
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 8, August 2015
Licensed Under Creative Commons Attribution CC BY

Identification and Refactoring of Bad Smells to

Improve Code Quality

Sandeep Kaur
1
, Harpreet Kaur

2

1Research Scholar, Department of Computer Engineering, UCOE Punjabi University, Patiala, 2015, India

2Assistant Professor, Department of Computer Engineering, UCOE Punjabi University, Patiala, 2015, India

Abstract: Bad Smells are design flaws in the code that make an architectural design weaken and bad. Bad smells does not prevent our

source code to show any input. There is no any effect of the bad smells on output of the source code. But due to the bad smells our

source code becomes hard to modify and understand. Presentation of bad smells in the code prioritized for refactoring. Therefore

detection and refactoring of these bad smells is must. But with the assistance of the refactoring we can eliminate these design flaws and

convert a suboptimal into optimal code. Refactoring is used to expose the bugs from the source code. Refactoring is a technique that

makes the source code of the software easier, more readable, more efficient, more extendable and more understandable by eliminating

the bad smells from the source code. Even the traditional software development methods that also start with a better design, but when we

want to apply some changes to that software it may lead to a suboptimal design. Software whose requirements is changed or is under

specification is a sub optimal design. Although a source code also has a bad smells in it that make the source code irrelevant and

difficult for the programmers.

Keyword: Refactoring, Bad smells, Detection, Window based GUI.

1. Introduction

Software systems need to change by time to time. There may

be several reasons to change it. Some of them are changing

requirements of the user, advanced or change in technology,

cost benefits changes. Source code of the software is timely

changed by the developer to make maintenance easy. But

sometime a little change in the software source code

degraded the quality of the software and loses its good

design. To make the changes possible to the source code

without changing the functionality of the software there is

one technique, which is known as refactoring technique. But

before applying refactoring to the source code we to find out

where the code is to be refactor.

2. Bad Smells in the Code

The term bad smell was coined by Fowler and Beck. If there

is any bad smell in the code it means there is some deeper

problem in the code. Bad smells are structural problems that

make a source code difficult to understand and maintain.

Bad smells in source code is neither a bug nor an error. Bad

smell does not mean that any technical problem. These bad

smells do not prevent the source code from execution.

However bad smells indicates the weakness in the source

code which can create problems in future and due to the

presents of these bad smells the working of the software

getting slower down or risk of error is increasing. So if there

is any bad smells in the source code it should have to be

refactored.

Large Class In large class there are too many functionalities

are gathered in one class.Some developer make a

large class for their convenience but it may lead to

confusion when the code is analyzed or read by

any another programmer. It’s really hard to

understand the functionality of large class.

Feature envy It is a smell in which a class is interested to use

the data or functions of another class in the source

code.Feature envy means violation of principle of

class.

Duplicate code Duplicate code is the code in which the same copy

of the code or expression is placed many places in

the same source code.If we applying manual

refactoring on the source code then he\she have to

refactor the same duplicate code at all places

which is a difficult task.

Switch

Statement

Switch Statement does not necessarily mean bad

smell.But it may lead to duplication in the source

code.Often we see a same switch statement is

scatteredat various places in the same source

code.It is better to use the concept of

polymorphism rather than switch statement

2.1 Refactoring

Refactoring is a process which can be applied to the source

code of the software to removes bad smells from it.

Refactoring only changes the internal structure of the code

but there is no any effect of the refactoring on the external

behavior of the code. External interface of the software

remains the same. Refactoring makes the source code more

reliable and efficient by removing the bad smells from it.

2.2 Refactoring loop

Refactoring becomes a very important technique these days.

But before applying the applying the refactoring we have to

understand the various facts about the refactoring such that:-

1) Analyze the source code.

2) Find out where the code should have to be refactored.

3) When the code should be refactor.

4) Why the code should be refactor.

5) Type of bad smells.

6) Which refactoring technique is more suitable to refactor

the particular type of bad smells?

7) Effect of refactoring on the code.

Paper ID: IJSER15424 99 of 102

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 8, August 2015
Licensed Under Creative Commons Attribution CC BY

2.3 Refactoring techniques

Move Method Move method means moving a method to

another class when classes have too many

functionalities to do.

Extract Method Extract method means extract a piece of code

that is appear at many places in the source code

and make a new method or class.

Replace Temp with

query

Replace temporary variables with the method

calls.It is same as extract method.

