
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 7, July 2015
Licensed Under Creative Commons Attribution CC BY

Implementation of Improving MapReduce

Performance Using Dynamic Slot Allocation

Strategy

Pranoti K. Bone
1
, A. M. Wade

2

1, 2Department of Computer Engineering, Smt. Kashibai Navale College of Engineering, Vadgaon , Pune, Maharashtra, India

Abstract: In many data centers and clusters data processing is a very essential task. For addressing this need, recently many

researchers have been working. MapReduce has become one of the well liked techniques for high performance computing tasks. Many

large scale clusters of hundreds of machines utilize an open source implementation of MapReduce technique known as Hadoop.

However the traditional mapreduce do suffer from sever underutilization of map and reduce slots and straggler machines, i.e. the

machines taking very long time to finish their tasks. We propose a dynamic slot allocation strategy which will decrease the execution

time of the traditional mapreduce system. The unoptimized map and reduce slots are allocated to the tasks to resolve the underutilization

of the slots. We proposed slot pre scheduling technique to improve data locality with no impact on fairness.Smart Executive

Performance Balancingcan balance the performance tradeoff between a single job and a batch of jobs dynamically. By building these

techniques together we improved the performance of the mapreduce and handled the workload substantially, also the execution time has

been decreased.

Keywords: MapReduce, Big Data, Slot Allocation, Hadoop Distributed File System

1. Introduction

The increasing use of internet leads to handle lots of data by

internet service providers. MapReduce is one of the

goodsolutions for implementing large scale distributed data

application. Mapreduce framework is used for processing

terabytes of data. Mapreduce help to build scalable and fault

tolerant application.

A. Hadoop

Hadoop[1] is java based framework that allows to process

large data sets in distributed environment as shown in figure

1. Hadoop has been used by many large scale companies

like Amazon, Facebook, and Yahoo. Hadoop consist of two

important concepts:Hadoop Distributed File System (HDFS)

and Hadoop MapReduce.

B. Hadoop Distributed File System

The file system that is oriented on blocks is HDFS. Every

single file is divided into 64MB size of blocks. There are

clustered machines having a huge data storage capacity,

where these blocks are kept. Every independent machine in

the cluster is known as a DataNode.

As discussed the files are divided into number of blocks, and

it is not necessary that all the blocks are stored on a single

machine. The target DataNode selection is done randomly

based on block-by-block approach. While the user needs to

access a file, there is multiple numbers of machines who

cooperatively provide the blocks making a single file. But

what if a machine in the cluster fails? This issue is handled

by Hadoop Distributed File System. The HDFS solves the

problem by making replicas of each block on some other

machines in the cluster, by default on three machines. In an

HDFS cluster there is always a single node known as

NameNode having the ability to manage the file system

namespace and synchronizes the clients accessing the files.

This situation is depicted in figure. The DataNodes stored

blocks of files as data. Then it is the responsibility of the

NameNode to map the data blocks to the independent

DataNodes. NameNode also manages many file system

operations like opening, closing, renaming files, etc. The

situation where the NameNode might fail is handled by

keeping multiple copies of data on several machines called

as secondary NameNode[2].

C. Hadoop MapReduce

Controlling and managing of large scale web search

applications is a crucial task. There was an attempt made by

Google for handling these applications, and it is called as

MapReduce. For effectual programming skills for

developing data mining, machine learning and search

applications in data centers, MapReduce is an

bestapproach[3].

D. Challenges of Traditional system

Even if there are several researches going on optimizingthe

MapReduce and Hadoop techniques, there are some

keychallenges related to the issue of improving

theperformanceof the Hadoop cluster. Initially, the basic

compute units areconfigured by the administrator in prior to

any other operation.The basic units are nothing but the

computer resources whichare mapped and reduced in several

slots. There are twounique constraints of the MapReduce job

execution: First, it is assumed that the map slots are issued to

map task and thereduce slots are issued to reduce tasks.

