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Abstract: Signal processing plays an important role in the field of communication Engineering. The amount of data that is received is 

processed by using different algorithms. Discrete Fourier Transform (DFT) is one of the technique that is used to compute the data. 

Direct computation of DFT results in complexity; as a result Fast Fourier Transform (FFT) is one of the algorithms to reduce the 

complexity. The proposed paper presents the parallel-pipelined implementation of radix-2 fixed point 32-point FFT algorithm using state 

machine as controller and fixed point pipelined implementation of Linear CORDIC that operates for the angles−
𝝅

𝟐
≤ 𝜽 ≤

𝝅

𝟐
. The result 

of 64-point FFT are obtained in M=𝒍𝒐𝒈𝟐 𝑵 clock cycles due to multi processor technique. Initially FFT functionality is checked using 

MATLAB and finally simulated and synthesized using Xilinx ISE 14.1.Besides CORDIC algorithm is implemented in both MATLAB 

and in Xilinx on Virtex-7. The main objective of this work is to obtain an area efficient FFT and CORDIC without performance loss that 

could be used as a part of Signal processing. 
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1. Introduction 
 

A signal in communication systems is referred as a 

function that conveys information about the behavior or 

attributes about information contained in the signals, 

signal processing is done on the signals. As the signals 

produced from physical quantities are analog in nature, 

these signals are converted in to discrete by sampling 

technique before processing. Therefore Discrete Time 

Signal processing is for sampled signals, defined only at 

discrete points in time and as such are quantized in time, 

but not in magnitude. In Digital Signal Processing (DSP) 

working on frequency domain is advantageous when 

compared to time domain [1]. This is overcome by 

Discrete Fourier Transform (DFT) that converts a signal in 

discrete time domain to discrete frequency domain. 

Computation of DFT is performing various mathematical 

operations like addition, multiplication etc on the received 

data. Computation directly by using DFT algorithm is 

quite tedious and complex which influences in global 

computation cost of design that consumes N2 additions 

and N(N − 1) multiplications. Cooley and Turkey 

developed the well-known radix-2 FFT algorithm to 

reduce the computational load of the DFT [2]. 

 

The paper is organized into five sections. In section-III we 

discuss the brief view of FFT, in section-IV about 

CORDIC algorithm and finally section-V gives the opted 

methodology and in VI Simulation results of CORDIC and 

FFT. 

 

2. Literature Review 
 

Brett W. Dickson and Albert A. Conti proposed a 

Pipelined Fast Fourier Transform (FFT) architectures, 

which are efficient for long instances (32k points and 

greater), are critical for modern digital communication and 

Radar systems. For long instances, Single-Path Delay-

Feedback (SDF) FFT architectures minimize required 

memory, which can dominate circuit area and power 

dissipation. Their paper presents a parallel Radix-22 SDF 

architecture capable of significantly increased pipelined 

throughput at no cost to required memory or operating 

frequency. A corresponding parallel coefficient generator 

is also presented. Resource utilization results and analysis 

are presented targeted for a 45nm silicon-on-insulator 

(SOI) application-specific integrated circuit (ASIC) 

process. Multipliers implemented using Vedic 

mathematics is superior in terms of area efficiency. Carry 

Select Adders (CSLA) are one of the fastest adders used in 

several processors to perform fast and complex arithmetic 

functions. In the proposed paper, the Vedic multiplier 

which is developed using the Urdhva Tiryakbayam Sutra 

along with modified carry select adder is used to perform a 

Radix-22pipeline Fast Fourier Transform. The Fast Fourier 

Transform (FFT) which is implemented using Vedic 

multiplier and adder is then compared with FFT 

implemented using traditional multipliers and adders and 

its performance is verified. 

