
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 7, July 2015
Licensed Under Creative Commons Attribution CC BY

An Adaptive, Selective and Incremental Web

Crawler

Pallavi
1
, Rajiv Sharma

2

1M.Tech Student, Shri Baba Mast Nath Engineering College, Maharshi Dayanand University, Rohtak, Haryana, India

2Assistant Professor, Department of CSE, Shri Baba Mast Nath Engineering College, Rohtak, Haryana, India

Abstract: The large size and the dynamic nature of the Web make it necessary to continually maintain Web based information

retrieval systems. Crawlers facilitate this process by following hyperlinks in Web pages to automatically download new and updated Web

pages.The expansion of the World Wide Web has led to a chaotic state where the users of the internet have to face and overcome the

major problem of discovering information. For the solution to this problem, many mechanisms were created based on crawlers who are

browsing the www and downloading pages. In this paper we will describe a crawling mechanism which is created in order to support

data mining and processing systems and to obtain a history of the web’s content.

Keywords: Web, web crawler, URL, Crawling policies, Incremental and Adaptive Crawler, Search Engine.

1. Introduction

The Internet is a global system of interconnected computer

networks. The searching and indexing tasks for the web are

currently handled from specialized web applications called

search engines.The modern search engines are divided into

three parts they are the publically available search engine, the

data- base and the web crawling system. A web crawler is an

automated program that browses the Web in a methodological

manner. The process of traversing the web is called Web

crawling. Web crawler starts with a queue of known URLs to

visit.” In this paper, we describe a different crawler that

executes a very simple process as it only focuses on the

content collection of web pages, ignoring completely images,

stylesheet, javascript and document files. The information the

crawler collects will be used by mechanisms that wish to

implement data mining and they only need the content of web

pages in text form. It can also be used by mechanisms that are

interested in the history of a page as our crawler maintains the

content of pages that have been crawled in the past. The fact

that the crawler produces very simple and useful data in

combination with its characteristics - it is polite, adaptive and

selective – make him very powerful and efficient.

The remainder of the paper is structured as follows. Section 2

presents the architecture of the crawler. Section 3 describes

design issues and in particular how the crawler succeeds to be

polite, adaptive and selective. Section 4 reports traps and how

the crawler manages to bypass them, section 5 the

conclusions”

2. Architecture

Web crawler (also known as Spiders or robots) is software

that can start with a Uniform Resource Locator (known as

seed URL), downloads the pages with associated links and

looks for the updates and stores them for later use. This

process is generally done iteratively. The general architecture

of a crawler is portrayed in Fig. 1.

Figure 1: Architecture of a web crawler

HTTP (HyperText Transfer Protocol) request is being sent to

the World Wide Web and it downloads the pages by giving a

seed URL. The pages are retrieved by the web crawler and it

follows the link available on that page. It is sent to the parser

–a major component in the crawling technology, which

actually checks whether relevant information is retrieved.The

relevant contents are then indexed by the indexer and it is

stored for later use. The crawler looks for the updates on the

indexed pages and if so the old information is replaced

with the new information, until the search term vanishes from

those pages.

As a user enters a search engine page (Input or Seed URL)

and places a keyword, the crawler visit the links and request a

file called “robots. txt” (a file which defines the limitations –

what it can let it to see, how many times it can allows visits,

etc)we get the copies and it will be consulted with the

indexer, and the relevant pages are given out. The results are

ranked and best relevant results leads the priority in the

display. The methods of ranking and the order of display vary

from one search engine to the other. The crawler is smart

enough to check out the pages after some time, when the site

is down temporarily, but if it finds the site down for

continuous period or too slow to respond it may not prefer to

visit again.

The basic algorithm, executed by the web crawler, reads

URLs from the Data Base as its input and executes the

following loop. It reads a URL from the URL table

Paper ID: 20071502 198 of 202

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 7, July 2015
Licensed Under Creative Commons Attribution CC BY

downloads the corresponding document and extracts any links

contained in it. For each of the extracted links, it ensures that

it is an absolute URL and adds it to the table of URLs to

download, provided it has not been encountered before.

A more detailed description of the architecture of our

distributed crawler follows. We partition the crawling system

into four major components. First, a number of crawlers

download the URLs from the Web. Second a general manager

is in charge of storing the information the crawlers collect

from the URLs both in a Database and on the local disk, in a

data structure of directories and subdirectories. As a result,

our crawling system also consists of a Directory based system

manager and a Database manager. Moreover, a Link

Extractor Manager is responsible for the extraction of

external links, their filtering and their addition to the main

table with the URLs to be crawled. Finally, a Frequency

Manager is charged with managing the visiting frequency to

web pages.

