www.ijser.in ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Failure Modes and Effects Analysis (FMEA) of a Rooftop PV System

Jayanta Bhusan Basu

¹Siliguri Institute of Technology, Salbari, Siliguri 734009, West Bengal, India

Abstract: The electricity requirements of the world including India are increasing at a very high rate. Only fossil fuel based generating system will not keep pace with ever increasing demand of the electrical energy of the world. Also generation by fossil fuel based power plant causes pollution. Thus new means of generation specialy based on renewable energy sources needs more attention. Utilising Solar energy source is thus becoming more popular as it has a potential of generating 750 GW in India. Rooftop PV system is one major option for generating electrical power as the urban environment provides a large amount of empty rooftop spaces and can inherently avoid the potential land use and environmental concerns. The present paper provides a comprehensive guide to ensure a trouble free & safe operation of rooftop PV system.

Keywords: FMEA, Rooftop PV, Photovoltaic, Inverter, Failure Modes

1. Introduction

Solar PV modules converts sunlight into electricity. The electricity thus generated is Direct Current (DC). This needs to be converted into Alternating Current (AC) using an inverter. In case of rooftop PV system the panels are mounted on the rooftop using suitable mounting structures. PV systems are classified by their rated power output (the peak power they produce when exposed to solar radiation of 1,000 Watts per square meter at a module temperature of 25°C). It may be noted that the rooftop PV systems are not suitable for large scale generation. Rooftop PV systems on residential buildings typically feature a capacity of about 5 to 20 kilowatts (kW), while those mounted on commercial buildings often reach 100 kilowatts or more. The Table 1 provides an estimate of the roof area needed for several systems.

Table 1: Kool Area Needed in Square Fee	eded in Square Feet	Veeded	Area l	Roof	1:	Table
--	---------------------	--------	--------	------	----	-------

PV Module		PV Capacity (Watts)							
Efficiency (%)	500	1000	2000	4000	10000				
8	75	150	300	600	1500				
12	50	100	200	400	1000				
16	40	80	160	320	800				

A typical rooftop PV system has following components

- 1. PV Panel Converts sunlight to electricity. There are two kinds of modules: Thin-film, and Crystalline. Rooftop solar plants predominantly use crystalline panels because they are more efficient and therefore better suited to installations like rooftops where space is a constraint.
- 2. Batteries Store electricity.
- 3. Charge Controller /Inverter- Manages the flow of electricity between the solar panel, battery and load. The inverter - Converts DC power from the solar panel and battery to AC power
- 4. Wires For electrical connectivity among various components.

Figure 1: Rooftop PV system

2. FMEA

The Failure Modes and Effects Analysis (FMEA), also known as Failure Modes, Effects, and Criticality Analysis (FMECA), has its origin in the US military in the late 1940s.

The *failure mode* that describes the way in which a design fails to perform as intended;

The *effect* or the impact on the customer resulting from the failure mode; and

The cause(s) or means by which an element of the design resulted in a failure mode.

FMEA is a methodology developed to identify potential failure modes in a product or process, to determine the effect of each failure on system operation and to identify and carry out corrective actions. It may also incorporate some method to rank each failure to its severity and probability of occurrence. A successful FMEA activity helps to identify potential failure modes based on past experience with similar products or processes or based on common failure mechanism logic.

An FMEA is conducted with the following steps:

- a) List all the components
- b)The potential failure mode(s) for each component will be identified. Failure modes will include:

International Journal of Scientific Engineering and Research (IJSER)

www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

- complete failures
- intermittent failures
- partial failures
- failures over time
- incorrect operation
- premature operation
- failure to cease functioning at allotted time
- failure to function at allotted time

It is important to consider that a part may have more than one mode of failure. For each failure, the mode will be identified, the consequences or effects on system, property and people will be listed. Then the severity or criticality rating will be given with the help of statistical analysis. , which will indicate how significant of an impact the effect will have on the system.

 Table 2: Severity ratings

Rating	Severity	End effect				
1	None	Effect will be undetected by customer or				
1	Hone	regarded as insignificant.				
2	Very minor	A few customers may notice effect and				
2	very minor	may be annoyed				
3	Minor	Average customer will notice effect.				
4	Very low	Effect reconized by most customers				
		Product is operable, however				
5	Low	performance of comfort or convenience				
		items is reduced				
6	Moderate	Products operable, however comfort or				
0	Moderate	convenience items are inoperable.				
		Product is operable at reduced level of				
7	High	performance. High degree of customer				
		dissatisfaction				
		Loss of primary function renders product				
		inoperable. Intolerable effects apparent				
8	Very high	to customer. May violate non-safety				
		related governmental regulations.				
		Repairs lengthy and costly.				
		Unsafe operation with warning before				
0	Hazardous –	failure or non-conformance with				
)	with warning	government regulations. Risk of injury				
		or fatality.				
		Unsafe operation without warning before				
	Hazardous –	failure or nonconformance with				
10	without	government regulations. Risk of injury				
	warning	or fatality.				

