( , )F t  equal 

the probability that tV   at time t   0F  is initial data. Here, 

it assume that excitatory and inhibitory impulse occur 

randomly with a frequency 
ep /sec and 

ip /sec, respectively. 

After each neuronal firing there is a refractory period of 

duration 
0t , during which the impulse have no effect and the 

membrane depolarization tV  is reset to be zero. At times 

0t t , an excitatory impulse produces unit depolarization 

while inhibitory impulse produces 
0  unit repolarization, 

and if the depolarization reaches a threshold of r  units, the 

neuron fires. For sub- threshold levels, the depolarization 

decays exponentially between impulses with the time 

constant
 0 . To study the neuron variability in quantitative 

terms, Stein transformed this equation and obtain the 

characteristic function of the distribution and analyzed the 

mean and variance of the distribution. We refer to [8] for 

more detailed information about the assumptions of the 

model. We are interested to find the value of unknown F . 

 

2. Formulation of the problem 
The equation (1) given in the previous section is a first-order 

partial differential-difference equation. Motivated from the 

model described in the previous section, we consider the 

following general transport equation with point-wise delay 

and advance: 

( , ) ( , ) ( , ) ( , )[ ( , ) ( , )]
u u

x t a x t x t b x t u x t u x t
t x


 

   
 

 

       ( , )[ ( , ) ( , )]c x t u x t u x t          (2) 

with initial condition 

   0( ,0) ( )u x u x              (3) 

where ( , ), ( , )a x t b x t  and ( , )c x t  are sufficiently smooth 

functions of x  and t .   and   are small positive 

constants.  

      Let us suppose the region in which we want to find the 

solution of equation (2) is 0 x X  . Since the partial 

differential equation (2) is first order hyperbolic type with 

difference terms, according to the direction of characteristics, 

we require only one boundary condition. If 0,a 
 
we need a 

boundary condition at left side of the domain i.e. at 0x   
and if 0,a 

 
we need a boundary condition at right side of 

the domain i.e. at x X , Morton [6]. Therefore the boundary 

interval conditions for this equation are given by 

 1( , ) ( , ),u s t s t  [ ,0];s     for 0,a      

 2( , ) ( , ),u s t s t  [X,X ];s     for 0,a     (4) 
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The Taylor series approximation for the delay and advance 

term in equation (2), yields 

 
1

2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

x

x

u x t u x t u x t R

u x t u x t u x t R

 

 

   

   
 

where 1R  and 2R  are the remainders in the Taylor series 

expansions s.t., 

 
2

2
1 2

1
( , )

2!
R u t x x

x
   


   


 

and 

 
2

2
2 2

1
( , )

2!
R u t x x

x
   


   


 

By substituting the expansions ( , )u x t  and ( , )u x t  

values in (2), we get 

1( , ) ( , ) ( , ) ( , )[ ( , ) ( , ) ( , )]t x xu x t a x t u x t b x t u x t u x t R u x t      

2( , )[ ( , ) ( , ) ( , )]xc x t u x t u x t R u x t                             

For sufficiently small values of point-wise delay and 

advance, remainder terms 1R  and 2R  are negligible. 

Therefore 

[ ( , ) ( , ) ( , )] 0t xu a x t b x t c x t u                 (5)  

with initial and boundary-interval conditions, 

 0( ,0) ( ),u x u x                          

1(0, ) (0, ),u t t    for  ( ) 0a b c            (6) 

2( , ) ( , ),u X t X t  for  ( ) 0a b c            

In the following sections, a numerical method based on finite 

difference is developed to solve such type of initial and 

boundary value problems. The proposed method is analyzed 

for stability and convergence. Some test examples are given 

to validate convergence and computational efficiency of the 

proposed numerical algorithm. 

 

3. Numerical Approximation 
 

In this section, we construct numerical scheme based on the 

finite difference method [6]. We discuss first and second 

order explicit numerical approximations for the given 

equation (2) based on Lax-Friedrichs finite difference 

approximations. The differential equation (2) is hyperbolic 

and first-order with difference terms. For space time 

approximations based on finite differences, the ( , )x t  plane is 

discretize by taking mesh width x  and time step t , and 

defining the gird points ( , )j nx t  by 

,jx j x   0,1,..., 1, ;j J J   ,nt n t   

0,1,2,...n   

Now we look for discrete solution n
ju  that approximate 

( , ), ,j nu x t j n . 