Second, the assumptionof general execution where the

reduce tasks are executed afterthe map tasks are executed.

Due to these constraints, thereare two observations: Firstly,

the performance and systemutilization for a MapReduce

workload varies as the slotconfigurations differs. Second,

even if there is optimal mapor reduce settings, there can be

several idle slots indirectlyaffecting the system performance.

Sometimes the disputes forprocessor, memory, network

bandwidth and other resources,may consume unnecessary

time causing delay of the entiremap and reduce tasks. For

efficient MapReduce workloads,slot utilization performance

Paper ID: IJSER15372 203 of 207

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 7, July 2015
Licensed Under Creative Commons Attribution CC BY

is very important and it sometimesdepends on data locality

maximization.

Figure 1: Hadoop Framework

2. Related Work

Performance optimization for MapReduce jobs is a very

attention captivating topic for researchers. We survey some

of the relating topic to our proposed work.

A. Scheduling and Resource Allocation Optimization

Many researchers have worked on optimization work for

MapReduce jobs, and paid attention on computation

scheduling and resource allocation topics of the same. Also

many authors considered job ordering optimization for

MapReduce workloads [4], [5], [6], [7], [8]. The modeling

of the MapReduce as a two-stage hybrid flow is described in

[9]. This hybrid flow shop has multiprocessor tasks, where

job submission orders affect the results of cluster utilization

and system performance. The execution time for mapping

and reducing the tasks for each job must be known earlier,

but this phenomenon is not implemented in the applications.

Also this method has not considered for the dependent jobs

and suitable only for the independent jobs. Example of such

method is MapReduce workflow. Compared to this

phenomenon, our proposed DHSA is suitable for all types of

jobs. Starfish [10] framework can modify the hadoop

configuration automatically for the MapReduce jobs. By

using sampling technique and cost based model we can

maximize the utilization of hadoop cluster. But still we can

improve the performance of this technique by maximizing

the utilization of map and by reducing slots. Polo et al. [11]

proposed a technique for MapReduce multi job workloads

based on resource aware scheduling technique. This

technique focus on improving resource utilization by

expanding the abstraction of existing task slot to job

slot.YARN[12] solve the inefficiency problem of the

Hadoop MRv1 in the perspective of resource management.

Instead of using slot, it manages resources into containers.

The Map and Reduce operation are performed on any

container.

B. Speculative Execution Optimization

In MapReduce we need task scheduling strategy for dealing

with problems such as straggler problem for a single job,

which include LATE [13], BASE [14], Mantri [15],MCP

[16].Speculative execution is such an important task

scheduling strategy. The speculative execution algorithm

speculates the task by prioritizing and pays attention on

heterogeneous environments. To run, selecting the fast

nodes and the speculative tasks are covered over, this

speculative execution algorithm is a longest approximate

time to end (LATE) [13], and the prioritizing of task is

required for speculation. Guo et al. [14] proposes a Benefit

Aware Speculative Execution (BASE) algorithm which

evaluate the potential benefit of the speculative tasks and the

unnecessary runs are eliminated. This BASE algorithm of

the evaluating and elimination can improve the performance

for LATE. The speculative execution strategy magnifies its

focus mainly on saving cluster computing resource, is

provided by Mantri [15].Maximum Cost Performance

(MCP) is a new speculative execution algorithm proposed

by the Chen et al. [16] proposed for fixing the problem that

was affecting the performance of the prior speculative

execution strategies. We proposed speculative Execution

Optimization strategy that balances the tradeoffs between a

single job and a group of jobs.

C. Data Locality Optimization
Many previous work on improving the performance and

efficiency of the utilization of cluster have proven to be

critical task (for example in [17]-[18]). There are two data

locality approaches for MapReduce, reduce-side and map-

side. In the map-side data locality approach, the map task

computation is moved near to the input data (for example in

[17]-[19]).