Rename method Rename the method according to the

functionality of the method.

Replace array with

object

An array has certain elements with different

things.Replace that array with an object in

which there is a field for each element.

Inline Class When a class does have much work to do then it

is better to move its entire feature to another

class and remove it.

Push Down Some functionalities of the super class are valid

for some subclasses. Move this functionality to

those subclasses.

3. Literature Survey

It presents about the previous studies of evaluating what the

other researchers have done regarding code smells detection.

Author Description

Karnam

Sreenu

Software refactoring is a technique that transforms the

various types of software artifacts to improve the

software internal structure without affecting the

external behavior. Various types of object oriented

metrics can be calculated to detect the bad smells.

Almas

Hamid,

Muhammad

Ilyas,

Muhammad

Hummayun

and Asad

Nawaz

Refactoring is a technique to make a computer program

more readable and maintainable. A bad smell is an

indication of some setback in the code, which requires

refactoring to deal with. Many tools are available for

detection and removal of these code smells.In this

work, we studied different code smell detection tools

minutely and try to comprehend our analysis by

forming a comparative of their features and working

scenario.

Francesca

Arcelli,Font

ana Pietro

Braione,Ma

rco Zanonia

Code smells are structural characteristics of software

that may indicate a code or design problem that makes

software hard to evolve and maintain, and may trigger

refactoring of code. Recent research is active in

defining automatic detection tools to help humans in

finding smells when code size becomes unmanageable

for manual review

Martin

Fowler

Bad smells are signs of potential problems in code.

Detecting bad smells, however, remains time

consuming for software engineers. Large Class is a kind

of bad smells caused by large scale, and the detection is

hard to achieve automatically.

Marija

Katic

The main definitions and terms concerning software

redesign is closely connected with the testing. This

paper briefly presents the software redesign process and

methods that are used in that process. Although one can

say that for example a source code redesign belongs to

the implementation phase, tests are needed to ensure

that the behavior is not changed.

Wei Liu This paper discusses how to detect and eliminate the

lazy class. An automatic syntax tree (AST) is proposed

in this work. Firstly source code file is converted into

ASTs and then three types of relationship are

considered between the classes and extracted syntax

tree. After carrying out several operations on these

ASTs lazy class is obtained and removes it

automatically. This approach has good efficiency, and

its execution time has a linear relationship to the size of

a system.

Raju M.

Tugnayat

This paper discusses refactoring which is one of the

techniques to keep software maintainable. However,

refactoring itself will not bring the full benefits, if we

do not understand when refactoring needs to be applied.

To make it easier for a software developer to decide

whether certain software needs refactoring or not,

Fowler & Beck’s idea was that bad code smells are a

more concrete indication for the refactoring need than

some vague idea of programming aesthetics.

Mohamed

Eladawyl

In this paper a novel assessment criterion based on

including the inherited attributes and methods has been

proposed. Additionally, the effect of including the

inherited attributes and methods in measuring class

cohesion has been extensively discussed.

4. Proposed Work

A Window based GUI application has been developed to

detect bad smells. It detects the bad smells according to the

Object Oriented Metrics. Large Class, Switch Statements,

Long Parameter List, Dead code, Conditional Statement,

Duplicate Code, Comments are the bad smells that are

detected by the GUI. This application detects the bad smells

from the source code of java. Also refactor the detected bad

smells by using appropriate refactoring techniques. It

focuses on improving the quality or performance by

decreasing the complexity of the source code.

4.1 Experimentation

The experimentation is done as follow:

The GUI interface is creates in VB.Net language and support

detection and refactoring of bad smells. This application is

created in Visual Studio 2010. It detects the bad smells

according to the object oriented metrics and refactors them

from the source code. To detect these bad smells different

types of object oriented metrics are measured. For different

kind of bad smell the object oriented metrics is also

different.

4.2 Metrics tocalculate the bad smells:

1) Lines of source code Lines of code usually refer to non-

commentary lines meaning pure white spaces and lines

containing only comments are not included in the metric.

2) Lines of comment Lines of comment are used to

describe the meaning of the statement in the code.

4.3 Detection of bad smells by using Window Based GUI

Application

1. Conditional statements

Firstly we calculate the metrics to detect the conditional

statements.

Paper ID: IJSER15424 100 of 102

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 8, August 2015
Licensed Under Creative Commons Attribution CC BY

The following metrics are used for the detection of

conditional statements.

