
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 4, April 2015
Licensed Under Creative Commons Attribution CC BY

Pipelined Implementation of CORDIC and 64-Point

FFT with Memory Interfacing Module

K. Naga Chaitanya
1
, Dr. P. Trinatha Rao

2

1M.Tech VLSI, Department of ECE, GITAM University Hyderabad GITAM University, Hyderabad, India

2Associate.Professor, Department of ECE, GITAM University Hyderabad GITAM University, Hyderabad, India

Abstract: Signal processing plays an important role in the field of communication Engineering. The amount of data that is received is

processed by using different algorithms. Discrete Fourier Transform (DFT) is one of the technique that is used to compute the data.

Direct computation of DFT results in complexity; as a result Fast Fourier Transform (FFT) is one of the algorithms to reduce the

complexity. The proposed paper presents the parallel-pipelined implementation of radix-2 fixed point 32-point FFT algorithm using state

machine as controller and fixed point pipelined implementation of Linear CORDIC that operates for the angles−
𝝅

𝟐
≤ 𝜽 ≤

𝝅

𝟐
. The result

of 64-point FFT are obtained in M=𝒍𝒐𝒈𝟐 𝑵 clock cycles due to multi processor technique. Initially FFT functionality is checked using

MATLAB and finally simulated and synthesized using Xilinx ISE 14.1.Besides CORDIC algorithm is implemented in both MATLAB

and in Xilinx on Virtex-7. The main objective of this work is to obtain an area efficient FFT and CORDIC without performance loss that

could be used as a part of Signal processing.

Keywords: Signal processing, DFT, FFT, CORDIC, state machine controller

1. Introduction

A signal in communication systems is referred as a

function that conveys information about the behavior or

attributes about information contained in the signals,

signal processing is done on the signals. As the signals

produced from physical quantities are analog in nature,

these signals are converted in to discrete by sampling

technique before processing. Therefore Discrete Time

Signal processing is for sampled signals, defined only at

discrete points in time and as such are quantized in time,

but not in magnitude. In Digital Signal Processing (DSP)

working on frequency domain is advantageous when

compared to time domain [1]. This is overcome by

Discrete Fourier Transform (DFT) that converts a signal in

discrete time domain to discrete frequency domain.

Computation of DFT is performing various mathematical

operations like addition, multiplication etc on the received

data. Computation directly by using DFT algorithm is

quite tedious and complex which influences in global

computation cost of design that consumes N2 additions

and N(N − 1) multiplications. Cooley and Turkey

developed the well-known radix-2 FFT algorithm to

reduce the computational load of the DFT [2].

The paper is organized into five sections. In section-III we

discuss the brief view of FFT, in section-IV about

CORDIC algorithm and finally section-V gives the opted

methodology and in VI Simulation results of CORDIC and

FFT.

2. Literature Review

Brett W. Dickson and Albert A. Conti proposed a

Pipelined Fast Fourier Transform (FFT) architectures,

which are efficient for long instances (32k points and

greater), are critical for modern digital communication and

Radar systems. For long instances, Single-Path Delay-

Feedback (SDF) FFT architectures minimize required

memory, which can dominate circuit area and power

dissipation. Their paper presents a parallel Radix-22 SDF

architecture capable of significantly increased pipelined

throughput at no cost to required memory or operating

frequency. A corresponding parallel coefficient generator

is also presented. Resource utilization results and analysis

are presented targeted for a 45nm silicon-on-insulator

(SOI) application-specific integrated circuit (ASIC)

process. Multipliers implemented using Vedic

mathematics is superior in terms of area efficiency. Carry

Select Adders (CSLA) are one of the fastest adders used in

several processors to perform fast and complex arithmetic

functions. In the proposed paper, the Vedic multiplier

which is developed using the Urdhva Tiryakbayam Sutra

along with modified carry select adder is used to perform a

Radix-22pipeline Fast Fourier Transform. The Fast Fourier

Transform (FFT) which is implemented using Vedic

multiplier and adder is then compared with FFT

implemented using traditional multipliers and adders and

its performance is verified.

