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Abstract: This MapReduce methodology has been popularized by use at Google, was recently proprietary by Google to be used on 

clusters and authorized to Apache, and is currently being developed by an intensive community of researchers. MapReduce is a 

programming model initiated by Google’s Team for processing huge datasets in distributed systems; it helps programmers to write 

programs that process big data. MapReduce is a programming model for processing and generating large data sets. Users specify a map 

operate that processes a key/value combine to get a group of intermediate key/value pairs and a scale back operate that merges all 

intermediate values related to constant intermediate key. Using MapReduce programming paradigm the big data is processed. Big data 

sizes are a constantly moving target currently ranging from a few dozen terabytes to many petabytes of data in a single data set. 

MapReduce has been seen as one of the key enabling approaches for meeting continuously increasing demands on computing resources 

imposed by massive data sets. The reason for this is often the high scalability of the MapReduce paradigm that permits for massively 

parallel and distributed execution over an large number of computing nodes. The volume of data with the speed it is generated makes it 

difficult for the current computing infrastructure to handle big data. To overcome this drawback, big data processing can be performed 

through a programming paradigm known as MapReduce. Typical, implementation of the MapReduce paradigm requires networked 

attached storage and parallel processing. Hadoop and HDFS by apache is widely used for storing and managing big data. 
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1. Introduction 
 

Nowadays, dealing with datasets in the order of terabytes 

or even petabytes is a reality [3]. MapReduce is a 

programming model for expressing distributed 

computations on massive amounts of data and an 

execution framework for large-scale data processing on 

clusters [14]. Therefore, processing such big datasets in an 

efficient way is a clear need for many users [3]. The main 

reasons of such acceptance are the scalability, failover and 

ease-of-use properties of Hadoop MapReduce. 

MapReduce is an abstraction to organize parallelizable 

tasks [15]. MapReduce Algorithm is been described into 

two ways: 

 

1) Map: Processing of data. 

2) Reduce: Collection and digestion of data. 

  

The MapReduce framework will take care of nodes 

coordination, data transport etc. [15]. MapReduce is a 

programming model [14] and a  software framework  for 

processing huge data  sets  in  a distributed fashion 

over  a  several  machines. The core idea 

behind MapReduce is  mapping  your  data set  into  a 

collection  of <key,  value>  pairs,   and  then reducing 

overall  pairs  with  the  same  key [13]. In the Big Data 

community, MapReduce has been continuously increasing 

demands on computing resources imposed by massive 

data sets. Also, MapReduce faces a number of problems 

when dealing with Big Data including the lack of a high-

level language such as SQL, support for iterative ad-hoc 

data exploration, stream processing and challenges in 

implementing iterative algorithms [4]. 

 

The described MapReduce challenges grouped into four 

main categories corresponding to Big Data tasks types: 

data storage, analytics, online processing, security and 

privacy. An overview of the described challenges is 

presented in Table I while details of each category are 

discussed. Additionally, this paper presents current 

accomplishment aimed at improving and extending 

MapReduce to address the described challenges [4]. 

 

Table 1: An Overview of Mapreduce Challenges 
 Main challenges Main solution approaches 

Data Storage Schema-free, 

index free 

 

In-database MapReduce 

NoSQL stores – MapReduce with 

various indexing approaches 

Lack of 

standardized 

SQL-like 

language 

Apache Hive – SQL on top of 

Hadoop 

NoSQL stores: proprietary SQL-

like languages (Cassandra, Mongo 

DB) or Hive (HBase) 

Analytics Scaling complex 

linear algebra 

Use computationally less 

expensive, though less accurate, 

algebra 

Interactive 

analysis 

Map interactive query processing 

techniques for handling small data, 

to MapReduce 

Iterative 

algorithms 

Extensions of MapReduce 

implementation such as Twister and 

Hadoop 

Statistical 

challenges for 

learning 

Data pre-processing using 

MapReduce 

Online 

processing 

Performance / 

Latency issues 

Direct communication between 

phases and jobs 

Programming 

model 

Alternative models, such as Map 

Update and Twitter’s Storm 

Privacy and 

security 

Auditing Trusted third party monitoring, 

security analytics 

Access control Optimized access control approach 

with semantic understanding 

Privacy Privacy policy enforcement with 

security to prevent information 

leakage 
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2. Background 
 

Processing large volume of data requires distributing data 

into thousands of nodes in order to final processing task in 

short reasonable time. Google’s team developed 

MapReduce to automatically parallelize computation, 

MapReduce manages data partitioning and distribute it 

among computation nodes. MapReduce also handles 

failures in node. MapReduce helps programmers to 

concentrate in writing a program that process large data, 

programmers concentrate on the matter in details and 

MapReduce manage distributed computation problems. 