 

3. Fast Fourier Transform Algorithm 
 

Fast Fourier Transform (FFT) is a commonly used 

technique for the computation of Discrete Fourier 

Transform (DFT) [3]. DFT computations are required in 

the fields like filtering, spectral analysis, video processing 

etc. to calculate the frequency spectrum or to identify a 

system’s frequency response from its impulse response 

and vice versa. Based on how one divides a set of N inputs 

into two sets of N/2 numbers, there are two types of radix-

2 FFT algorithm or Cooley-Turkey algorithm. They are [4] 

 

i Decimation in time FFT (DIT-FFT) 

ii Decimation in frequency FFT (DIF-FFT).  

 

In the proposed paper implementation of FFT algorithm is 

done using DIT-FFT. 
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The N-point discrete Fourier transform is defined by 

 

 X n =  x n  WnkN−1
n=1  (1) 

X n =  x 2n  W2nk
N

2
−1

n=1 +  x 2n + 1  W(2n+1)k
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2
−1

n=1  (2) 
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2
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 X n = G n +  WN
nk H n  (4) 

 

This equations state that the input sequence is divided into 

consecutive sets of even and odd samples. In order to 

obtain the sets the input samples digit values are bit 

reversed and the resultant set is applied as input to FFT 

block. To calculate the inverse transform, the real and 

imaginary part of the input and output are swapped. From 

the above equations,  Wnk  is twiddle factor term. This 

twiddle factor term can be realized as butterfly operation 

which is the important building block of FFT algorithm 

[3]. The difference between Decimation In Time (DIT) 

and Decimation in Frequency (DIF) lies in the position of 

the twiddle factor multiplication, which is either 

performed before or after the subtraction and addition [4]. 

The technique use for FFT is based on divide and conquer, 

it will be most efficient if the input sequence is of length N 

= rp , where N is called point, r is called radix, and p is a 

positive integer. An N-point FFT can be computed by 

using p stages of which each stage having N/2 butterflies 

[5]. 

 

 
Figure 1: A radix-2 DIT and DIF Butterfly architecture 

 

Twiddle factor generator is a key component in IFFT/FFT 

computation. There exist many popular generation 

techniques for twiddle factor; Coordinate Rotation DIgital 

Computer ( CORDIC) algorithm, pipelined CORDIC 

algorithm, polynomial-based approach, ROM-based 

scheme, and the recursive function generators. For small 

lengths such as 64-point to 512 point, ROM-based is a 

better choice[6].Therefore in the proposed paper the 

implementation of pipelined CORDIC along with the 

synchronous parallel FFT is done and discussed in the next 

section. 

 

4. CORDIC Algorithm 
 

The key concept of CORDIC arithmetic is based on the 

simple and ancient principles of two-dimensional 

geometry. But the iterative formulation of a computational 

algorithm for its implementation was first described in 

1959 by Jack E. Volder for the computation of 

trigonometric functions, multiplication and division [6]. 

CORDIC based computing received increased 

attentionin1971, when John Walther showed that, by 

varying a few simple parameters, it could be used as a 

single algorithm for unified implementation of a wide 

range of elementary transcendental functions involving 

logarithms, exponentials, and square roots along with 

those suggested by Volder [7]. CORDIC is attractive due 

to the simplicity of its hardware implementation, since the 

same iterative algorithm could be used for all the above 

mathematical applications using the basic shift-add 

operations of the form x ± y2−i  . The conventional method 

of implementation of 2D vector shown in the Figure.1 

using Givens rotation transform is represented by the 

equations [9]. 

 

 xout  = xin cos θ–yin sin θ, (5)  

 yout  = xin sin θ+yin  cos θ. (6)  

  

where (xin ,yin ) and (xout ,yout ) are the initial and final 

coordinates of the vector respectively. The hardware 

realization of these equations requires four multiplications, 

two additions/subtractions and accessing the table stored in 

the memory for trigonometric coefficients. The CORDIC 

rotator performs 2D rotation using a series of specific 

incremental rotation angles selected so that each is 

performed by a shift and add operation iteratively. 

