
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 4, April 2015
Licensed Under Creative Commons Attribution CC BY

Universal Scheduler for AFDX Based on BAG

Concept

Sanyogita Sathe
1
, Ch. Praveen Kumar

2

1M.Tech (VLSI Design),, GITAM University, Hyderabad, India

2Assistant Professor, ECE Department, GITAM University, Hyderabad, India

Abstract: Avionic Full-Duplex Switched Ethernet (AFDX), is a specification for a deterministic aircraft data network bus for

aeronautical, railway and military systems. The network is based on standard IEEE 802.3 Ethernet technology. AFDX extends the

Ethernet standard by adding Quality of Service (QoS) and deterministic behavior with a guaranteed dedicated bandwidth. An AFDX

network consists of so called End Systems and switches. An End System is a component connected to the AFDX network and capable of

handling all AFDX related protocol operations. One or more switches, depending on the network hierarchy, are located on the data path

between two End Systems. The point-to-point and point-to-multipoint connections are represented by virtual links (VL). The aim of the

paper is to develop Transmitter scheduling Mechanism using the concept of BAG in verilog.

Keywords: AFDX, standard IEEE 802.3, end system, virtual links, BAG

1. Introduction

A typical AFDX network generally consists of avionics

subsystems; interconnect networks and source/destination

end systems. Specifically, the avionics subsystems include

traditional on-board aircraft system, such as global position

system (GPS) and flight control system (FCS). The

interconnect networks use a full-duplex switched Ethernet

consisting of links and switches to support data exchange

among different avionics systems. The end systems actually

serve as an interface between the subsystems and the

interconnect networks to guarantee real-time and reliable

data transmission by using deterministic Virtual Links (VLs).

A virtual link constructs a virtual communication connection

from one source end system to one or more destination end

systems, forming a mono-sender multicast path. According

to the AFDX specification, we can identify a VL by setting

its available 16-bit ID, Bandwidth Allocation Gap(BAG) and

the largest length of VL frames (i.e., Lmax),where the BAG

represents the minimum interval between two consecutive

frames sent to a VL.

An AFDX network specifies the BAG duration from 1ms to

128ms to serve as the bandwidth control mechanism for

virtual links. In order to guarantee transmission reliability in

an AFDX network, one of the most important characteristics

is the redundant management on virtual links.

2. Block Diagram

Figure 1: Block Diagram

3. Working Methodology

3.1 Arbiter

The arbiter module has been coded using case statements.

Each case corresponds to a separate bag value. There is a

round robin based algorithm running within the arbiter

module that checks each incoming signal one after the other

by cycling through each one. If an incoming signal is

detected, then the arbiter receives the signal, separates the

frame into two i.e. BAG frame and request frame. The bag

frame is 8 bits long and the request frame is 24 bits long.

BAG value can be anything from 20 to 28 in binary form.

The BAG frame is forwarded to another system that receives

will tell the processor which output signal corresponds to

which BAG. The request frame is passed onto the buffer

module.

3.1.1 Inputs – Arbiter Module

Frm1 – 32‟b input from first incoming Virtual Link

Frm2 – 32‟b input from second incoming Virtual Link

Frm3 – 32‟b input from third incoming Virtual Link

Frm4 – 32‟b input from fourth incoming Virtual Link

3.1.2 Outputs – Arbiter Module

Out1, Out2, Out3, Out4, Out5, Out6, Out7, Out8 – Wires

that connect as inputs to each of the buffers

Bag1, Bag2, Bag3, Bag4 – Corresponding bag values from

each of the inputs frm1 to frm4 sent to the concerned module

Write1, Write2, Write3, Write4, Write5, Write6, Write7,

Write8 – Write flags to activate write operation on the

buffers

3.1.3 Algorithm

1. Check for “rst” condition. If “rst == 1” then all wires and

registers are reset to zero condition

2. If “rst == 0" then check inputs frm1 to frm4 for input

value in Round Robin fashion

3. Separate BAG value (Bits 31 to 24) from VL ID (Bits 23

to 0)

4. if(cntr == 2'b00) // Counter that points to each input port

begin

Paper ID: IJSER1557 9 of 12

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 4, April 2015
Licensed Under Creative Commons Attribution CC BY

case(bag1)