Apache Hadoop is an open source implementation of 

MapReduce. The input of Map function must be 

represented as key/value pair, for example, the map 

function that processes a set of document to compute word 

counts takes a document as a key and the content of the 

document as a value. Map function produces a set of 

intermediate key/values. In case of word count the 

intermediate keys will be individual words and the value 

will be the number of occurrences of these words. The 

input of Reduce function is the output of Map function 

(intermediate key/value pairs). The data taken as a input is 

managed by Google File System (GFS), Google File 

System divides input data into a number of blocks; the 

section block size is specified by users. Google File 

System replicates each block; the default duplicate 

number is three. Google File System puts one replicate in 

the same rack and puts the other clone in other rack. 

MapReduce runs in cluster of nodes; one node acts as a 

master node and other nodes act as workers node. 

Workers nodes are responsible for running map and 

reduce tasks; the master is responsible for assigning tasks 

to the idle workers. Each map worker reads the content of 

its associated split and extracts key/value pairs and passes 

it to the user defined Map function. The output of Map 

function is been buffered in memory and partitioned into a 

set of partitions equals to number of reducers. Master 

notifies the reduce workers to read the data from local 

disks of map workers. The result of reduce function is 

appended to output files. Users may use these files as 

input to another MapReduce call or use them for another 

distributed application [5].  

 

The origins of the map function in programming can be 

traced back to LISP programming language and reduce to 

APL, the precise specification being dependent on 

implementation. A detailed study of several different 

implementations is given in reference. Map-reduce 

operations are often used in standard imperative 

languages. Waters studied programs in the IBM Scientific 

Subroutine Package and found that that 90% of the code 

could be expressed as maps, filters and accumulations [7]. 

Map-reduce is used in Google’s MapReduce library to 

utilize large scale clusters for parallelized data processing 

applications. Programmers simply describe the associated 

mapreduce computation and a map-reduce library deals 

with the issues of initialization, configuration, load 

balancing, networking and fault tolerance. This serves to 

provide programmers with a simple means to develop 

applications for a massively parallel machine without the 

usual associated complications. They showed that a 

variety of algorithms including locally weighted linear 

regression, logistic regression, K-means, naïve Bayes, 

independent component analysis, principal component 

analysis, support vector machine, Gaussian discriminative 

analysis, expectation maximization and back propagation 

can be described and efficiently implemented on multicore 

and multiprocessor machines. The Brook language for 

stream computing on GPUs directly supports the efficient 

compilation of the map and reduces operations [7]. 

 

3. Big Data Analytics 
 

Big Data is typically characterized by the so called, 3 

―V’s‖ namely; volume, velocity and variety, and when it 

comes to the volume, the statistics bandied around by Big 

Data cognoscenti are truly breathtaking [11]. 

 

Volume: The increase in data volumes among enterprise 

systems is caused by dealing volumes and alternative 

traditional data types, similarly as by new sort of data. 

Excessive volume is a storage issue, but too much data is 

also a massive analysis issue [12]. 

 

Variety: IT leaders perpetually had a problem translating 

giant volumes of transactional information into choices — 

currently there are more types of information to analyze 

— mainly coming from social media and mobile (context-

aware). Selection includes tabular data (databases), 

hierarchical information, documents, e-mail, metering 

data, video, still images, audio, stock ticker information, 

financial transactions and more [12]. 

 

Velocity: This involves streams of data, structured record 

creation, and convenience for access and delivery. 

Velocity means both how fast information is being 

produced and how fast the data must be fulfill to meet 

demand [12]. 