 

The three basic equations of CORDIC algorithm are: 

 

 xi+1=xi − mσiyiρ
–Sm ,i  (7) 

 yi+1=yi + σixiρ
–Sm ,i  (8) 

 zi+1=zi − σiαm,i (9) 

 

Based on the value of m the algorithm can operate in one 

of three configurations: Linear (m = 0), Circular(m = 1) 

and Hyperbolic(m = −1). Within each of these 

configurations the algorithm functions in one of two 

modes – rotation or vectoring.𝛔𝐢 represents either 

clockwise or counter clockwise direction of rotation, ρ 

represents the radix of the number system and the shift 

sequence Sm ,i depends on the coordinate system and the 

radix of number system. Sm,i  affects the convergence of 

the algorithm . In rotation mode, the input vector is rotated 

by a specified angle, while in vectoring mode the 

algorithm rotates the input vector to the x-axis while 

recording the angle of rotation is required. The value of αi 

also changes according to the configuration. Depending on 

the mode of operation z and y are the steering variables in 

rotation and vectoring mode respectively. The length of 

the vector increases if required micro rotations are not 

perfect, so in order to maintain a constant vector length, 

the obtained results have to be scaled by the scale factor K 

and it is given by the equation. 

 

K= kii  (10)  

 

The below flow graph represents the flow of CORDIC for 

computation of values: 
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Figure 2: Flow Chart of CORDIC Algorithm 

 

Although no popular architectures are known to us for 

fully parallel implementation of CORDIC, different forms 

of pipelined implementation of CORDIC have however 

been proposed for improving the computational 

throughput [10].To handle latency bottlenecks, various 

architectures are present. Most of the well-known 

architectures could be grouped under bit parallel iterative 

CORDIC, bit serial iterative CORDIC and pipelined 

CORDIC architecture. Since the CORDIC iterations are 

identical, it is very much convenient to map them into 

pipelined architectures. The main emphasis in efficient 

pipelined implementation lies with the minimization of the 

critical path. 

 

 
Figure 3: Basic structure of a pipelined CORDIC unit 

 

5. Implementation of 64-Point FFT and 

CORDIC 
 

In the proposed paper as the results of 64 point FFT can’t 

be represented exactly. So the design methodology that is 

used for 64-point FFT is explained by using 16-point FFT. 

The implementation of FFT is done using DIT-FFT 

algorithm. The implementation of FFT consists of bit 

reversing module, state machine design that acts as a 

controller for the total design, butter fly module and finally 

shifter module design. 

 

A. Architecture of FFT: Initially in order to realize the 

hardware module of the FFT parallel iterative 

architecture is chosen as the latency for the parallel 

iterative architecture is less when compared to the other 

architectures. The values computed are stored iteratively 

into the intermediate registers that increase the 

throughput.  

B. Angle Storage of FFT: 

Twiddle factor is as cosine value of an angle. These 

angles are in decimal point form. So as the angles can’t 

be represented directly. In Xilinx the conversion of the 

values need to be done for the ease of computation. The 

values can be represented in either fixed-point or 

floating point format. Representing and operating in 

Floating point format is tedious that consumes a lot of 

hardware. Therefore Fixed-point format is opted for the 

storage of values. The scaling of values is done by 

multiplying with 28 and the resultant is stored in ROM, 

and at the time of computation the angles are accessed 

based on the address. 

C. Design of FFT controller: 

The entire FFT module operations are controlled by 

using State machine as a controller. The FSM operates 

in 4 states that are named as 𝑆0,𝑆1,,𝑆2 and 𝑆3 Each stage 

of the FSM performs an operation. 