Each one of the following systems, the downloading system,

the system that manages external links and the system that is

responsible of the visiting frequency, can execute their

process in parallel. This is achieved by using either multiple

terminals or threads. If terminals are used, each system should

constantly be informed. When a terminal produces a result, it

should immediately notify the manager of it and then, the

manager is responsible for making known the new

information to the rest of the terminals. On the contrary,

threads’ usage is preferable to different terminals because the

system is always informed of its current condition and there is

no need of informing either the manager or the rest of the

terminals.

Figure 1: The architecture of our crawling system

In both cases there is a restriction in parallelism when the

systems communicate with the Database and the Filesystem.

Ιf more than one thread or terminal accesses simultaneously

the FileSystem or the Database in order to write or read data,

then there will definitely arise a problem. Thus, writing and

reading procedures should be done sequentially and when one

thread accesses the repository, no other can access it at the

same time.

As mentioned above, our crawler uses a Database save system

and a Directory save system in order to maintain and easily

explore the information acquired from crawling. The

Database save system provides for a fast lookup. For

example, to check whether a page has been crawled or not,

how often a page changes or when was the last time a page

was crawled. Information about the size and the type of a

page is also stored in the database. On the other hand, the

Directory save system enables maintenance of the crawl

history and further processing of the information retrieved.

With every crawl, a directory is created on the local disk

named by the date and time of creation. In this directory, the

system creates other directories that take their names by the

domains of the crawled URLs. The HTML code of a page is

stored in the corresponding directory where there are also

created more directories for the internal links of this page. For

example, if the crawler should crawl the URL

http://www.myfirstsite.com/d1/d2, then a directory named

www.myfirstsite.com is constructed and another two

subdirectories named d1 and d2 are created inside the

directories www.myfirstsite.com and d1 respectively.

The Link Extractor Manager is responsible for the links of

web pages. During the parsing of a page, its links are

extracted and they are added temporarily to a vector. Then

they are compared to URLs that they have already been

crawled and to URLs that are disallowed according to the

Robot Exclusion Protocol.

One of the important characteristics of this crawler is that it is

stand-alone. The four systems of the crawler are separate but

not completely independent. The operation of one system

depends on the results that are produced by the operation of

another. They should be executed sequentially and

parallelism can be achieved only to some extent. The program

that crawls pages should be executed first and then the

processes that manage visiting frequency and external links

can be executed in parallel. In the following figure, number

one represents crawling process, number two represents the

procedure of recalculating visiting frequency and number

three represents the process that manages external links.

Figure 2: The execution sequence of the three systems

Thus the four stand-alone systems of the crawler manage to

increase the speed of crawling and reduce the load of the

pages to be crawled.

3. Design Issues

This section describes design issues and in particular three

essential characteristics of our crawling system that make it

efficient and different from other systems.

3.1 A polite crawler – Crawling Policies

The crawler that we describe is friendly to the pages it visits.

Firstly, it implements the Robots Exclusion Protocol, which

allows web masters to declare parts of their sites off limits to

crawlers. The Robots Exclusion Protocol requires a web

crawler to fetch a special document containing these

Paper ID: 20071502 199 of 202

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 7, July 2015
Licensed Under Creative Commons Attribution CC BY

declarations from a web site before downloading any real

content from it. Our crawling system before adding a new

URL to the table with the URLs to be crawled, it examines

whether this URL is excluded by the robot protocol or not. If

a URL is excluded, it will not be added to the table and thus

will not be crawled.

Secondly this crawler pays attention to its visits between

pages of the same domain. It starts visiting all the URLs of

the table whose level is not zero and extracts their URLs. And

it repeats this procedure for all internal URLs it finds. In

other words, it does not take the first URL of the table, finds

its URLs and then visits these URLs to extract their internal

URLs. The crawler visits the pages of the same domain with

such a frequency that does not overload the pages and this is

very important especially for the portals that are visited

million times every day. Anecdotal evidence from access logs

shows that access intervals from known crawlers vary

between 20 seconds and 3-4 minutes. The lower bound of

access intervals of the crawler that we describe is 10 seconds.

Another crucial point of our crawling system is that the time it

visits the same pages changes daily. Therefore the pages are

not overloaded the same time every day and they are able to

meet efficiently requests of users during the day.