 

For example, 15 out of 17 industry sectors in the United 

States will have more data stored per company than the 

U.S. Library of Congress, which itself collected 235 

terabytes of data in April 2011. Wal-Mart Stores Inc. 

handles more than 1 million customer transactions every 

hour, feeding databases estimated at more than 2.5 

petabytes, or the equivalent of 167 times the books in the 

Library of Congress. 30 billion pieces of content are 

shared on Facebook, monthly. Finally, Intel estimates that 

there will be 15 billion devices connected to the internet 

by 2015. Ironically, in many parts of the world, more 

people have access to a mobile device than to a toilet or 

running water [11]. 
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Figure 5: Big Data Expansion 

 

4. Types of Mapreduce 
 

The MapReduce algorithm consists of three steps:- 

1. MAP: The master node that takes the input, divides 

the input node into smaller sub issues, and 

distributes them to the employee nodes. A worker 

node which may do this again in turn, noted to a 

multilevel tree structure. The employee node 

measures the smaller drawback, and passes the 

solution back to its master node [6]. 

 

map(inKey, inValue) -> list(intermediateKey, 

intermediateValue) 

The purpose of the map phase is to construct the data in 

preparation for the alter done in the reduction phase. The 

input to the map function is in the form of key value pairs, 

even though the data input to a MapReduce program is a 

file or file(s). By default, the value is a data record and the 

key is generally the counterbalance of the data record 

from the beginning of the data file [9]. 

 
Figure 2: Map Process 

 

2. SHUFFLE: Worker nodes readjust data based on the 

output, such that all data belonging to one key is 

located on the same worker node. 
3. REDUCE: The master node then gather the answers to 

all the sub problems and couple them in some way to 

form the output – the answer to the problem it was 

originally trying to solve [6]. 

 

Reduce (intermediateKey, list(intermediateValue)) -> 

list(outKey, outValue) 

 

Each reduce function processes the intermediate values 

for a particular key generated by the map function and 

generates the output. Essentially there exists a one to one 

mapping between keys and reducers. Multiple reducers 

can run in parallel, since they are independent of one 

another. The number of reducers is then decided by the 

user. By default, the number of reducers is 1 [9]. 

 

 
Figure 3: Reduce Process 

 

As the multiple tasks run in parallel, it manages all 

communications and data transfers between the various 

parts of the system [6]. 

 

 
MapReduce Framework 

5. Dataflow 
 

The frozen part of the MapReduce framework is a large 

distributed sort. The hot spots, which the application 

defines, are [8]: 

1) Input reader 

The input reader divides the input into proper size 

'splits' (in practice commonly 64 MB to 128 MB) and 

the framework grants one split to each Map function. 

The input reader interprets data from stable storage 

(typically a distributed file system) and generates 

key/value pairs. A common example will read a 

directory full of text files and then return each line as 

a record. 

 

2) Map function 

The Map function takes a sequence of key/value 

pairs, processes each, and develops zero or more 

output key/value pairs. The input and output types of 

the map can be (and often are) different from each 

other. If the application is doing a word count, the 

map function would break the line into words and 

output a key/value pair for each word. Each output 
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pair would contain the word as the key and the 

number of occurrence of that word in the line as the 

value. 

3) Partition function 

Each Map function output is allocated to a particular 

reducer by the application's partition function for 

sharding purposes. The partition function is given the 

key and the number of reducers and returns the index 

of the desired reducer. 

A typical default is to hash the key and use the hash 

value modulo the number of reducers. It is important 

to pick a partition function that gives an 

approximately uniform distribution of data per shared 

for load-balancing purposes, otherwise the 

MapReduce operation can be held up waiting for slow 

reducers (reducers assigned more than their share of 

data) to finish. Between the map and reduce stages, 

the data is shuffled (parallel-sorted / exchanged 

between nodes) in order to move the data from the 

map node that produced it to the shard in which it will 

be reduced. The shuffle can sometimes take longer 

than the computation time depending on network 

bandwidth, CPU speeds, data produced and time 

taken by map and reduce computations. 

4) Comparison function 

The input for each Reduce is pulled from the machine 

where the Map ran and sorted using the application's 

comparison function. 

5) Reduce function 

The framework calls the application's Reduce 

function once for each unique key in the sorted order. 

The Reduce can iterate through the values that are 

associated with that key and produce zero or more 

outputs. In the word count example, the Reduce 

function takes the input values, sums them and 

generates a single output of the word and the final 

sum. 

6) Output writer 

The Output Writer writes the output of the Reduce to 

the stable storage [8]. 