 

 
Figure 4: State machine controller of FFT Algorithm 

 

D. Design Consideration of CORDIC in Xilinx: 

 

In design of CORDIC element using fixed point arithmetic 

the accuracy and latency of the result mainly depends on 

the iteration count and its implementation. To achieve n-

bit accuracy, the word length of x and y data path should 

be (𝑛 + 2 + 𝑙𝑜𝑔2𝑛) bit width and for the computation of 

the angle 𝜃 the bit width should be (𝑛 + 𝑙𝑜𝑔2𝑛).The 

design of CORDIC is made by considering 22 bit width of 

x and y along with overflow 20 bit width for angle 

representation. 
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6. VHDL Simulation Results of CORDIC 

and FFT  
 

The below table states the values of CORDIC obtained in 

Xilinx and MATLAB. On comparing both the tabulated 

values there is 0.01% error in one of the coordinates which 

is negligible .So maximum amount of accuracy is obtained 

through this opted methodology. 

 

Table 1: Tabulated values of CORDIC in VHDL 
Iteration 

Number 

Value of X-

coordinate 

Value of Y-

coordinate 

Value of 

Angle 

Iteration 1 0 262144 -61440 

Iteration 2 131072 262144 47104 

Iteration 3 65536 294912 -10388 

Iteration 4 102400 286720 18496 

Iteration 5 84480 293120 4147 

Iteration 6 75320 295760 -3184 

Iteration 7 79941 294584 483 

Iteration 8 77640 295208 -1351 

Iteration 9 78793 294905 -435 

Iteration 10 79368 294752 24 

Iteration 11 79081 294829 205 

Iteration 12 79224 294791 -123 

Iteration 13 79295 294772 -82 

Iteration 14 79330 294763 -57 

Iteration 15 79347 294759 -44 

Final scaled 

value 
0.184 0.682  

 

Table 2: MATLAB values of 16 iterations of CORDIC 
Iteration 

Number 

Value of X-

coordinate 

Value of Y-

coordinate 

Value of 

Angle 

Iteration 1 0 1.000 -0.2618 

Iteration 2 0.5 1.000 0.2018 

Iteration 3 0.2500 1.125 -0.0431 

Iteration 4 0.3906 1.0938 0.0812 

Iteration 5 0.3223 1.1182 0.0188 

Iteration 6 0.2873 1.1282 -0.0124 

Iteration 7 0.3050 1.1237 0.0032 

Iteration 8 0.2962 1.1261 -0.0046 

Iteration 9 0.3006 1.1250 -0.007 

Iteration 10 0.3028 1.1244 0.0012 

Iteration 11 0.3017 1.1247 0.0003 

Iteration 12 0.3011 1.1248 -0.002 

Iteration 13 0.3014 1.1248 0.000 

Iteration 14 0.3014 1.1248 0.000 

Iteration 15 0.3014 1.1248 -0.001 

 

Table 3: Hardware utilization of CORDIC Algorithm 

Logic Utilization Used Available Utilization 

Number of Slice Registers 71 93120 0% 

Number of Slice LUTs 351 46560 0% 

Number of Fully Used LUT-

FF pairs 
71 351 20% 

Number of Bounded IOBS 132 240 55% 

Number of BUFGCTRLS 1 32 3% 

 

Table 4: Hardware utilization of 16-point FFT Algorithm 

Logic Utilization Used Available Utilization 

Number of Slice Registers 942 2443200 0% 

Number of Slice LUTs 2795 1221600 0% 

Number of Fully Used LUT-

FF pairs 
729 3008 24% 

Number of Bounded IOBS 962 1200 80% 

Number of BUFGCTRLS 1 128 0% 

Number of DSP48E1s 19 2160 0% 

 
Figure 5: VHDL simulation result for 16 point FFT 

Algorithm 

  

7. Conclusion 
 

In the proposed paper the conventional implementation of 

CORDIC algorithm for computing the X and Y 

coordinates for a particular angle is done using pipelined 

architecture with maximum accuracy and less hardware. 

Along with the CORDIC 64-point FFT algorithm is also 

implemented with an accuracy lose of 0.4% and the final 

resultants are shown in the figure 5. The final excess bits 

of the FFT are truncated by using truncating module that 

reduces the bits without the loss of accuracy. Due to the 

multi processing modules the output of N point FFT is 

obtained in 𝑙𝑜𝑔2 𝑁 clock cycles that are shown in the 

above figure. The final values of FFT are stored in micro 

semi SRAM module. 

