
International Journal of Scientific Engineering and Research (IJSER) 
www.ijser.in 

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05 

Volume 3 Issue 7, July 2015 
Licensed Under Creative Commons Attribution CC BY 

Implementation of Improving MapReduce 

Performance Using Dynamic Slot Allocation 

Strategy 
 

Pranoti K. Bone
1
, A. M. Wade

2
 

 
1, 2Department of Computer Engineering, Smt. Kashibai Navale College of Engineering, Vadgaon , Pune, Maharashtra, India 

 

 

Abstract: In many data centers and clusters data processing is a very essential task. For addressing this need, recently many 

researchers have been working. MapReduce has become one of the well liked techniques for high performance computing tasks. Many 

large scale clusters of hundreds of machines utilize an open source implementation of MapReduce technique known as Hadoop. 

However the traditional mapreduce do suffer from sever underutilization of map and reduce slots and straggler machines, i.e. the 

machines taking very long time to finish their tasks. We propose a dynamic slot allocation strategy which will decrease the execution 

time of the traditional mapreduce system. The unoptimized map and reduce slots are allocated to the tasks to resolve the underutilization 

of the slots. We proposed slot pre scheduling technique to improve data locality with no impact on fairness.Smart Executive 

Performance Balancingcan balance the performance tradeoff between a single job and a batch of jobs dynamically. By building these 

techniques together we improved the performance of the mapreduce and handled the workload substantially, also the execution time has 

been decreased.   
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1. Introduction 
 

The increasing use of internet leads to handle lots of data by 

internet service providers. MapReduce is one of the 

goodsolutions for implementing large scale distributed data 

application. Mapreduce framework is used for processing 

terabytes of data. Mapreduce help to build scalable and fault 

tolerant application. 

 

A. Hadoop  

Hadoop[1] is java based framework that allows to process 

large data sets in distributed environment as shown in figure 

1. Hadoop has been used by many large scale companies 

like Amazon, Facebook, and Yahoo. Hadoop consist of two 

important concepts:Hadoop Distributed File System (HDFS) 

and Hadoop MapReduce. 

 

B. Hadoop Distributed File System 

The file system that is oriented on blocks is HDFS. Every 

single file is divided into 64MB size of blocks. There are 

clustered machines having a huge data storage capacity, 

where these blocks are kept. Every independent machine in 

the cluster is known as a DataNode. 

 

As discussed the files are divided into number of blocks, and 

it is not necessary that all the blocks are stored on a single 

machine. The target DataNode selection is done randomly 

based on block-by-block approach. While the user needs to 

access a file, there is multiple numbers of machines who 

cooperatively provide the blocks making a single file. But 

what if a machine in the cluster fails? This issue is handled 

by Hadoop Distributed File System. The HDFS solves the 

problem by making replicas of each block on some other 

machines in the cluster, by default on three machines. In an 

HDFS cluster there is always a single node known as 

NameNode having the ability to manage the file system 

namespace and synchronizes the clients accessing the files. 

This situation is depicted in figure. The DataNodes stored 

blocks of files as data. Then it is the responsibility of the 

NameNode to map the data blocks to the independent 

DataNodes. NameNode also manages many file system 

operations like opening, closing, renaming files, etc. The 

situation where the NameNode might fail is handled by 

keeping multiple copies of data on several machines called 

as secondary NameNode[2]. 

 

C. Hadoop MapReduce 

Controlling and managing of large scale web search 

applications is a crucial task. There was an attempt made by 

Google for handling these applications, and it is called as 

MapReduce. For effectual programming skills for 

developing data mining, machine learning and search 

applications in data centers, MapReduce is an 

bestapproach[3]. 

 

D. Challenges of Traditional system  

Even if there are several researches going on optimizingthe 

MapReduce and Hadoop techniques, there are some 

keychallenges related to the issue of improving 

theperformanceof the Hadoop cluster. Initially, the basic 

compute units areconfigured by the administrator in prior to 

any other operation.The basic units are nothing but the 

computer resources whichare mapped and reduced in several 

slots. There are twounique constraints of the MapReduce job 

execution: First, it is assumed that the map slots are issued to 

map task and thereduce slots are issued to reduce tasks. 

Second, the assumptionof general execution where the 

reduce tasks are executed afterthe map tasks are executed. 

Due to these constraints, thereare two observations: Firstly, 

the performance and systemutilization for a MapReduce 

workload varies as the slotconfigurations differs. Second, 

even if there is optimal mapor reduce settings, there can be 

several idle slots indirectlyaffecting the system performance. 

Sometimes the disputes forprocessor, memory, network 

bandwidth and other resources,may consume unnecessary 

time causing delay of the entiremap and reduce tasks. For 

efficient MapReduce workloads,slot utilization performance 
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is very important and it sometimesdepends on data locality 

maximization. 

 
Figure 1: Hadoop Framework 

 

2. Related Work 
 

Performance optimization for MapReduce jobs is a very 

attention captivating topic for researchers. We survey some 

of the relating topic to our proposed work. 