 

 
Figure 4: Map Reduce Logical Data Flow 

 

6. Applications of Mapreduce 
 

Several MapReduce applications have been implemented 

and executed on Google’s clusters for example, 

processing crawled documents, web request logs in order 

to compute various kinds of derived data, such as inverted 

indices. In addition, MapReduce has been applied for 

machine learning task, scientific simulation and large 

scale image processing tasks. Cho, et al proposed a 

framework for opinion mining in MapReduce and word 

map. Opinion Mining is a technique for extracting 

estimation from the internet. It is known as sentiment 

classification. It reads a text, analyzes it and produces a 

result like, and, which is similar to MapReduce data 

structure. Therefore, it is possible to match it well within 

MapReduce. Corduroy, et al used MapReduce for 

clustering very large moderate-to-high dimensionality 

dataset. Further, Chandar used MapReduce for performing 

join task. Chandar classifies joins algorithms into two 

categories with three algorithms for each category as 

follow:  Two-way joins where joins involving only 2 

datasets. The two way join is classified into Map-Side 

join, Reduce-Side join, and broadcast join.  Multi-way 

joins where joins involving more than 2 datasets, and it is 

classified into : Map-Side Join (for multi-way joins), 

Reduce-Side One-Shot Join, Reduce-Side Cascade Join 

Chandar found that for two-way join Map-Side joins 

performs well when the key distribution in the dataset is 

uniformly distributed. In case of one of the datasets is too 

small and it can be easily replicated across all machines 

the broadcast join is the best option [5]. 

 

7. Fault Tolerance 
 

MapReduce is designed to deal with hundreds or 

thousands of assets machines. Therefore, it must tolerate 

machine failure. The failure may be occur in master node 

or worker nodes. In case of master failure all MapReduce 

task will be aborted, and it have to be remake after 

assigning new master node. On the other hand, to track 

worker failure, the master monitors all workers checking 

worker status by periodically. If a worker doesn't respond 

to master ping in a certain amount of time, the master 

marks the worker as failed. In case of failure of map task 

worker; any map tasks either in progress or completed by 

the worker are reset back to their initial idle state, and will 

be assigned to other worker. While in case of failure in 

reduce task worker, any task in progress on a failed 

worker is assigned to idle worker. The output of 

completed reduce tasks is stored in global file system, so 

completed reduce tasks do not need to be re-executed [5]. 

 

Since the MapReduce library is designed to help process 

very large amounts of data using hundreds or thousands of 

machines, the library must tolerate machine failures 

gracefully [1]. 

 

Worker Failure  
The master pings every employee periodically. If no 

response is received from a employee in a bulk of time, 

the master marks the worker as failed. Any map tasks 

which is completed by the worker are been reset back to 

their initial idle state, and therefore become eligible for 

scheduling on other workers. Similarly, if any map task or 

reduce task in progress on a failed worker is also reset to 

idle and becomes eligible for rescheduling. Completed 

map tasks are re-executed on a failure because their output 

is stored on the local disk of the failed machine and is 

therefore distant. Completed reduce tasks do not need to 

be re-executed since their output is stored in a global file 

system. When a map task is executed first by worker A 

and then later executed by worker B (because A failed), 

all workers executing reduce tasks are notified of the re-

execution. Any reduce task that has not already read the 

data from worker A will read the data from worker B [1]. 
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Master Failure  
It is easy to make the master write periodically 

checkpoints of the master data structures described above. 

If the master task dies, from the last check pointed state a 

new copy can be started. However, given that there is only 

a single master, its failure is absurd; therefore our current 

implementation aborts the MapReduce computation if the 

master fails. Clients can check for this condition and retry 

the MapReduce operation if they desire [1]. 

 

Semantics in the Presence of Failures 

When the user-supplied map and the reduce operators are 

deterministic functions of their input values, our 

distributed implementation produces the same output as 

would have been produced by a non-faulting consecutive 

execution of the whole program. We deem atomic 

commits of map and reduce task outputs to realize this 

property. Every in-progress task writes its output to in 

personal temporary files. When a reduce task completes, 

the reduce employee atomically renames its temporary 

output file to the final output file. If the same lower task is 

executed on multiple machines, multiple rename calls will 

then be executed for the same final output file [1]. 

 

8. What Kind of Problem Does Map Reduce 

Solve 
 

MapReduce is nice for scaling the process of huge 

datasets, but it is not designed to be responsive. 

MapReduce which is a universal term. You most likely 

mean to ask whether a fully featured MapReduce 

framework with job control, like Hadoop, is appropriate 

for you [10].  
 