In [17], the concept of Delay Scheduler is used to refine the

data locality task. The jobs of MapReduce are classified into

three kinds, map-input heavy, map-and-reduce-input heavy

and the reduce-input heavy by Purlieus [20]. They have

proposed the work for improving the runtime performance.

The tradeoff between fairness and data locality is adjusted

by an algorithm provided by Guo et al. [21], [19]. This work

is supported by a mathematical model given by the author.

The author in [20], [22], [23] have worked on reduce-side

data locality optimization task by proposing greedy

algorithms.

3. Proposed Work

A. Problem Definition

To maximize the slot utilization for MapReduce and

balancethe performance tradeoff between a single job and a

batch of jobs with fair scheduling and improving the

performance of MapReduce cluster in Hadoop.

B. Goals and Objective

The objective is to utilize the slots in MapReduce cluster.

The slot utilization remains a challenging task due to

fairness and resource requirements. It is fair when all pools

have been allocated with the same amount of resources. The

resources requirements between the map slot and reduce slot

are generally different. This is because the map task and

reduce task are often exhibit completely different execution

patterns.

C. System Overview

Proposed approach consist of three optimization techniques,

namely, Dynamic Hadoop Slot Allocation, Speculative

Execution Performance Balancing and Slot Pre Scheduling

Paper ID: IJSER15372 204 of 207

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 7, July 2015
Licensed Under Creative Commons Attribution CC BY

as shown in figure 2. After executing these 3 techniques,

results into slot utilization and utilization efficiency

optimization. It Also improves the data locality and load

balancing.

Figure 2: Overview of the Proposed System

Dynamic Hadoop Slot Allocation

It attempt to maximize slot utilization while maintainingthe

fairness, when there are pending tasks (e.g., map tasks

orreduce tasks). We break implicit assumption of

MapReducethat the map tasks can only run on map slots &

reduce taskscan only run on reduce slots. In our proposed

system wemodify it that map and reduce tasks can berun on

either mapor reduce slots.

There are 4 cases,

Consider,

NM = Total number of Map tasks

NR = Total number of Reduce tasks

SM = Total number of map slots

SR = Total number of reduce slots

Case 1: NM ≤ SMandNR ≤ SR

The map tasks which are running on map slots and reduce

tasks are run on reduce slots, There is no borrowing of map

and reduce slots.

Case 2: NM>SMandNR<SR

We satisfy reduce tasks for reduce slots first and then use

those idle reduce slots for running map tasks.

Case 3: NM<SMandNR>SR

We can schedule those unused map slots for running

reducetasks.

Case 4: NM>SMandNR>SR

The system should be in completely busy state.

1) Speculative Execution Performance Balancing:

It identifies the slot resource in-efficiency problem for

aHadoop cluster, caused by speculative tasks. It works on

top ofthe Hadoop speculative scheduler to balance the

performancetradeoff between a single job and a batch of

jobs. SlotPre-Scheduling improves the slot utilization

efficiency andperformance by improving the data locality

for map taskswhile keeping the fairness.Speculative tasks

are competing for certain resources includingnetwork, map

slots and reduce tasks. For maximizing theperformance we

should complete the pending tasks first beforeconsidering

the speculative tasks. When node is having idlemap slot,

then we should consider pending map task firstlyand then

we consider speculative map task. For an idle mapslot, we

first check jobs J1, J2 ... Jn for map task.For every job we

check the total number of pending map andreduce tasks by

considering all jobs from Ji and Jj. Where,i=1,2,3,4....

j= i + maxNumOfJobsCheckedForPendingTasks − 1.

We checked each jobJi by considering 3 conditions: 1)

Totalpending map tasks are greater than zero. 2) No failed

pendingmap tasks and map tasksfor job Ji. 3) Total pending

reducetasks is greater than zero.

2) Slot Pre-Scheduling

It improves the slot utilization efficiency and performance

by improving the data locality for map tasks while keeping

the fairness.