 

A. Scheduling and Resource Allocation Optimization 

Many researchers have worked on optimization work for 

MapReduce jobs, and paid attention on computation 

scheduling and resource allocation topics of the same. Also 

many authors considered job ordering optimization for 

MapReduce workloads [4], [5], [6], [7], [8]. The modeling 

of the MapReduce as a two-stage hybrid flow is described in 

[9]. This hybrid flow shop has multiprocessor tasks, where 

job submission orders affect the results of cluster utilization 

and system performance. The execution time for mapping 

and reducing the tasks for each job must be known earlier, 

but this phenomenon is not implemented in the applications. 

Also this method has not considered for the dependent jobs 

and suitable only for the independent jobs. Example of such 

method is MapReduce workflow. Compared to this 

phenomenon, our proposed DHSA is suitable for all types of 

jobs. Starfish [10] framework can modify the hadoop 

configuration automatically for the MapReduce jobs. By 

using sampling technique and cost based model we can 

maximize the utilization of hadoop cluster. But still we can 

improve the performance of this technique by maximizing 

the utilization of map and by reducing slots. Polo et al. [11] 

proposed a technique for MapReduce multi job workloads 

based on resource aware scheduling technique. This 

technique focus on improving resource utilization by 

expanding the abstraction of existing task slot to job 

slot.YARN[12] solve the inefficiency problem of the 

Hadoop MRv1 in the perspective of resource management. 

Instead of using slot, it manages resources into containers. 

The Map and Reduce operation are performed on any 

container. 

 

B. Speculative Execution Optimization 

In MapReduce we need task scheduling strategy for dealing 

with problems such as straggler problem for a single job, 

which include LATE [13], BASE [14], Mantri [15],MCP 

[16].Speculative execution is such an important task 

scheduling strategy. The speculative execution algorithm 

speculates the task by prioritizing and pays attention on 

heterogeneous environments. To run, selecting the fast 

nodes and the speculative tasks are covered over, this 

speculative execution algorithm is a longest approximate 

time to end (LATE) [13], and the prioritizing of task is 

required for speculation. Guo et al. [14] proposes a Benefit 

Aware Speculative Execution (BASE) algorithm which 

evaluate the potential benefit of the speculative tasks and the 

unnecessary runs are eliminated. This BASE algorithm of 

the evaluating and elimination can improve the performance 

for LATE. The speculative execution strategy magnifies its 

focus mainly on saving cluster computing resource, is 

provided by Mantri [15].Maximum Cost Performance 

(MCP) is a new speculative execution algorithm proposed 

by the Chen et al. [16] proposed for fixing the problem that 

was affecting the performance of the prior speculative 

execution strategies. We proposed speculative Execution 

Optimization strategy that balances the tradeoffs between a 

single job and a group of jobs. 

 

C.  Data Locality Optimization 
Many previous work on improving the performance and 

efficiency of the utilization of cluster have proven to be 

critical task (for example in [17]-[18]). There are two data 

locality approaches for MapReduce, reduce-side and map-

side. In the map-side data locality approach, the map task 

computation is moved near to the input data (for example in 

[17]-[19]). 

 

In [17], the concept of Delay Scheduler is used to refine the 

data locality task. The jobs of MapReduce are classified into 

three kinds, map-input heavy, map-and-reduce-input heavy 

and the reduce-input heavy by Purlieus [20]. They have 

proposed the work for improving the runtime performance. 

The tradeoff between fairness and data locality is adjusted 

by an algorithm provided by Guo et al. [21], [19]. This work 

is supported by a mathematical model given by the author. 

The author in [20], [22], [23] have worked on reduce-side 

data locality optimization task by proposing greedy 

algorithms. 

 

3. Proposed Work 
 

A. Problem Definition 

To maximize the slot utilization for MapReduce and 

balancethe performance tradeoff between a single job and a 

batch of jobs with fair scheduling and improving the 

performance of MapReduce cluster in Hadoop. 

 

B. Goals and Objective 

The objective is to utilize the slots in MapReduce cluster. 

The slot utilization remains a challenging task due to 

fairness and resource requirements. It is fair when all pools 

have been allocated with the same amount of resources. The 

resources requirements between the map slot and reduce slot 

are generally different. This is because the map task and 

reduce task are often exhibit completely different execution 

patterns. 

 

C. System Overview 

Proposed approach consist of three optimization techniques, 

namely, Dynamic Hadoop Slot Allocation, Speculative 

Execution Performance Balancing and Slot Pre Scheduling 
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as shown in figure 2. After executing these 3 techniques, 

results into slot utilization and utilization efficiency 

optimization. It Also improves the data locality and load 

balancing.  

 

 
Figure 2: Overview of the Proposed System 

 

Dynamic Hadoop Slot Allocation 

It attempt to maximize slot utilization while maintainingthe 

fairness, when there are pending tasks (e.g., map tasks 

orreduce tasks). We break implicit assumption of 

MapReducethat the map tasks can only run on map slots & 

reduce taskscan only run on reduce slots. In our proposed 

system wemodify it that map and reduce tasks can berun on 

either mapor reduce slots. 

