
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 6, June 2015
Licensed Under Creative Commons Attribution CC BY

Implementation of the Map Reduce Paradigm

Techniques in Big Data

Sagar J. Pol
1
, Rakesh Suryawanshi

2

1PG Scholar, Department of MCA, A.C Patil College of Engineering, Navi Mumbai, India

2HOD, Department of MCA, A.C Patil College of Engineering, Navi Mumbai, India

Abstract: This MapReduce methodology has been popularized by use at Google, was recently proprietary by Google to be used on

clusters and authorized to Apache, and is currently being developed by an intensive community of researchers. MapReduce is a

programming model initiated by Google’s Team for processing huge datasets in distributed systems; it helps programmers to write

programs that process big data. MapReduce is a programming model for processing and generating large data sets. Users specify a map

operate that processes a key/value combine to get a group of intermediate key/value pairs and a scale back operate that merges all

intermediate values related to constant intermediate key. Using MapReduce programming paradigm the big data is processed. Big data

sizes are a constantly moving target currently ranging from a few dozen terabytes to many petabytes of data in a single data set.

MapReduce has been seen as one of the key enabling approaches for meeting continuously increasing demands on computing resources

imposed by massive data sets. The reason for this is often the high scalability of the MapReduce paradigm that permits for massively

parallel and distributed execution over an large number of computing nodes. The volume of data with the speed it is generated makes it

difficult for the current computing infrastructure to handle big data. To overcome this drawback, big data processing can be performed

through a programming paradigm known as MapReduce. Typical, implementation of the MapReduce paradigm requires networked

attached storage and parallel processing. Hadoop and HDFS by apache is widely used for storing and managing big data.

Keywords: MapReduce, Hadoop, BigData, Google.

1. Introduction

Nowadays, dealing with datasets in the order of terabytes

or even petabytes is a reality [3]. MapReduce is a

programming model for expressing distributed

computations on massive amounts of data and an

execution framework for large-scale data processing on

clusters [14]. Therefore, processing such big datasets in an

efficient way is a clear need for many users [3]. The main

reasons of such acceptance are the scalability, failover and

ease-of-use properties of Hadoop MapReduce.

MapReduce is an abstraction to organize parallelizable

tasks [15]. MapReduce Algorithm is been described into

two ways:

1) Map: Processing of data.

2) Reduce: Collection and digestion of data.

The MapReduce framework will take care of nodes

coordination, data transport etc. [15]. MapReduce is a

programming model [14] and a  software framework  for

processing huge data  sets  in  a distributed fashion

over  a  several  machines. The core idea

behind MapReduce is  mapping  your  data set  into  a

collection  of <key,  value>  pairs,   and  then reducing

overall  pairs  with  the  same  key [13]. In the Big Data

community, MapReduce has been continuously increasing

demands on computing resources imposed by massive

data sets. Also, MapReduce faces a number of problems

when dealing with Big Data including the lack of a high-

level language such as SQL, support for iterative ad-hoc

data exploration, stream processing and challenges in

implementing iterative algorithms [4].

The described MapReduce challenges grouped into four

main categories corresponding to Big Data tasks types:

data storage, analytics, online processing, security and

privacy. An overview of the described challenges is

presented in Table I while details of each category are

discussed. Additionally, this paper presents current

accomplishment aimed at improving and extending

MapReduce to address the described challenges [4].

Table 1: An Overview of Mapreduce Challenges
 Main challenges Main solution approaches

Data Storage Schema-free,

index free

In-database MapReduce

NoSQL stores – MapReduce with

various indexing approaches

Lack of

standardized

SQL-like

language

Apache Hive – SQL on top of

Hadoop

NoSQL stores: proprietary SQL-

like languages (Cassandra, Mongo

DB) or Hive (HBase)