 

References 
 

[1] Design, Simulation, Implementation, and Performance 

Analysis of a fixed-point 8 Point FFT Core for Real 

Time Application in Verilog HDL, International 

Journal of Applied Research and Studies (IJARS) 

ISSN: 2278-9480 Vol 3, Issue 5 (May – 2014) 

[2] Serin Sera Paul, Simy M Baby “An Efficient Design 

of Parallel Pipelined FFT Architecture”in IJECS 

Vol.3 Oct. 2014 

[3] Neha V. Mahajan, Dr. J. S. Chitode “Simple 

Computation of DIT FFT” IJARCSSE, Vol 4, Issue 5, 

May 2014 

[4] Sudha Kiran G , Brundavani P “FPGA 

Implementation of 256-Bit, 64-Point DIT-FFT Using 

Radix-4 Algorithm” Vol 3, Issue 9, September 2013  

[5] Venkata Subbarao Gutta, S. Malarvizhi “FPGA 

Implementation of a CORDIC-based Radix-8 FFT 

Processor for Real-Time Harmonic Analyzer“ IJCA 

(0975 – 8887) in National conference on VSLI and 

Embedded systems 2013  

[6] J.Volder, “The CORDIC trigonometric computing 

technique”, IEEE Transactions on Electronic 

Paper ID: IJSER1569 28 of 29



International Journal of Scientific Engineering and Research (IJSER) 
www.ijser.in 

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05 

Volume 3 Issue 4, April 2015 
Licensed Under Creative Commons Attribution CC BY 

Computers, vol.EC-8, no. 8, pp 330-334, September 

1959  

[7] Naveen Kumar, Amandeep Singh Sappal “ CORDIC 

Design and Architecture”, (IJACSA) Vol. 2, No. 4, 

2011. 

[8] Pipelined Parallel FFT Architectures via Folding 

Transformation, Manohar Ayinala, Student Member, 

IEEE, Michael Brown, and Keshab K. Parhi, Fellow, 

IEEE transactions on very large scale integration (vlsi) 

systems, vol. 20, no. 6, June 2012. 

[9] J M Rudagi, Srikant, Basavaraj B Patil, Dr S 

Subbaraman ,“Performance Analysis of Radix 4 

CORDIC Processor in Rotation mode with Parallel 

Scale factor Computation”,IJETAE Vol 2, Issue 7, 

July 2012. 

[10] Amritakar Mandal* and Rajesh Mishra” 

Reconfigurable Design of Pipelined CORDIC 

Processor for Digital Sine-Cosine” Journal of Signal 

Processing Theory and ApplicationsOct.20 (2012). 

[11] Pramod, K.Sridharan “50Yearsof CORDIC: 

Algorithms, Architectures, and Applications”, IEEE 

transactions on circuits and systems I:regular papers, 

vol.56,no.9,september2009 

[12] John F. Wakerly, Digital Design Principles and 

Practices, Fourth Edition, Pearson Education, Inc. 

2006. 

[13] S. He and M. Torkelson, “A new approach to pipeline 

FFT processor,” in Proc. 10th Int. Parallel Processing 

Symp., 1996, pp. 766–770. 

[14] H. Wold and A. M. Despain, “Pipeline and parallel-

pipeline FFT processors for VLSI implementation,” 

IEEE Trans. Comput., vol. C-33, no. 5, pp. 414–426, 

May 1984. 

[15] J.S. Walther, “A unified algorithm for elementary 

functions”, in: Proceedings of Spring. Joint Computer 

Conference, 1971, pp. 379–385.  

[16] J. W. Cooley and J. Tukey, “An algorithm for 

machine calculation of complex fourier series,” Math. 

Comput., vol. 19, pp. 297–301, Apr. 1965. 

[17] VHDL programming by J.Baskar 

Paper ID: IJSER1569 29 of 29