There are 4 cases, 

Consider, 

NM = Total number of Map tasks 

NR = Total number of Reduce tasks 

SM = Total number of map slots 

SR = Total number of reduce slots 

Case 1: NM ≤ SMandNR ≤ SR 

The map tasks which are running on map slots and reduce 

tasks are run on reduce slots, There is no borrowing of map 

and reduce slots. 

Case 2: NM>SMandNR<SR 

We satisfy reduce tasks for reduce slots first and then use 

those idle reduce slots for running map tasks. 

Case 3: NM<SMandNR>SR 

We can schedule those unused map slots for running 

reducetasks. 

Case 4: NM>SMandNR>SR 

The system should be in completely busy state. 

 

1) Speculative Execution Performance Balancing: 

It identifies the slot resource in-efficiency problem for 

aHadoop cluster, caused by speculative tasks. It works on 

top ofthe Hadoop speculative scheduler to balance the 

performancetradeoff between a single job and a batch of 

jobs. SlotPre-Scheduling improves the slot utilization 

efficiency andperformance by improving the data locality 

for map taskswhile keeping the fairness.Speculative tasks 

are competing for certain resources includingnetwork, map 

slots and reduce tasks. For maximizing theperformance we 

should complete the pending tasks first beforeconsidering 

the speculative tasks. When node is having idlemap slot, 

then we should consider pending map task firstlyand then 

we consider speculative map task. For an idle mapslot, we 

first check jobs J1, J2 ... Jn for map task.For every job we 

check the total number of pending map andreduce tasks by 

considering all jobs from Ji and Jj. Where,i=1,2,3,4.... 

j= i + maxNumOfJobsCheckedForPendingTasks − 1. 

We checked each jobJi by considering 3 conditions: 1) 

Totalpending map tasks are greater than zero. 2) No failed 

pendingmap tasks and map tasksfor job Ji. 3) Total pending 

reducetasks is greater than zero. 

 

2) Slot Pre-Scheduling 

It improves the slot utilization efficiency and performance 

by improving the data locality for map tasks while keeping 

the fairness. 

Step 1: Compute load factor mapSlotsLoadFactor = Pending 

map tasks +running map tasksfrom all jobs divided by the 

cluster map slot capacity. 

Step 2: Compute current maximum number of usable map 

slots = number ofmap slots in a tasktracker * 

minmapSlotsLoadFactor, 1. 

Step 3: Compute current allowable idle map (or reduce) slots 

for a tasktracker= maximum number of usable map slots - 

current number ofused map (or reduce) slots 

 

D. Mathematical Model 

The mathematical terminology of proposed system is 

explained below: 

Let S be the proposed system 

S = {I,O,F,Fs,Fl,ɸ} 

Identify the inputs I. 

I = {T1, M, T2, R,U,E} 

Where, 

T1 = Pending Map Tasks. 

M = Idle Map Slots. 

T2 = Pending Reduce Tasks. 

R = Idle Reduce Slots. 

U = Utilized Slots. 

E = Empty Slots. 

Identify set of Function. Let F be the set of Functions. 

F = {F1,F2,F3} 

Where, 

F1 = Verify Information. 

F2 = Dynamic Slot Allocation. 

F3 = Balance the Performance of Job. 

Identify the Outputs. Let O be the set of outputs. 

O = {O1,O2} 

Where, 

O1 = Slots Allocated Successfully. 

O2 = Successfully Balance the Performance of Job. 

Final State: 

FS = Increase the Performance of Mapper & Reducer 

Failure case: 

Fl= Errors in measuring the input parameters 

Constraints: 

Let ɸ be the constraints ɸ =Cl 

Where, 

Cl = Accuracy in measuring the input parameters. 

 

E. Experiments and Result 

In This section we have shown the working of the proposed 

system. The figure 3 shows the total required time for the 

completion of task for proposed system in contrast with the 

existing system which is Maximum Cost Performance. In 

figure 3 it also shows the specific time required for all the 

three techniques Dynamic Hadoop Slot Allocation (DHSA), 
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Speculative Execution Performance Balancing (SEPB) and 

Slot Pre-Scheduling. 

 

 
Figure 3: Required time for the proposed system 

 

The graph 1 shows the time required to complete the tasks in 

MCP is higher as compared to DSAS. The performance of 

the MCP degrades as the time speeds up. 

 

 
Graph 1: Performance improvement of the system 

 

4. Conclusion 
 

The aim of the proposed system is to improve the 

performance of MapReduce workloads. It considered three 

techniques: Dynamic Hadoop Slot Allocation, Speculative 

Execution Performance Balancing, and Slot Pre-Scheduling. 

Dynamic Hadoop Slot Allocation uses allocation of map to 

maximize the slot utilization and it reduces the task 

dynamically. It does not require any prior information or any 

assumption and it can be run on any kind of MapReduce 

jobs. Speculative Execution Performance Balancing 

identifies the slot inefficiency problem. It manages the 

balance between single and batch of jobs dynamically. Slot 

Pre-Scheduling are used to enhance the efficiency of slot 

utilization by maximizingdata locality. We can enhance the 

utilization by adding above concept in traditional system. In 

future we plan to implement above mentioned concept in 

cloud environment. 
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