 

3.1 Construction of the Numerical Scheme 

 

In this approximation, we approximate the time derivative by 

forward difference and space derivative by centered 

difference and then we replace 
n

jU  by the mean value 

between 1

n

jU   and 1

n

jU   for stability purpose. Numerical 

scheme is given by 

1 11

1 12 0
2

n n
j jn

n n
j

j jn
j

U U
U U U

A
t x

 

 


 

 
 

 

solving for 1,n
jU   we get 

1
1 1 1 1

1 1
( ) ( ) ,

2 2

n n n n n n
j j j j j j

t
U U U A U U

x


   


   


 

1,2,..., 1j J                        (7) 

where n
j

t
A

x






. 

together with initial and boundary-interval conditions are 

given by 

 

0

0

0 1

2

( ), 1,..., 1,

(0, ), 1,2,...

( , ), 1,2,...

j j

n

n

n

J n

U u x j J

U t n

U X t n





  

 

 

 

 

3.2 Stability Analysis 

 

Definition:  The finite difference method is called stable in 

the certain norm .  if there exists constant 0C  , 

independent of the space step and time step such that 

 0 , 1,2,...nU C U n    

now consider the finite difference scheme as given equation 

(7) i.e. 

 1
1 1

1 1
1 1

2 2

n n n n n
j j j j j

t t
U A U A U

x x


 

    
      

    
 

 1
1 1

1 1
1 1

2 2

n n n n n
j j j j j

t t
U A U A U

x x


 

    
      

    
 

taking the norm, we get 
1 1supn n

jL
j

U U


   

  1 1

1 1
1 sup 1 sup

2 2

n n n n

j j j j
j j

t t
A U A U

x x
 

    
      

    
 

  
1 1

1 1
2 2

n n n n

j jL L

t t
A U A U

x x
 

    
      

    
 

If 1n
j

t
A

x





, the above inequality reduces to 

1n n

L L
U U

 

   

 which implies the stability of the numerical scheme 

provided 1n
j

t
A

x





. 

 

3.3 Error Analysis 

 

The local truncation error of the numerical scheme is 

obtained by replacing the approximate solution 
n
jU  by exact 

solution ( , )j nu x t  in the numerical scheme.  If u   is 

sufficiently smooth, the truncation error 
n

jT  of this finite 

difference scheme is given by 
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1 11

1 12

2

n n

j jn
n n

j
j jn n

j j

u u
u u u

T A
t x

 

 


 

 
 

 

  

2 4
21

( ) ( )
2 2

n

t tt xx

j

x x
u tu u O t O

t t

  
       

  
 

   
2 41

( ) ( )
6

n

x xxx

j

A u x u O x
 

     
 

 

 

2 21
[ ]

2 2 6

n

n

t x j tt xx xxx

j

x x
u Au tu u Au

t

  
      

 
 

   
4 1 4 2( ).O x t x t      

Since u  is exact solution, we get  

  [ ] 0n
t x ju Au   

hence 

 
2 21

2 2 6

n

n
j tt xx xxx

j

x x
T tu u Au

t

  
    

  

 

    4 1 4 2( ).O x t x t      

which shows that the numerical scheme is consistent of order 

2 in space and of order 1 in time as long as 1 2 0.t x    

 

3.4 Convergence of the scheme 

 

Definition: A finite difference scheme (Numerical method) is 

said to be convergent if for any fixed point * *( , )x t  in a given 

domain (0,X) (0, )nt , 

* *,j nx x t t     * *( , )n

jU u x t  

the error in the approximation is given by  

( , ).n n
j j j ne U u x t   

Now n
jU  satisfies the finite difference scheme (7) exactly, 

while ( , )j nu x t  leaves the remainder n
jT t . Therefore the 

error is given by 

  
1

1 1

1 1
1 1

2 2

n n n n n n

j j j j j j

t t
e A e A e tT

x x



 

    
       

    
 

and  
0 0.ne   

Let   max , 0,1,...,n n

jE e j J   

Hence for 1,n

j

t
A

x





 

   1 1max maxn n n n

j j
j j

E e E t T     and 0 0E   

If we suppose that the truncation error is bounded i.e. 

max ,n

jT T  then by induction method  

 max max ,n

nE n tT t T                

which shows that the method has first-order convergent 

provided that the solution has bounded derivatives up to 

second order. 