Step 1: Compute load factor mapSlotsLoadFactor = Pending

map tasks +running map tasksfrom all jobs divided by the

cluster map slot capacity.

Step 2: Compute current maximum number of usable map

slots = number ofmap slots in a tasktracker *

minmapSlotsLoadFactor, 1.

Step 3: Compute current allowable idle map (or reduce) slots

for a tasktracker= maximum number of usable map slots -

current number ofused map (or reduce) slots

D. Mathematical Model

The mathematical terminology of proposed system is

explained below:

Let S be the proposed system

S = {I,O,F,Fs,Fl,ɸ}

Identify the inputs I.

I = {T1, M, T2, R,U,E}

Where,

T1 = Pending Map Tasks.

M = Idle Map Slots.

T2 = Pending Reduce Tasks.

R = Idle Reduce Slots.

U = Utilized Slots.

E = Empty Slots.

Identify set of Function. Let F be the set of Functions.

F = {F1,F2,F3}

Where,

F1 = Verify Information.

F2 = Dynamic Slot Allocation.

F3 = Balance the Performance of Job.

Identify the Outputs. Let O be the set of outputs.

O = {O1,O2}

Where,

O1 = Slots Allocated Successfully.

O2 = Successfully Balance the Performance of Job.

Final State:

FS = Increase the Performance of Mapper & Reducer

Failure case:

Fl= Errors in measuring the input parameters

Constraints:

Let ɸ be the constraints ɸ =Cl

Where,

Cl = Accuracy in measuring the input parameters.

E. Experiments and Result

In This section we have shown the working of the proposed

system. The figure 3 shows the total required time for the

completion of task for proposed system in contrast with the

existing system which is Maximum Cost Performance. In

figure 3 it also shows the specific time required for all the

three techniques Dynamic Hadoop Slot Allocation (DHSA),

Paper ID: IJSER15372 205 of 207

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 7, July 2015
Licensed Under Creative Commons Attribution CC BY

Speculative Execution Performance Balancing (SEPB) and

Slot Pre-Scheduling.

Figure 3: Required time for the proposed system

The graph 1 shows the time required to complete the tasks in

MCP is higher as compared to DSAS. The performance of

the MCP degrades as the time speeds up.

Graph 1: Performance improvement of the system

4. Conclusion

The aim of the proposed system is to improve the

performance of MapReduce workloads. It considered three

techniques: Dynamic Hadoop Slot Allocation, Speculative

Execution Performance Balancing, and Slot Pre-Scheduling.

Dynamic Hadoop Slot Allocation uses allocation of map to

maximize the slot utilization and it reduces the task

dynamically. It does not require any prior information or any

assumption and it can be run on any kind of MapReduce

jobs. Speculative Execution Performance Balancing

identifies the slot inefficiency problem. It manages the

balance between single and batch of jobs dynamically. Slot

Pre-Scheduling are used to enhance the efficiency of slot

utilization by maximizingdata locality. We can enhance the

utilization by adding above concept in traditional system. In

future we plan to implement above mentioned concept in

cloud environment.

5. Acknowledgement

We thank all the anonymous reviewers and editors for their

valuable comments and suggestions to improve the quality

of this manuscript.

References

[1] Apache Hadoop. http://hadoop.apache.org.

[2] Hadoop Distributed File System,

http://hadoop.apache.org/hdfs

[3] J. Dean and S. Ghemawat. Mapreduce: Simplified data

processing on large clusters. OSDI ’04, pages 137150,

2004

[4] B. Moseley, A. Dasgupta, R. Kumar, T. Sarl, On

scheduling in map-reduce and flow-shops. In SPAA’11,

pp. 289-298, 2011.

[5] A. Verma, L. Cherkasova, R.H. Campbell,

Orchestrating an Ensemble of MapReduce Jobs for

Minimizing Their Makespan, IEEE Transaction on

dependency and secure computing, 2013.