Analytics Scaling complex

linear algebra

Use computationally less

expensive, though less accurate,

algebra

Interactive

analysis

Map interactive query processing

techniques for handling small data,

to MapReduce

Iterative

algorithms

Extensions of MapReduce

implementation such as Twister and

Hadoop

Statistical

challenges for

learning

Data pre-processing using

MapReduce

Online

processing

Performance /

Latency issues

Direct communication between

phases and jobs

Programming

model

Alternative models, such as Map

Update and Twitter’s Storm

Privacy and

security

Auditing Trusted third party monitoring,

security analytics

Access control Optimized access control approach

with semantic understanding

Privacy Privacy policy enforcement with

security to prevent information

leakage

Paper ID: IJSER15269 108 of 113

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 6, June 2015
Licensed Under Creative Commons Attribution CC BY

2. Background

Processing large volume of data requires distributing data

into thousands of nodes in order to final processing task in

short reasonable time. Google’s team developed

MapReduce to automatically parallelize computation,

MapReduce manages data partitioning and distribute it

among computation nodes. MapReduce also handles

failures in node. MapReduce helps programmers to

concentrate in writing a program that process large data,

programmers concentrate on the matter in details and

MapReduce manage distributed computation problems.

Apache Hadoop is an open source implementation of

MapReduce. The input of Map function must be

represented as key/value pair, for example, the map

function that processes a set of document to compute word

counts takes a document as a key and the content of the

document as a value. Map function produces a set of

intermediate key/values. In case of word count the

intermediate keys will be individual words and the value

will be the number of occurrences of these words. The

input of Reduce function is the output of Map function

(intermediate key/value pairs). The data taken as a input is

managed by Google File System (GFS), Google File

System divides input data into a number of blocks; the

section block size is specified by users. Google File

System replicates each block; the default duplicate

number is three. Google File System puts one replicate in

the same rack and puts the other clone in other rack.

MapReduce runs in cluster of nodes; one node acts as a

master node and other nodes act as workers node.

Workers nodes are responsible for running map and

reduce tasks; the master is responsible for assigning tasks

to the idle workers. Each map worker reads the content of

its associated split and extracts key/value pairs and passes

it to the user defined Map function. The output of Map

function is been buffered in memory and partitioned into a

set of partitions equals to number of reducers. Master

notifies the reduce workers to read the data from local

disks of map workers. The result of reduce function is

appended to output files. Users may use these files as

input to another MapReduce call or use them for another

distributed application [5].

The origins of the map function in programming can be

traced back to LISP programming language and reduce to

APL, the precise specification being dependent on

implementation. A detailed study of several different

implementations is given in reference. Map-reduce

operations are often used in standard imperative

languages. Waters studied programs in the IBM Scientific

Subroutine Package and found that that 90% of the code

could be expressed as maps, filters and accumulations [7].

Map-reduce is used in Google’s MapReduce library to

utilize large scale clusters for parallelized data processing

applications. Programmers simply describe the associated

mapreduce computation and a map-reduce library deals

with the issues of initialization, configuration, load

balancing, networking and fault tolerance. This serves to

provide programmers with a simple means to develop

applications for a massively parallel machine without the

usual associated complications. They showed that a

variety of algorithms including locally weighted linear

regression, logistic regression, K-means, naïve Bayes,

independent component analysis, principal component

analysis, support vector machine, Gaussian discriminative

analysis, expectation maximization and back propagation

can be described and efficiently implemented on multicore

and multiprocessor machines. The Brook language for

stream computing on GPUs directly supports the efficient

compilation of the map and reduces operations [7].

3. Big Data Analytics

Big Data is typically characterized by the so called, 3

―V’s‖ namely; volume, velocity and variety, and when it

comes to the volume, the statistics bandied around by Big

Data cognoscenti are truly breathtaking [11].

Volume: The increase in data volumes among enterprise

systems is caused by dealing volumes and alternative

traditional data types, similarly as by new sort of data.

Excessive volume is a storage issue, but too much data is

also a massive analysis issue [12].

Variety: IT leaders perpetually had a problem translating

giant volumes of transactional information into choices —

currently there are more types of information to analyze

— mainly coming from social media and mobile (context-

aware). Selection includes tabular data (databases),

hierarchical information, documents, e-mail, metering

data, video, still images, audio, stock ticker information,

financial transactions and more [12].

Velocity: This involves streams of data, structured record

creation, and convenience for access and delivery.

Velocity means both how fast information is being

produced and how fast the data must be fulfill to meet

demand [12].