3. Fast Fourier Transform Algorithm

Fast Fourier Transform (FFT) is a commonly used

technique for the computation of Discrete Fourier

Transform (DFT) [3]. DFT computations are required in

the fields like filtering, spectral analysis, video processing

etc. to calculate the frequency spectrum or to identify a

system’s frequency response from its impulse response

and vice versa. Based on how one divides a set of N inputs

into two sets of N/2 numbers, there are two types of radix-

2 FFT algorithm or Cooley-Turkey algorithm. They are [4]

i Decimation in time FFT (DIT-FFT)

ii Decimation in frequency FFT (DIF-FFT).

In the proposed paper implementation of FFT algorithm is

done using DIT-FFT.

Paper ID: IJSER1569 25 of 29

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 4, April 2015
Licensed Under Creative Commons Attribution CC BY

The N-point discrete Fourier transform is defined by

 X n = x n WnkN−1
n=1 (1)

X n = x 2n W2nk
N

2
−1

n=1 + x 2n + 1 W(2n+1)k
N

2
−1

n=1 (2)

Therefore

X n = x 2n WN

2

nk
N

2
−1

n=1 + WN
nk x 2n + 1 WN

2

nk
N

2
−1

n=1 (3)

 X n = G n + WN
nk H n (4)

This equations state that the input sequence is divided into

consecutive sets of even and odd samples. In order to

obtain the sets the input samples digit values are bit

reversed and the resultant set is applied as input to FFT

block. To calculate the inverse transform, the real and

imaginary part of the input and output are swapped. From

the above equations, Wnk is twiddle factor term. This

twiddle factor term can be realized as butterfly operation

which is the important building block of FFT algorithm

[3]. The difference between Decimation In Time (DIT)

and Decimation in Frequency (DIF) lies in the position of

the twiddle factor multiplication, which is either

performed before or after the subtraction and addition [4].

The technique use for FFT is based on divide and conquer,

it will be most efficient if the input sequence is of length N

= rp , where N is called point, r is called radix, and p is a

positive integer. An N-point FFT can be computed by

using p stages of which each stage having N/2 butterflies

[5].

Figure 1: A radix-2 DIT and DIF Butterfly architecture

Twiddle factor generator is a key component in IFFT/FFT

computation. There exist many popular generation

techniques for twiddle factor; Coordinate Rotation DIgital

Computer (CORDIC) algorithm, pipelined CORDIC

algorithm, polynomial-based approach, ROM-based

scheme, and the recursive function generators. For small

lengths such as 64-point to 512 point, ROM-based is a

better choice[6].Therefore in the proposed paper the

implementation of pipelined CORDIC along with the

synchronous parallel FFT is done and discussed in the next

section.

4. CORDIC Algorithm

The key concept of CORDIC arithmetic is based on the

simple and ancient principles of two-dimensional

geometry. But the iterative formulation of a computational

algorithm for its implementation was first described in

1959 by Jack E. Volder for the computation of

trigonometric functions, multiplication and division [6].

CORDIC based computing received increased

attentionin1971, when John Walther showed that, by

varying a few simple parameters, it could be used as a

single algorithm for unified implementation of a wide

range of elementary transcendental functions involving

logarithms, exponentials, and square roots along with

those suggested by Volder [7]. CORDIC is attractive due

to the simplicity of its hardware implementation, since the

same iterative algorithm could be used for all the above

mathematical applications using the basic shift-add

operations of the form x ± y2−i . The conventional method

of implementation of 2D vector shown in the Figure.1

using Givens rotation transform is represented by the

equations [9].

 xout = xin cos θ–yin sin θ, (5)

 yout = xin sin θ+yin cos θ. (6)

where (xin ,yin) and (xout ,yout) are the initial and final

coordinates of the vector respectively. The hardware

realization of these equations requires four multiplications,

two additions/subtractions and accessing the table stored in

the memory for trigonometric coefficients. The CORDIC

rotator performs 2D rotation using a series of specific

incremental rotation angles selected so that each is

performed by a shift and add operation iteratively.