[6] A. Verma, L. Cherkasova, R. Campbell. Two Sides of a

Coin: Optimizing the Schedule of MapReduce Jobs to

Minimize Their Makespan and Improve Cluster

Performance. In IEEE MASCOTS, pp. 11-18, 2012.

[7] S.J. Tang, B.S. Lee, and B.S. He. MROrder: Flexible

Job Ordering Optimization for Online MapReduce

Workloads. In Euro-Par’13, pp. 291-304, 2013.

[8] S.J. Tang, B.S. Lee, R. Fan and B.S. He. Dynamic Job

Ordering and Slot Configurations for MapReduce

Workloads, CORR (Technical Report), 2013.

[9] C. Oguz, M.F. Ercan, Scheduling multiprocessor tasks

in a twostage flow-shop environment. Proceedings of

the 21st international conference on Computers and

industrial engineering, pp. 269-272, 1997.

[10] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.

B. Cetin, and S. Babu. Starfish: A Self-tuning System

for Big Data Analytics. In CIDR11, pp. 261C272, 2011.

[11] J. Polo, C. Castillo, D. Carrera, et al. Resource aware

Adaptive Scheduling for MapReduce Clusters. In

Middleware’11, pp. 187- 207, 2011.

[12] Apache Hadoop NextGen MapReduce (YARN).

http://hadoop.apache.org/docs/current/hadoop

yarn/hadoopyarn- site/YARN.html.

[13] M. Zaharia, A. Konwinski , A.D. Joseph , R. Katz , I.

Stoica,Improving MapReduce performance in

heterogeneous environments.In OSDI’08, pp.29-42,

2008.

[14] Z.H. Guo, G. Fox, M. Zhou, Y. Ruan.Improving

ResourceUtilization in MapReduce. In IEEE Cluster12.

pp. 402-410,2012.

[15] G. Ananthanarayanan, S. Kandula, A. Greenberg, I.

Stoica, Y.Lu, B. Saha, and E. Harris, Reining in the

outliers in map-reduceclusters using mantri, in OSDI10,

pp. 1-16, 2010.

[16] Q. Chen, C. Liu, Z. Xiao, Improving MapReduce

PerformanceUsing Smart Speculative Execution

Strategy. IEEE Transactions on Computer, 2013.

[17] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy,S.

Schenker,I.Stoica, Delay scheduling: A simple

technique for achievinglocality and fairness in cluster

scheduling. In EuroSys10, pp.265-278, 2010.

[18] J. Tan, S. C. Meng, X. Q. Meng, L. Zhang. Improving

ReduceTaskdata locality for sequential MapReduce

jobs. In IEEEInfocom13, pp. 1627-1635, 2013.

[19] Z. H. Guo, G. Fox, and M. Zhou. Investigation of Data

Localityin MapReduce. In IEEE/ACM CCGrid12, pp,

419-426, 2012.

0

50000

100000

150000

Sp
e

e
d

u
p

 in
 m

s

PercentageOfJobCompletion

MCP

DSAS

Paper ID: IJSER15372 206 of 207

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 7, July 2015
Licensed Under Creative Commons Attribution CC BY

[20] B. Palanisamy, A. Singh, L. Liu and B. Jain, Purlieus:

LocalityawareResource Allocation for MapReduce in a

Cloud, InSC11, pp. 1-11, 2011.

[21] Z. H. Guo, G. Fox, and M. Zhou.Investigation of data

locality and fairness in MapReduce. In MapReduce12,

pp, 25-32, 2012.

[22] M. Hammoud and M. F. Sakr. Locality-Aware Reduce

TaskScheduling for MapReduce. In IEEE

CLOUDCOM11. pp. 570-576, 2011.

[23] M. Hammoud, M. S. Rehman, M. F. Sakr. Center-of-

GravityReduce Task Scheduling to Lower MapReduce

Network Traffic.In IEEE CLOUD12, pp. 49-58, 2012.

Paper ID: IJSER15372 207 of 207