For example, 15 out of 17 industry sectors in the United

States will have more data stored per company than the

U.S. Library of Congress, which itself collected 235

terabytes of data in April 2011. Wal-Mart Stores Inc.

handles more than 1 million customer transactions every

hour, feeding databases estimated at more than 2.5

petabytes, or the equivalent of 167 times the books in the

Library of Congress. 30 billion pieces of content are

shared on Facebook, monthly. Finally, Intel estimates that

there will be 15 billion devices connected to the internet

by 2015. Ironically, in many parts of the world, more

people have access to a mobile device than to a toilet or

running water [11].

Paper ID: IJSER15269 109 of 113

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 6, June 2015
Licensed Under Creative Commons Attribution CC BY

Figure 5: Big Data Expansion

4. Types of Mapreduce

The MapReduce algorithm consists of three steps:-

1. MAP: The master node that takes the input, divides

the input node into smaller sub issues, and

distributes them to the employee nodes. A worker

node which may do this again in turn, noted to a

multilevel tree structure. The employee node

measures the smaller drawback, and passes the

solution back to its master node [6].

map(inKey, inValue) -> list(intermediateKey,

intermediateValue)

The purpose of the map phase is to construct the data in

preparation for the alter done in the reduction phase. The

input to the map function is in the form of key value pairs,

even though the data input to a MapReduce program is a

file or file(s). By default, the value is a data record and the

key is generally the counterbalance of the data record

from the beginning of the data file [9].

Figure 2: Map Process

2. SHUFFLE: Worker nodes readjust data based on the

output, such that all data belonging to one key is

located on the same worker node.
3. REDUCE: The master node then gather the answers to

all the sub problems and couple them in some way to

form the output – the answer to the problem it was

originally trying to solve [6].

Reduce (intermediateKey, list(intermediateValue)) ->

list(outKey, outValue)

Each reduce function processes the intermediate values

for a particular key generated by the map function and

generates the output. Essentially there exists a one to one

mapping between keys and reducers. Multiple reducers

can run in parallel, since they are independent of one

another. The number of reducers is then decided by the

user. By default, the number of reducers is 1 [9].

Figure 3: Reduce Process

As the multiple tasks run in parallel, it manages all

communications and data transfers between the various

parts of the system [6].

MapReduce Framework

5. Dataflow

The frozen part of the MapReduce framework is a large

distributed sort. The hot spots, which the application

defines, are [8]:

1) Input reader

The input reader divides the input into proper size

'splits' (in practice commonly 64 MB to 128 MB) and

the framework grants one split to each Map function.

The input reader interprets data from stable storage

(typically a distributed file system) and generates

key/value pairs. A common example will read a

directory full of text files and then return each line as

a record.

2) Map function

The Map function takes a sequence of key/value

pairs, processes each, and develops zero or more

output key/value pairs. The input and output types of

the map can be (and often are) different from each

other. If the application is doing a word count, the

map function would break the line into words and

output a key/value pair for each word. Each output

Paper ID: IJSER15269 110 of 113

http://en.wikipedia.org/wiki/Distributed_file_system

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 6, June 2015
Licensed Under Creative Commons Attribution CC BY

pair would contain the word as the key and the

number of occurrence of that word in the line as the

value.

3) Partition function

Each Map function output is allocated to a particular

reducer by the application's partition function for

sharding purposes. The partition function is given the

key and the number of reducers and returns the index

of the desired reducer.

A typical default is to hash the key and use the hash

value modulo the number of reducers. It is important

to pick a partition function that gives an

approximately uniform distribution of data per shared

for load-balancing purposes, otherwise the

MapReduce operation can be held up waiting for slow

reducers (reducers assigned more than their share of

data) to finish. Between the map and reduce stages,

the data is shuffled (parallel-sorted / exchanged

between nodes) in order to move the data from the

map node that produced it to the shard in which it will

be reduced. The shuffle can sometimes take longer

than the computation time depending on network

bandwidth, CPU speeds, data produced and time

taken by map and reduce computations.

4) Comparison function

The input for each Reduce is pulled from the machine

where the Map ran and sorted using the application's

comparison function.