The three basic equations of CORDIC algorithm are:

 xi+1=xi − mσiyiρ
–Sm ,i (7)

 yi+1=yi + σixiρ
–Sm ,i (8)

 zi+1=zi − σiαm,i (9)

Based on the value of m the algorithm can operate in one

of three configurations: Linear (m = 0), Circular(m = 1)

and Hyperbolic(m = −1). Within each of these

configurations the algorithm functions in one of two

modes – rotation or vectoring.𝛔𝐢 represents either

clockwise or counter clockwise direction of rotation, ρ

represents the radix of the number system and the shift

sequence Sm ,i depends on the coordinate system and the

radix of number system. Sm,i affects the convergence of

the algorithm . In rotation mode, the input vector is rotated

by a specified angle, while in vectoring mode the

algorithm rotates the input vector to the x-axis while

recording the angle of rotation is required. The value of αi

also changes according to the configuration. Depending on

the mode of operation z and y are the steering variables in

rotation and vectoring mode respectively. The length of

the vector increases if required micro rotations are not

perfect, so in order to maintain a constant vector length,

the obtained results have to be scaled by the scale factor K

and it is given by the equation.

K= kii (10)

The below flow graph represents the flow of CORDIC for

computation of values:

Paper ID: IJSER1569 26 of 29

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 4, April 2015
Licensed Under Creative Commons Attribution CC BY

Figure 2: Flow Chart of CORDIC Algorithm

Although no popular architectures are known to us for

fully parallel implementation of CORDIC, different forms

of pipelined implementation of CORDIC have however

been proposed for improving the computational

throughput [10].To handle latency bottlenecks, various

architectures are present. Most of the well-known

architectures could be grouped under bit parallel iterative

CORDIC, bit serial iterative CORDIC and pipelined

CORDIC architecture. Since the CORDIC iterations are

identical, it is very much convenient to map them into

pipelined architectures. The main emphasis in efficient

pipelined implementation lies with the minimization of the

critical path.

Figure 3: Basic structure of a pipelined CORDIC unit

5. Implementation of 64-Point FFT and

CORDIC

In the proposed paper as the results of 64 point FFT can’t

be represented exactly. So the design methodology that is

used for 64-point FFT is explained by using 16-point FFT.

The implementation of FFT is done using DIT-FFT

algorithm. The implementation of FFT consists of bit

reversing module, state machine design that acts as a

controller for the total design, butter fly module and finally

shifter module design.

A. Architecture of FFT: Initially in order to realize the

hardware module of the FFT parallel iterative

architecture is chosen as the latency for the parallel

iterative architecture is less when compared to the other

architectures. The values computed are stored iteratively

into the intermediate registers that increase the

throughput.

B. Angle Storage of FFT:

Twiddle factor is as cosine value of an angle. These

angles are in decimal point form. So as the angles can’t

be represented directly. In Xilinx the conversion of the

values need to be done for the ease of computation. The

values can be represented in either fixed-point or

floating point format. Representing and operating in

Floating point format is tedious that consumes a lot of

hardware. Therefore Fixed-point format is opted for the

storage of values. The scaling of values is done by

multiplying with 28 and the resultant is stored in ROM,

and at the time of computation the angles are accessed

based on the address.

C. Design of FFT controller:

The entire FFT module operations are controlled by

using State machine as a controller. The FSM operates

in 4 states that are named as 𝑆0,𝑆1,,𝑆2 and 𝑆3 Each stage

of the FSM performs an operation.