  

 

 

 

4. Numerical Experiments 
 

In this section, we present some numerical examples to 

validate the predicted results established in the paper. We 

perform numerical computations using MATLAB. The 

maximum absolute errors for the considered examples are 

calculated using half mesh principle as the exact solution for 

the considered examples are not available [3]. We calculate 

the errors by refining the grid points. The error in the 

numerical approximation is given by  

  /2

/2
0 ,0

( , t) max ( , ) (2 ,2 )t t

x x
j J n Nt

E x U j n U j n 

 
   

     

In the following examples the domain of consideration 

is [0,1] [0,0.7]  .  

 

Example1. Consider the problem (2) with the following 

coefficients and initial- boundary conditions: 
2

2 4

1
( , ) ;

1 2 2

x
a x t

xt x x




  
 ( , ) 5;b x t   c( , ) 10;x t   

2( ,0) exp[ 10(4 1) ];u x x    . ( , ) 0, [ ,0]u s t s     . 

 

Example2. Consider the problem (2) with the following 

coefficients and initial- boundary conditions: 
2

2 4

1
( , ) ;

1 2 2

x
a x t

xt x x




  
  2 2 4( , ) 1 2 ;b x t x t x           

c( , ) 1 ;x t xt   

2( ,0) exp[ 10(4 1) ];u x x    . ( , ) 0, [ ,0]u s t s      . 

 

Example3. Consider the problem (2) with the following 

coefficients and initial- boundary conditions: 
2

2 4

1
( , ) ;

1 2 2

x
a x t

xt x x




  
  

2 2 4

1
( , ) ;

1 2
b x t

x t x


 
 

1
c( , ) ;

1
x t

xt



 

2( ,0) exp[ 10(4 1) ];u x x    . ( , ) 0, [ ,0]u s t s       

 

Table 1: The maximum absolute error for example 1 

t  x   1/100       1/200            1/400          1/800      

x /2          0.0588        0.0296         0.0149       0.0071 

x /4          0.0294     0.0146         0.0069       0.0035 

x /8          0.0145     0.0068         0.0034       0.0017 

x /16         0.0067       0.0033          0.0016       0.0008 

 

 

 

 

 

 

Table 2: The maximum absolute error for example 2 

t  x   1/100         1/200            1/400        1/800      

x /2          0.0582       0.0294          0.0147       0.0071 

x /4          0.0292    0.0144          0.0068       0.0034 

x /8          0.0141    0.0067          0.0033       0.0016 

x /16         0.0065      0.0031          0.0015       0.0007 
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Figure1: The numerical solution for Example 1 at 0.5t  . 
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Figure2: The numerical solution for Example 1 at 0.5t  . 
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Figure3: The numerical solution of Example 2 for different 

values of t. 

 

Table 3: The maximum absolute error for example 3 
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Figure4: The numerical solution for Example 3 at 0.5t  . 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x-direction

N
u
m

e
ri
c
a
l 
s
o
lu

ti
o
n

 

 

 = .0001

 = .02

 = .07

  = .001

 
Figure5: The numerical solution for Example 3 at 0.5t  . 

 

 

5. Conclusion 
In this paper, a first-order hyperbolic partial differential 

difference equation for the distribution of neuronal firing 

based on the Stein’s Model [8]. For finding the numerical 

solution of the initial and boundary value problem, a 

numerical scheme based on upwind finite difference is 

developed. The maximum absolute error are computed and 

tabulated in tables 1-3 for the considered examples with 

0.001  and 0.001  . The error table illustrates that the 

method is first order convergent in temporal and second 

order spatial directions. Basically in this paper, we compare 

the results as already discussed by Sharma and Singh [7]. Our 

results are better due to second order convergence of scheme. 

The graphs of the solution of the considered examples for 

different values of point-wise delay and advance are plotted 

in Figures 1-5 to examine the effect of point-wise delay as 

well as advance on the solution behavior of the problem. We 

observe that if we fix   and increase the value of  , 

impulse moves towards left see (fig.1 and 5) while fixing 

 and increase the value of , impulse moves towards right 

see (fig.2 and 4). Now fixing both   and  , the impulse 

moves towards right with the time see (fig.3). 

 

 

 

 

t  x   1/100         1/200           1/400        1/800      

x /2          0.0580       0.0289          0.0146       0.0069 

x /4          0.0291     0.0143         0.0068       0.0033 

x /8          0.0145     0.0067         0.0032       0.0015 

x /16         0.0068       0.0033         0.0016        0.0007 
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