5) Reduce function

The framework calls the application's Reduce

function once for each unique key in the sorted order.

The Reduce can iterate through the values that are

associated with that key and produce zero or more

outputs. In the word count example, the Reduce

function takes the input values, sums them and

generates a single output of the word and the final

sum.

6) Output writer

The Output Writer writes the output of the Reduce to

the stable storage [8].

Figure 4: Map Reduce Logical Data Flow

6. Applications of Mapreduce

Several MapReduce applications have been implemented

and executed on Google’s clusters for example,

processing crawled documents, web request logs in order

to compute various kinds of derived data, such as inverted

indices. In addition, MapReduce has been applied for

machine learning task, scientific simulation and large

scale image processing tasks. Cho, et al proposed a

framework for opinion mining in MapReduce and word

map. Opinion Mining is a technique for extracting

estimation from the internet. It is known as sentiment

classification. It reads a text, analyzes it and produces a

result like, and, which is similar to MapReduce data

structure. Therefore, it is possible to match it well within

MapReduce. Corduroy, et al used MapReduce for

clustering very large moderate-to-high dimensionality

dataset. Further, Chandar used MapReduce for performing

join task. Chandar classifies joins algorithms into two

categories with three algorithms for each category as

follow:  Two-way joins where joins involving only 2

datasets. The two way join is classified into Map-Side

join, Reduce-Side join, and broadcast join.  Multi-way

joins where joins involving more than 2 datasets, and it is

classified into : Map-Side Join (for multi-way joins),

Reduce-Side One-Shot Join, Reduce-Side Cascade Join

Chandar found that for two-way join Map-Side joins

performs well when the key distribution in the dataset is

uniformly distributed. In case of one of the datasets is too

small and it can be easily replicated across all machines

the broadcast join is the best option [5].

7. Fault Tolerance

MapReduce is designed to deal with hundreds or

thousands of assets machines. Therefore, it must tolerate

machine failure. The failure may be occur in master node

or worker nodes. In case of master failure all MapReduce

task will be aborted, and it have to be remake after

assigning new master node. On the other hand, to track

worker failure, the master monitors all workers checking

worker status by periodically. If a worker doesn't respond

to master ping in a certain amount of time, the master

marks the worker as failed. In case of failure of map task

worker; any map tasks either in progress or completed by

the worker are reset back to their initial idle state, and will

be assigned to other worker. While in case of failure in

reduce task worker, any task in progress on a failed

worker is assigned to idle worker. The output of

completed reduce tasks is stored in global file system, so

completed reduce tasks do not need to be re-executed [5].

Since the MapReduce library is designed to help process

very large amounts of data using hundreds or thousands of

machines, the library must tolerate machine failures

gracefully [1].

Worker Failure
The master pings every employee periodically. If no

response is received from a employee in a bulk of time,

the master marks the worker as failed. Any map tasks

which is completed by the worker are been reset back to

their initial idle state, and therefore become eligible for

scheduling on other workers. Similarly, if any map task or

reduce task in progress on a failed worker is also reset to

idle and becomes eligible for rescheduling. Completed

map tasks are re-executed on a failure because their output

is stored on the local disk of the failed machine and is

therefore distant. Completed reduce tasks do not need to

be re-executed since their output is stored in a global file

system. When a map task is executed first by worker A

and then later executed by worker B (because A failed),

all workers executing reduce tasks are notified of the re-

execution. Any reduce task that has not already read the

data from worker A will read the data from worker B [1].

Paper ID: IJSER15269 111 of 113

http://en.wikipedia.org/wiki/Sharding
http://en.wikipedia.org/wiki/Load_balancing_(computing)

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 6, June 2015
Licensed Under Creative Commons Attribution CC BY

Master Failure
It is easy to make the master write periodically

checkpoints of the master data structures described above.

If the master task dies, from the last check pointed state a

new copy can be started. However, given that there is only

a single master, its failure is absurd; therefore our current

implementation aborts the MapReduce computation if the

master fails. Clients can check for this condition and retry

the MapReduce operation if they desire [1].