3.2 Content Based Adaptation of the Crawler

The second important characteristic of our crawling system is

adaptation. This crawler is capable of adapting its visiting

frequency to the rate of change of the page content. This is

implemented by the following procedure. After a page has

been crawled several times, the system examines the rate of

change of its content and proportionally increases or

decreases the frequency it visits this page. In more detail, the

table of the Database, where the URLs that will be crawled

are stored, has among others, the following fields: size, date,

fr (frequency) and fr_max (maximum frequency). Size

represents the size of the page, date represents the last date

the page was crawled, fr_max represents the crawler’s visiting

frequency to the page and fr represents the number of

crawlings that should be done before the page can be

recrawled again. In each crawl, fr is decreased until it

becomes zero. Then, the page should be crawled and after the

crawling procedure, fr takes the value of fr_max. We present

a flow diagram below that explains better this part of our

crawling system.

Figure 3: Flow diagram that shows how the system

manipulates visiting frequency

The algorithm that calculates new max_fr, based on the rate

of change of a page is the following:

 records → the entries of a page at the table

limit → the number of records that we examine for

changes on the content of the page.

counter → a variable that increases when the content

of two sequential records differs.

variable x takes the minimum value between records

and limit

if counter is equal to zero

 then variable b takes the value of x

and new_maxfr becomes the lower bound of (maxfr +

b) / 2

 else if counter is not equal to zero

 then variable b takes the value of (x / counter)

and new_maxfr becomes the lower bound of (maxfr +

b) / 2

For example, we assume that at the table, there are 45 records

of a page that its max_fr is 3 and we would like to examine

the last 20 records for changes on its content. If it has

changed 10 times during the period of the last 20 crawlings,

then according to the above algorithm, we have:

x = 20;

b = 20/10 = 2;

new_maxfr = (3+2)/2 = 5/2 = 2,5 → 2.

That means that the crawler should crawl this page more often

and in particular every two days and not three. Finally, we

should mention that an efficient crawler is only interested in

collecting the differences in the content of a certain page.

Visiting frequently a page whose content does not change,

provides no information to the system and burdens both the

system and the page.

3.3 To Describe a Selective Incremental Algorithm

Crawlers whose procedure is quite simple, crawl all pages

without carrying out any inspection to find out whether the

pages have changed or not. Thus they are crawling pages

whose content is exactly the same to that of the last crawling,

extracting no information and managing only to overload

both pages and the system. However, there are also crawlers

that choose not to crawl a page that has not changed recently.

This is clever enough but there is a drawback as the crawling

system may not be informed of the changes of the pages the

internal URLs point at. For instance, the following figure

represents a page and its internal links. If page A will not be

crawled by the system because it has not changed recently,

then none of the pages B, C, D, E, F and G will be crawled.

Nevertheless, their content may have changed but the system

will not be able to be informed of it.

Figure 4: A page and its internal links

A selective incremental crawler is capable to resolve the

situation when a page has not changed but the pages its

internal URLs point at have changed. For example, if page A

has not changed, the crawler examines whether pages Β, C, D

and E have changed or not. If a high percentage of them have

changed, page A will be crawled, otherwise it will not and the

Paper ID: 20071502 200 of 202

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 7, July 2015
Licensed Under Creative Commons Attribution CC BY

crawler will take the next URL from the table with the URLs

to be crawled. From experiments that we made, we came to

the conclusion that we crawl page A when 40% of its pages

have changed. This percentage is not constant but we

recalculate it every time is the turn of page A to be crawled.

In proportion to the number of pages that have changed or

not, we increase or decrease the percentage respectively.

Another way of recrawling pages is by checking every page

separately whether it has changed or not. For instance, the

crawler will first examine whether page A has changed and if

it has, it is crawled and then the next URL of the list is taken

to be examined. Otherwise, if page A has not changed, the

crawler examines its internal pages for changes. Thus, it

checks page B. If its content differs from the one that was

crawled the last time, it is crawled and afterwards page C is

examined. If page B is the same, pages F and G are then

checked. This way of recrawling may be the simplest, but it is

a very time-consuming procedure and it presupposes that

each page is not unknown to the system. The crawling system

should know the tree diagram of each page, in other words its

internal links.

On the contrary, the recrawling policy that is followed by the

crawler that we describe, seems to be more clever than the

one that we just reported. It is quicker, flexible and efficient

but the basic and most important difference from the above

policy is that each page is considered as a black box, in other

words as something unknown that the system should approach

and analyze. If the examination of the content of a page

shows that the page has changed then it is still treated as

something unknown to the system. The page ceases to seem

unfamiliar to the system only when it is found that its content

has not changed. In this case, the system knows the internal

URLs of the page which examines to find out how many of

them have changed and decide whether to crawl the page or

not.