Figure 4: State machine controller of FFT Algorithm

D. Design Consideration of CORDIC in Xilinx:

In design of CORDIC element using fixed point arithmetic

the accuracy and latency of the result mainly depends on

the iteration count and its implementation. To achieve n-

bit accuracy, the word length of x and y data path should

be (𝑛 + 2 + 𝑙𝑜𝑔2𝑛) bit width and for the computation of

the angle 𝜃 the bit width should be (𝑛 + 𝑙𝑜𝑔2𝑛).The

design of CORDIC is made by considering 22 bit width of

x and y along with overflow 20 bit width for angle

representation.

Paper ID: IJSER1569 27 of 29

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 4, April 2015
Licensed Under Creative Commons Attribution CC BY

6. VHDL Simulation Results of CORDIC

and FFT

The below table states the values of CORDIC obtained in

Xilinx and MATLAB. On comparing both the tabulated

values there is 0.01% error in one of the coordinates which

is negligible .So maximum amount of accuracy is obtained

through this opted methodology.

Table 1: Tabulated values of CORDIC in VHDL
Iteration

Number

Value of X-

coordinate

Value of Y-

coordinate

Value of

Angle

Iteration 1 0 262144 -61440

Iteration 2 131072 262144 47104

Iteration 3 65536 294912 -10388

Iteration 4 102400 286720 18496

Iteration 5 84480 293120 4147

Iteration 6 75320 295760 -3184

Iteration 7 79941 294584 483

Iteration 8 77640 295208 -1351

Iteration 9 78793 294905 -435

Iteration 10 79368 294752 24

Iteration 11 79081 294829 205

Iteration 12 79224 294791 -123

Iteration 13 79295 294772 -82

Iteration 14 79330 294763 -57

Iteration 15 79347 294759 -44

Final scaled

value
0.184 0.682

Table 2: MATLAB values of 16 iterations of CORDIC
Iteration

Number

Value of X-

coordinate

Value of Y-

coordinate

Value of

Angle

Iteration 1 0 1.000 -0.2618

Iteration 2 0.5 1.000 0.2018

Iteration 3 0.2500 1.125 -0.0431

Iteration 4 0.3906 1.0938 0.0812

Iteration 5 0.3223 1.1182 0.0188

Iteration 6 0.2873 1.1282 -0.0124

Iteration 7 0.3050 1.1237 0.0032

Iteration 8 0.2962 1.1261 -0.0046

Iteration 9 0.3006 1.1250 -0.007

Iteration 10 0.3028 1.1244 0.0012

Iteration 11 0.3017 1.1247 0.0003

Iteration 12 0.3011 1.1248 -0.002

Iteration 13 0.3014 1.1248 0.000

Iteration 14 0.3014 1.1248 0.000

Iteration 15 0.3014 1.1248 -0.001

Table 3: Hardware utilization of CORDIC Algorithm

Logic Utilization Used Available Utilization

Number of Slice Registers 71 93120 0%

Number of Slice LUTs 351 46560 0%

Number of Fully Used LUT-

FF pairs
71 351 20%

Number of Bounded IOBS 132 240 55%

Number of BUFGCTRLS 1 32 3%

Table 4: Hardware utilization of 16-point FFT Algorithm

Logic Utilization Used Available Utilization

Number of Slice Registers 942 2443200 0%

Number of Slice LUTs 2795 1221600 0%

Number of Fully Used LUT-

FF pairs
729 3008 24%

Number of Bounded IOBS 962 1200 80%

Number of BUFGCTRLS 1 128 0%

Number of DSP48E1s 19 2160 0%

Figure 5: VHDL simulation result for 16 point FFT

Algorithm

7. Conclusion

In the proposed paper the conventional implementation of

CORDIC algorithm for computing the X and Y

coordinates for a particular angle is done using pipelined

architecture with maximum accuracy and less hardware.