Rule:

If the number of if-else conditions or else-if condition is less

than or equal to 10 then it is a low risk program and not

considered as bad smell.

If the number of if-else conditions or else-if condition is less

than or equal to 20 then it is a moderate risk program.

If the number of if-else conditions or else-if condition is

more than or equal to 50 then it is a high risk program and

considered as bad smell.

Figure 1: Detection of Conditional Statements

2. Dead CodeTo detect the Dead Code Bad smell. Rule If

code is never processed at run time.

Figure 2: Detection of Dead Code

Long Parameter List

To identify the long parameter list we have calculate number

of parameters in the code and number of methods in the

source code.

Rule If the number of parameters more than 15 then we

consider it as a bad smell. If the value of number of

parameter list is less than 15 then it is a low risk program.

Figure 3: Detection of Long Parameter List

Comments Rule: If number of comment lines that are

present in the code are more than the average lines of code.

Figure 4: Detection of comments

Large Class To detect the large class from the source code

we calculate line of code metrics and number of

methods.Rule If the LOC (line of codes)are greater than 150

then this class is considered as large class.If number of

method is greater than or equal to 10.

Figure 5: Detection of Large Class

Switch Statements: For the detection of Switch statement

the rule is : Rule If the number if switch statement is greater

than 5 then we consider it as a bad smell.

Figure 6:.Detection of Switch Statements

4.4 Applying the Refactoring Techniques

The results are shown below:

1. Refactoring of Comments:

Figure7: After refactoring of comments

Paper ID: IJSER15424 101 of 102

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 8, August 2015
Licensed Under Creative Commons Attribution CC BY

2. Refactoring of Dead Code

Figure 8: After Refactoring of Dead Code

3. Refactoring of Switch Statements

Figure 9: After refactoringof switch statements

5. Conclusion

Six types of bad smells are detected through this GUI. From

these six bad smells our project contains three types of bad

smells which are refactored by using this GUI. This work

conclude that removing of bad code smells by using the

refactoring makes the software more reliable, more efficient

and more readable also decrease the complexity of the

source code then its original source and the external working

of the software remains same. In this work the main focus is

to develop the window based GUI application to detect and

refactor the bad smells from the source code. In the

detection of bad smell we identify the code which degrades

the quality of the source code. Although these bad smells

does not produce any error at the runtime but the presence of

bad smells in the code makes the source code difficult for

maintenance.So the use of refactoring to change the internal

structure of the code in such way that no any change occurs

to the external interface of the software. The calculations of

values of the bad smells are on the basis of object oriented

metrics.

6. Future Scope

1) In the future the comparison will be performed between

developed window base GUI and Eclipse.

2) Calculate more number of metrics to detect more bad

smells.

3) Refactoring methods will be applied on the basis of the

bad smells to refactor them.

References

[1] KarnamSreenu,D.B.JagannadhaRao2 ”Performance

Detection of bad Smells In Code for Refactoring

Methods”International Journal of Modern Engineering

Research (IJMER).Vol.2,Issue,5,sep-oct,2012 pp-3727-

3729.

[2] Almas Hamid, Muhammad Ilyas, Muhammad

Hummayun and Asad Nawaz “ A Comparative Study on

Code Smell Detection Tools” International Journal of

Advanced Science and Technology Vol.60, (2013)

[3] Francesca Arceli Fontana Pietro Braionea Macro

Zaninia”Automatic detection of bad smellsin

code”Journal of object Technology Published

byAitocjot2011.

[4] Martin Fowler “A list of Refactoring

tools”Http://www.refactoring.com

[5] Stefan Slinger “Code Smell detection in Eclipse” Delft

University of Technology.

[6] Marjia Katic “Software Redesign Methods” Departments

of Applied Computing Faculty of Electrical Engineering

and Computing, University of Zagreb, Croatia.

[7] Ganesh B. Regular and Raju M. Tugnayat “Bad smelling

concept in Software refactoring”, Jawaharlal Darda

institute of Engineering and Technology, MIDC, Lohara,

Yavaymal,India.

[8] Safwat M.Ibrahim,Sameh A.Salem,ManalAand

Mohamed Eladawyl” Identification of Nominated

Classes for Software Refactoring Using Oject-Oriented

Cohesion Metrics” IJCSI International Journal of

Computer Science Issues,Vol.9,Issue 2, No.2, March

2012 ISSN(Online):1694-0814

Paper ID: IJSER15424 102 of 102