Semantics in the Presence of Failures

When the user-supplied map and the reduce operators are

deterministic functions of their input values, our

distributed implementation produces the same output as

would have been produced by a non-faulting consecutive

execution of the whole program. We deem atomic

commits of map and reduce task outputs to realize this

property. Every in-progress task writes its output to in

personal temporary files. When a reduce task completes,

the reduce employee atomically renames its temporary

output file to the final output file. If the same lower task is

executed on multiple machines, multiple rename calls will

then be executed for the same final output file [1].

8. What Kind of Problem Does Map Reduce

Solve

MapReduce is nice for scaling the process of huge

datasets, but it is not designed to be responsive.

MapReduce which is a universal term. You most likely

mean to ask whether a fully featured MapReduce

framework with job control, like Hadoop, is appropriate

for you [10].

In the Hadoop implementation, as an example, the

overhead of startup sometimes takes a group of minutes

alone. The concept here is to take a processing job that

would take days and bring it down to the form of hours, or

hours to minutes, etc. But you would not start a new job in

reply to a web request and expect it to finish in time to

respond.

To touch on why this is the case, consider the way

MapReduce works:

A bundle of nodes receive parts of input data called splits

and do some process (the map step). The intermediate data

(output from the last step) is repartitioned specified

information with like keys finishes up together. This

usually needs some data transfer between nodes. The

reduce nodes (which are not necessarily definite from the

mapper nodes - a single machine can do multiple jobs in

succession) perform the reduce step. Result data is

collected and combined to obtain the final output set.

MapReduce is extremely great for preprocessing data such

that the web queries can be much faster BECAUSE they

don't need to engage in processing [10].

9. Future of Mapreduce

The big data boom has modified a plenty on the Web.

Most noticeably, it has stimulated the creation and

development of many new technologies, and no one of

them has made a bigger impression than the Apache

Hadoop open source software framework.

As the Web continues to grow and we develop more ways

for users to access it, big data will only get larger. Because

of this, Hadoop is one of the most necessary projects out

there. According to the ―Hadoop-MapReduce Market

Forecast 2013-2018,‖ Hadoop MapReduce is expected to

rate of grow at a compound annual rate of growth

(CAGR) of 58 percent by 2018 that accounts for

approximately $2.2 billion. It seems clear that Hadoop is

well-positioned to become the industry standard

technology for controlling big data and business

intelligence solutions, and it presents opportunities for

business environments that rely heavily on big data. As

they begin to see a growing need to accommodate

increasing amounts of data that they have to process,

store, and analyze, they additionally see more cost-

prohibitive valuation models being imposed by

established IT vendors. These problems negatively impact

the IT budgets of many corporations, but thanks to the

open source nature of Hadoop, it becomes more of a

viable and cost-effective solution every day.

10. Security and Privacy

In this section security and privacy concerns for

MapReduce and Big Data are discussed. Also, current

efforts to locate these issues for MapReduce are presented.

Accountability and analyzing are security issues that

present a problem for both Big Data and MapReduce. In

MapReduce accountability is only provided when the

mappers and reducers are held answerable for the tasks

they have completed. One result to this issue that has been

proposed is the establishment of an Accountable

MapReduce.

An additional secured challenge presented to Big Data and

MapReduce is that of providing access control, which

shown through 3 of Big Data's defining V properties that

are volume, variety and velocity. When dealing with a

huge volume of information, work performed on that

information is likely to require access to multiple storage

devices and locations. Therefore, multiple access

requirements will be required for any one task. When

dealing with data that has a huge variety, semantic

understanding of the data should play a role in the access

control decision process. Finally, the velocity requirement

of MapReduce and Big Data requires that whatever access

control approach is used must be advance to determine

access control rights in a reasonable amount of time.

Privacy is a major topic of concern whenever huge

amounts of information are been used. Processes such as

data mining and predictive analytics can deduce or

discover information linkages. Information linkages are

advantageous to organizations, allowing them to get better

understanding, target and provide for their clients or users.

However, on an individual basis this discovery of

information can cause the identities of data providers to be

exposed [4].