Our crawler is quite friendly to the pages it visits as it crawls

them only when they have changed. Moreover, it is very

efficient because it is interested in crawling information that

is fresh, ignoring data that are not up-to-date. We should also

remark on the cleverness of the crawler we describe. With

just a look at the database, it avoids visiting pages whose

content is stable and their crawling would put additional load

both on the crawling system and on the pages. Finally the

crawler learns more about the pages as it runs and its low

speed which is a consequence of the fact that it is a selective

incremental crawler, is not a disadvantage of the system but it

makes it seem even more friendly to the pages it visits.

4. Enhancing Security and to Avoid Traps

A crawler trap is a URL or set of URLs that cause a crawler

to crawl indefinitely. Some crawler traps are unintentional.

For example, a symbolic link within a file system can create a

cycle. Other crawler traps are introduced intentionally. For

example, people have written traps using CGI programs that

dynamically generate an infinite web of documents. The

crawler we describe does not read CGI programs and thus it

is not threatened.

There is no automatic technique for avoiding crawler traps.

However, sites containing crawler traps are easily noticed due

to the large number of documents discovered there. A human

operator can verify the existence of a trap and manually

exclude the site from the crawler’s purview using the

customizable URL filter.

The URL filtering mechanism provides a customizable way to

control the set of URLs that are downloaded. Before adding a

URL to the table with the URLs to be crawled, the crawling

system consults the user-supplied URL filter. The URL filter

class has a single crawl method that takes a URL and returns

a boolean value indicating whether or not to crawl that URL.

Nevertheless, it is possible a crawler to include a collection of

different URL filter subclasses that provide facilities for

restricting URLs by domain, prefix or protocol type and for

computing conjunction, disjunction or negation of other

filters. Users may also supply their own custom URL filters,

which are dynamically loaded at start-up.

The crawler, we describe in this paper also uses a time limit

in order to avoid traps. As we mentioned above, obvious traps

are gigabyte-sized or even infinite web documents. Similarly,

a web site may have an infinite series of links (eg.

“domain.com/home?time=101” could have a self-link to

“domain.com/home?time=102” which contains link to

“…103”, etc…). Deciding to ignore dynamic pages results in

a lot of skipped pages and therefore the problem is not

completely fixed. Our crawler uses a time limit which refers

to the period a page is being crawled. If a page while

crawling passes this limit, it stops being crawled and the next

page is fetched to be crawled, encountering efficiently this

kind of traps.

5. Future Work – Conclusion

Because of the dynamism of the Web, crawling forms the

back-bone of applications that facilitate Web information

retrieval. In this paper, we describe the architecture and

implementation details of our crawling system, also presented

some preliminary experiments. We explained the importance

of extracting only content from web pages and how this can

be implemented by a mechanism content analysis,

corresponding crawling policies and clever systems that

extract content of high quality. These are obviously many

improvements to the system that can be made. A major open

issue for future work is a detailed study of how the system

could become even more distributed, retaining though quality

of the content of the crawled pages.

When a system is distributed, it is possible to use only one of

Its component or easily add a new one to it.

References

[1] D. Sullivan, “Search Engine Watch,” Mecklermedia,

1998.

[2] S. Brin and L. Page, “The Anatomy of a Large-Scale

Hypertextual Web Search Engine,” Stanford University,

Stanford, CA, Technical Report, 1997.

Paper ID: 20071502 201 of 202

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 7, July 2015
Licensed Under Creative Commons Attribution CC BY

[3] O. A. McBryan, “GENVL and WWW: Tools for Taming

the Web,” in Proceedings of the First International

Conference on the World Wide Web, Geneva,

Switzerland, 1994.

[4] B. Kahle, “Archiving the Internet,” Scientific American,

1996.

[5] J. Gosling and H. McGilton, “The Java Language

Environment,” Sun Microsystems, Mountain View, CA,

White Paper, April 1996.

[6] J. E. White, Mobile Agents, MIT Press, Cambridge, MA,

1996.

[7] C. G. Harrison, D. M. Chess, and A. Kershenbaum,

“Mobile Agents: Are they a good idea?,” IBM Research

Division, T.J. Watson Research Center, White Plains, NY,

Research Report, September 1996.

Author Profile

Pallavi received the B.TECH degree in information

technology and M.TECH. degree in Computer Science

and Engineering from maharshi dayanand university in

2013 and 2015,respectively.

Paper ID: 20071502 202 of 202