8'b00000001: // One of the possible BAG values

begin

out1 <=frm1[23:0]; // transmit VL ID to corresponding

buffer

end

5. Repeat preceding code for all cases (BAG values)

3.2 FIFO buffer

Once the data is stored in the buffer, it waits for the

scheduler module to request it by sending a read flag. The

read flag, like the write flag is a single bit, that when high,

will allow the buffer to send forward any packets of data

stored within it. Once the read flag is high, the read pointer

starts rising from the bottom. The buffer checks if there is

any data stored at the address that is being pointed at by the

read pointer and if the value is not 0, it sends the message

forward. The read pointer runs until the difference between

the write and read pointers (ptr_gap) is 0. This means that the

read pointer has reached the last input message.

This operation of the buffer is based on FIFO, or first in first

out concept. Since the data sent to the buffer first will be sent

forward first to the scheduler module. There are a total of 8

buffers operating within the TOP module. Each one

corresponds to a separate BAG value. This sort of operation

sorts all incoming packets according to their BAG and since

from a particular buffer all the data will go forward at the

same time this means that all the data with one particular

BAG value that comes in within one cycle of the scheduler

will be sent forward as requests at the same time. Additional

spaces for messages can be added to the buffers at any time.

3.2.1 Inputs – Buffer Module

Datain – connected to „out‟ from arbiter. Each buffer has one

datain and named datain1 to datain8 for the 8 buffers

Write – Flag sent by the arbiter to activate write operation

for a particular buffer

Read – Flag sent by the scheduler to activate read operation

for a particular buffer

3.2.2 Outputs – Buffer Module

Dataout – connected to input of scheduler module. Each

buffer has one dataout named dataout1 to dataout8 for the 8

buffers.5

3.2.3 Registers – Buffer Module

„i‟ – This register stores the 24‟b input that is input and is

cross referenced before writing to the buffer every time.

3.2.4 Algorithm

1. If „rst == 0‟ Check if “write_to_stack” i.e. the write flag is

high

2. Receive 24 bit VL ID from arbiter

3. Write at location “write_ptr” is pointing using the

following code

else if(write_to_stack&& (i!=datain)) // if write flag high and

same data has not already been received

begin

stack[write_ptr] <= datain; // write at write_ptr location

write_ptr<= write_ptr+3'b001; // increment write_ptr

ptr_gap<= ptr_gap+3'b001; // increment ptr_gap

 i<=datain; // save new value in „i‟ register

end

4. Check if “read_from_stack” i.e. the read flag is high

5. Read value from buffer and send forward using the

following code

 if(read_from_stack) // if read flag is high

begin

dataout<= stack[read_ptr]; // transfer data to round robin

 stack[read_ptr] <= 24'bx; // revert stack value to don‟t care

condition

 read_ptr<= read_ptr+3'b001; // increment read pointer

 ptr_gap<= ptr_gap-3'b001; // decrement write pointer

end

3.3 Round-Robin Scheduler

The round robin scheduler consists of a two level counter –

one that counts from 0 to 255 (ctr) and the other, depending

on the top level counter, changes from 000 to 111. This is

named ptr. It operates in such a way that 000 corresponds to

buffer 1 (1 ms BAG), 001 to buffer 2 (2 ms BAG) and so on

to 111, which points to buffer 8 (128 ms BAG). The pointer

increments by 1 for each of the 31 bits that the counter (ctr)

points to. For each buffer that the pointer (ctr) points to, the

buffer simultaneously sends the value forward to the

redundancy management system which then sends it forward

as a request to the processor as a request.

3.3.1 Inputs – Scheduler

datain1 to datain8 – These are connected to dataout1 to

dataout8 that are outputs from the buffer respectively

3.3.2 Outputs – Scheduler

Dataoutt – output for the overall system that serially sends

the received message packets in the required format.