11. Conclusion

As we have entered into an era of Big Data, processing

huge volumes of data has never been bigger. Through

better Big Data analysis tools like Map Reduce over

Paper ID: IJSER15269 112 of 113

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 6, June 2015
Licensed Under Creative Commons Attribution CC BY

Hadoop guarantees quicker advances in several scientific

disciplines and improving the profitability and success of

many enterprises [2].

The MapReduce programming model has been

successfully used at Google for several different

functions. We attribute this success to many reasons. First,

the model is easy to use, even for the programmers

without experience with parallel and also distributed

systems, since it hides the information of parallelization,

locality optimization, load balancing and fault-tolerance.

Second, a huge variety of issues are easily expressible as

MapReduce computations [1].

Issues and challenges MapReduce faces when dealing

with Big Data are identified and categorized according to

four main Big Data task types- analytics, online

processing, data storage, security and privacy. By

analyzing MapReduce tasks in Big Data, this paper

provides an analysis of the field facilitates better proposal

of Big Data projects and identifies opportunities for future

research [4].

12. Acknowledgement

I would gratefully and sincerely appreciate my supervisor:

Prof. Rakesh Suryawanshi. Their inspiring guidance, rich

experience and sustained encouragement enabled me to

develop an intensive understanding of my research area.

Without the generous help of my supervisor, this work

would not have been possible. I am honored to have Prof.

Rakesh Suryawanshi from A.C.Patil College as my

opponent. I thank him for his kind support and helpful

suggestions during the discussions in my MCA.

References

[1] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

Simplified Data Processing on Large Clusters.

[2] Dr. Siddaraju1 , Sowmya C L2 , Rashmi K3 , Rahul

M4 1Professor & Head of Department of Computer

Science & Engineering, 2,3,4Assistant Professor,

Department of Computer Science & Engineering.

Efficient Analysis of Big Data Using Map Reduce

Framework.

[3] Jens Dittrich Jorge-Arnulfo Quiane-Ruiz. Efficient

Big Data Processing in Hadoop MapReduce.

[4] Katarina Grolinger Western University,

kgroling@uwo.ca Michael Hayes Western

University Wilson A. Higashino Western University

Alexandra L'Heureux alheure2@uwo.ca David S.

Allison Western University. Challenges for

MapReduce in Big Data.

[5] Abdelrahman Elsayed, Osama Ismail, and Mohamed

E. El-Sharkawi. MapReduce: State-of-the-Art and

Research Directions.

[6] Mrigank Mridul, Akashdeep Khajuria, Snehasish

Dutta, Kumar N Prasad.M.R Dept of

CSE,EWIT,VTU Asst.Prof, CSE Dept, EWIT.

Analysis of Bidgata using Apache Hadoop and Map

Reduce.

[7] https://en.wikipedia.org/wiki/MapReduce

[8] Paula Ta-Shma IBM Haifa Research Storage

Systems. Big Data and Map Reduce.

[9] Shimin Chen, Steven W. Schlosser. Map-Reduce

Meets Wider Varieties of Applications.

[10] http://www.websitemagazine.com/content/blogs/post

s/archive/2012/08/04/the-future-looks-bright-for-

hadoop-mapreduce.aspx

[11] Diana MacLean for CS448G. 2011.

A Very Brief Introduction to MapReduce.

[12] Jimmy Lin and Chris Dyer University of Maryland,

College Park. Data-Intensive Text Processing with

MapReduce.

[13] Processing of massive data: MapReduce

[14] http://ksat.me/map-reduce-a-really-simple-

introduction-kloudo/

Paper ID: IJSER15269 113 of 113

https://en.wikipedia.org/wiki/MapReduce
http://www.websitemagazine.com/content/blogs/posts/archive/2012/08/04/the-future-looks-bright-for-hadoop-mapreduce.aspx
http://www.websitemagazine.com/content/blogs/posts/archive/2012/08/04/the-future-looks-bright-for-hadoop-mapreduce.aspx
http://www.websitemagazine.com/content/blogs/posts/archive/2012/08/04/the-future-looks-bright-for-hadoop-mapreduce.aspx
http://ksat.me/map-reduce-a-really-simple-introduction-kloudo/
http://ksat.me/map-reduce-a-really-simple-introduction-kloudo/