Along with the CORDIC 64-point FFT algorithm is also

implemented with an accuracy lose of 0.4% and the final

resultants are shown in the figure 5. The final excess bits

of the FFT are truncated by using truncating module that

reduces the bits without the loss of accuracy. Due to the

multi processing modules the output of N point FFT is

obtained in 𝑙𝑜𝑔2 𝑁 clock cycles that are shown in the

above figure. The final values of FFT are stored in micro

semi SRAM module.

References

[1] Design, Simulation, Implementation, and Performance

Analysis of a fixed-point 8 Point FFT Core for Real

Time Application in Verilog HDL, International

Journal of Applied Research and Studies (IJARS)

ISSN: 2278-9480 Vol 3, Issue 5 (May – 2014)

[2] Serin Sera Paul, Simy M Baby “An Efficient Design

of Parallel Pipelined FFT Architecture”in IJECS

Vol.3 Oct. 2014

[3] Neha V. Mahajan, Dr. J. S. Chitode “Simple

Computation of DIT FFT” IJARCSSE, Vol 4, Issue 5,

May 2014

[4] Sudha Kiran G , Brundavani P “FPGA

Implementation of 256-Bit, 64-Point DIT-FFT Using

Radix-4 Algorithm” Vol 3, Issue 9, September 2013

[5] Venkata Subbarao Gutta, S. Malarvizhi “FPGA

Implementation of a CORDIC-based Radix-8 FFT

Processor for Real-Time Harmonic Analyzer“ IJCA

(0975 – 8887) in National conference on VSLI and

Embedded systems 2013

[6] J.Volder, “The CORDIC trigonometric computing

technique”, IEEE Transactions on Electronic

Paper ID: IJSER1569 28 of 29

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 4, April 2015
Licensed Under Creative Commons Attribution CC BY

Computers, vol.EC-8, no. 8, pp 330-334, September

1959

[7] Naveen Kumar, Amandeep Singh Sappal “ CORDIC

Design and Architecture”, (IJACSA) Vol. 2, No. 4,

2011.

[8] Pipelined Parallel FFT Architectures via Folding

Transformation, Manohar Ayinala, Student Member,

IEEE, Michael Brown, and Keshab K. Parhi, Fellow,

IEEE transactions on very large scale integration (vlsi)

systems, vol. 20, no. 6, June 2012.

[9] J M Rudagi, Srikant, Basavaraj B Patil, Dr S

Subbaraman ,“Performance Analysis of Radix 4

CORDIC Processor in Rotation mode with Parallel

Scale factor Computation”,IJETAE Vol 2, Issue 7,

July 2012.

[10] Amritakar Mandal* and Rajesh Mishra”

Reconfigurable Design of Pipelined CORDIC

Processor for Digital Sine-Cosine” Journal of Signal

Processing Theory and ApplicationsOct.20 (2012).

[11] Pramod, K.Sridharan “50Yearsof CORDIC:

Algorithms, Architectures, and Applications”, IEEE

transactions on circuits and systems I:regular papers,

vol.56,no.9,september2009

[12] John F. Wakerly, Digital Design Principles and

Practices, Fourth Edition, Pearson Education, Inc.

2006.

[13] S. He and M. Torkelson, “A new approach to pipeline

FFT processor,” in Proc. 10th Int. Parallel Processing

Symp., 1996, pp. 766–770.

[14] H. Wold and A. M. Despain, “Pipeline and parallel-

pipeline FFT processors for VLSI implementation,”

IEEE Trans. Comput., vol. C-33, no. 5, pp. 414–426,

May 1984.

[15] J.S. Walther, “A unified algorithm for elementary

functions”, in: Proceedings of Spring. Joint Computer

Conference, 1971, pp. 379–385.

[16] J. W. Cooley and J. Tukey, “An algorithm for

machine calculation of complex fourier series,” Math.

Comput., vol. 19, pp. 297–301, Apr. 1965.

[17] VHDL programming by J.Baskar

Paper ID: IJSER1569 29 of 29