Read1 to read8 – Read signals that correspond to each buffer

from 1 to 8 and activate the read operation in the buffer when

received

3.3.3 Algorithm

1. If condition “rst == 1” is true, then reset all values to zeros

2. If condition “rst == 0” is true, then start the counter “ctr”

3. Run the following loop to check if there are any incoming

values

else if((ctr<= 8'b11111111) && (ptr == 3'b000)) // If ctr<

255, start with ptr == 000(first buffer)

begin

 dataoutt<= datain1; //forward data from first buffer to output

 if(ctr == 8'b00100000) // if counter has reached upper limit

for first buffer, enter loop

 begin

 ptr<= 3'b001; // change ptr to point at second buffer

 read1 <= 0; // change read flag for buffer 1 to 0

 read2 <= 1; // change read flag for buffer 2 to 1

 end

 end

4. Repeat loops for all buffers till buffer no. 8

5. Repeat entire cycle in round robin fashion

Paper ID: IJSER1557 10 of 12

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 4, April 2015
Licensed Under Creative Commons Attribution CC BY

4. TOP Module

Figure 2: RTL Schematic of TOP module

4.1 Inputs – Top Module

Frm1 – 32‟b input from first incoming Virtual Link

Frm2 – 32‟b input from second incoming Virtual Link

Frm3 – 32‟b input from third incoming Virtual Link

Frm4 – 32‟b input from fourth incoming Virtual Link

clk – Gives a clock input

rst – Reset high and low condition

4.2 Outputs- Top module

Bag1 – 8‟b bag value separated from frm1

Bag2 – 8‟b bag value separated from frm2

Bag3 – 8‟b bag value separated from frm3

Bag4 – 8‟b bag value separated from frm4

Dataoutt – 24‟b output signal in serial form that is forwarded

5. Results and RTL Schematics

Figure 3: TOP module

Figure 4: Arbiter

Figure 5: FIFO buffer

Figure 6: Scheduler

6. Synthesis Report

Target Device: XC5VLX330T

7. Conclusion

A scheduler that is optimized for the purpose of real time

internal communication was successfully designed using

Xilinx ISE tools and implemented in Spartan Kit. Building

on the existing concepts already used within AFDX, and

optimizing the pre-existing scheduler, a new scheduler

design using both FIFO and Weighted Round Robin

techniques was developed. The design concentrates on the

advantages and strengths of both algorithms while

minimizing data loss or delays from the weaknesses of both

algorithms. Other than avionics, this scheduler can be used

for any generalized purposes that require operations in real

time environments.

References

[1] Condor Engineering; “AFDX Protocol Tutorial”, May

2005

[2] Yu Hua; Xue Liu; “Scheduling Design and Analysis for

End-to-End Heterogeneous Flows in an Avionics

Network”, IEEE INFOCOM 2011

Paper ID: IJSER1557 11 of 12

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 4, April 2015
Licensed Under Creative Commons Attribution CC BY

[3] ManolisKatevenis; StefanosSidiropoulos; Costas

Courcoubetis, "Weighted round-robin cell multiplexing in

a general-purpose ATM switch chip", IEEE Journal on

Selected Areas in Communications, (Vol. 9, Issue:8),

October 1991

[4] H.S. Behera; Simpi Patel; Bijayalakshmi Panda, “A New

Dynamic Round Robin and SRTN Algorithm with

Variable Original Time Slice and Intelligent Time Slice

for Soft Real Time Systems”, International Journal of

Computer Applications (0975 – 8887) Volume 16– No.1,

February 2011

[5] Xin Chen; Xudong Xiang; Jianxiong Wan, “A Software

Implementation of AFDX End System”, 2009

International Conference on New Trends in Information

and Service Science

[6] A. Mifdaoui, F. Frances, C. Fraboul, “Real-Time

Communication over Switched Ethernet for Military

Applications” In Proceedings of the conference on

Emerging network experiment and technology, pp. 45-56,

ACM, 2005.

[7] AEEC; Aeronautical Radio Inc.; “Aircraft Data Network

Part 7 Avionics Full Duplex Switched Ethernet Network

(ARINC SPECIFICATION 664 P7-1)”, September 23,

2009

[8] Jonathan Woodruff, “Deficit Round Robin Input Arbiter

for NetFPGA”

[9] M. Shreedharand G. Varghese. Efficient fair queuing

using deficit round-robin. IEEE/ACM Transactions on

Networking (TON), 4(3):385, 1996.

Paper ID: IJSER1557 12 of 12