In the Hadoop implementation, as an example, the 

overhead of startup sometimes takes a group of minutes 

alone. The concept here is to take a processing job that 

would take days and bring it down to the form of hours, or 

hours to minutes, etc. But you would not start a new job in 

reply to a web request and expect it to finish in time to 

respond. 

 

To touch on why this is the case, consider the way 

MapReduce works: 

A bundle of nodes receive parts of input data called splits 

and do some process (the map step). The intermediate data 

(output from the last step) is repartitioned specified 

information with like keys finishes up together. This 

usually needs some data transfer between nodes. The 

reduce nodes (which are not necessarily definite from the 

mapper nodes - a single machine can do multiple jobs in 

succession) perform the reduce step. Result data is 

collected and combined to obtain the final output set. 

MapReduce is extremely great for preprocessing data such 

that the web queries can be much faster BECAUSE they 

don't need to engage in processing [10]. 

 

9. Future of Mapreduce 
 

The big data boom has modified a plenty on the Web. 

Most noticeably, it has stimulated the creation and 

development of many new technologies, and no one of 

them has made a bigger impression than the Apache 

Hadoop open source software framework. 

As the Web continues to grow and we develop more ways 

for users to access it, big data will only get larger. Because 

of this, Hadoop is one of the most necessary projects out 

there. According to the ―Hadoop-MapReduce Market 

Forecast 2013-2018,‖ Hadoop MapReduce is expected to 

rate of grow at a compound annual rate of growth 

(CAGR) of 58 percent by 2018 that accounts for 

approximately $2.2 billion. It seems clear that Hadoop is 

well-positioned to become the industry standard 

technology for controlling big data and business 

intelligence solutions, and it presents opportunities for 

business environments that rely heavily on big data. As 

they begin to see a growing need to accommodate 

increasing amounts of data that they have to process, 

store, and analyze, they additionally see more cost-

prohibitive valuation models being imposed by 

established IT vendors. These problems negatively impact 

the IT budgets of many corporations, but thanks to the 

open source nature of Hadoop, it becomes more of a 

viable and cost-effective solution every day. 

 

10. Security and Privacy 
 

In this section security and privacy concerns for 

MapReduce and Big Data are discussed. Also, current 

efforts to locate these issues for MapReduce are presented. 

Accountability and analyzing are security issues that 

present a problem for both Big Data and MapReduce. In 

MapReduce accountability is only provided when the 

mappers and reducers are held answerable for the tasks 

they have completed. One result to this issue that has been 

proposed is the establishment of an Accountable 

MapReduce. 

 

An additional secured challenge presented to Big Data and 

MapReduce is that of providing access control, which 

shown through 3 of Big Data's defining V properties that 

are volume, variety and velocity. When dealing with a 

huge volume of information, work performed on that 

information is likely to require access to multiple storage 

devices and locations. Therefore, multiple access 

requirements will be required for any one task. When 

dealing with data that has a huge variety, semantic 

understanding of the data should play a role in the access 

control decision process. Finally, the velocity requirement 

of MapReduce and Big Data requires that whatever access 

control approach is used must be advance to determine 

access control rights in a reasonable amount of time. 

Privacy is a major topic of concern whenever huge 

amounts of information are been used. Processes such as 

data mining and predictive analytics can deduce or 

discover information linkages. Information linkages are 

advantageous to organizations, allowing them to get better 

understanding, target and provide for their clients or users. 

However, on an individual basis this discovery of 

information can cause the identities of data providers to be 

exposed [4]. 

 

11. Conclusion 
 

As we have entered into an era of Big Data, processing 

huge volumes of data has never been bigger. Through 

better Big Data analysis tools like Map Reduce over 
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Hadoop guarantees quicker advances in several scientific 

disciplines and improving the profitability and success of 

many enterprises [2]. 

 

The MapReduce programming model has been 

successfully used at Google for several different 

functions. We attribute this success to many reasons. First, 

the model is easy to use, even for the programmers 

without experience with parallel and also distributed 

systems, since it hides the information of parallelization, 

locality optimization, load balancing and fault-tolerance. 

Second, a huge variety of issues are easily expressible as 

MapReduce computations [1]. 

 

Issues and challenges MapReduce faces when dealing 

with Big Data are identified and categorized according to 

four main Big Data task types- analytics, online 

processing, data storage, security and privacy. By 

analyzing MapReduce tasks in Big Data, this paper 

provides an analysis of the field facilitates better proposal 

of Big Data projects and identifies opportunities for future 

research [4]. 
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