- For each mode of failure, the cause(s) are identified. The probability of occurrence can be determined from field data or history of previous. A subjective rating also may be made based on the experience and knowledge of the crossfunctional experts.

Table 3: Probability of Occurrence Ratings							
Rating	Occurrence	Failure Rate					
5	Very High: Failures must be addressed	Above 30%					
4	High: Failures cause frequent downtime	5-12.5 %					
3	Moderate: Failures cause some downtime	0.05-1.25 %					
2	Low: Failures cause very little downtime	0.001-0.01 %					
1	Remote: Downtime due to failure is	Less than					
1	unlikely	0.0001 %					

- The controls currently in place will be identified that either prevent or detect the cause of the failure mode. The effectiveness of such control will be rated and estimated how well the cause or failure modes are prevented or detected.

Table 4:	Control	Effectiveness	Ratings

Rating	Control effectiveness
1	Excellent; control mechanisms are foolproof.
2	Very high; some question about effectiveness of control
3	High; unlikely cause or failure will go undetected
4	Moderately high.
5	Moderate; control effective under certain conditions
6	Low.
7	Very low.
8	Poor; control is insufficient and causes or failures extremely unlikely to be prevented or detected
9	Very poor.
10	Ineffective; causes or failures almost certainly not be prevented or detected.

Risk Priority Number (RPN) plays an important part in the choice of an action against failure modes. After ranking the severity, occurrence and detect ability, the RPN can be easily calculated by multiplying these three numbers:

 $RPN = S \times O \times D$

- Finally, actions will be taken to reduce risk of failure, which is the most crucial aspect of an FMEA. The FMEA should be reviewed to determine where corrective action should be taken and when. All failure modes of the system will be identified, documented and suitable actions will be recommended. Further action also may be taken in the form of design improvements, changes in component selection, the inclusion of redundancy in the design, or may incorporate change for improving safety aspects.

The results of an FMEA are usually documented in tabular format as shown in Table 5.

Table 5: FMEA tabular sheet

Part description Failure modes Severity Results / Effects of failure Cause of Failure mode Occ Controls Det RPN

3. FMEA of a Roof Top PV System

In this proposed work an effort has been made to identify all of the components to be evaluated. This will include all of the equipment / parts that constitute the Rooftop PV system. A comprehensive FMEA worksheet is shown in Table 6.

International Journal of Scientific Engineering and Research (IJSER) <u>www.ijser.in</u> ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Part	Failure modes	Severity	Results /	Cause of Failure mode) Occ	Controls	Det	
description	r anare modes	Severity	Effects of	Cause of Fanare mode	0	Controls	Dei	
acsemption			failure					RPN
PV panel			,	Improper site		Proper site selection / Removal of		
1	Soiling or		Reduction in	selection/Installation	5	Vegetation & obstructions	3	135
	shading of panel	9	energy output	Accumulation of dust & soil	5	Regular maintenance	2	90
	Improper Tilt		Reduction in	Non availability of		Use weather data (Solar insolation		
	angle	7	energy output	geographical location data	3	level)	2	42
	Improper		Reduction in	Non availability of		Use weather data (Solar insolation		
	orientation	7	energy output	geographical location data	3	level)	2	42
	Fading in the		Reduced open	Weak PV modules	2	Selective shading test	2	36
	heat	9	circuit voltage	Charge Controller failure	2	Charge Controller Field test	2	36
	Bypass diode		Reduced open	Lightning / Surge	2	Lightning / Surge protection	2	32
	short out	8	circuit voltage	Improper material selection	1	Material Selection	5	40
				Frequent connection and				
	Bypass diode			disconnection of the batteries	2	User Instruction	3	60
	reverse		Damaged PV	Lack of operating				
	connection	10	panel	/maintenance manual	2	operating/maintenance manual	4	80
			Electric arc	Material failure	1	Material Selection	5	45
			Shock/injury		1	Good installation practice/User	5	ч.
	Corroded or		Hazard	Loose connections	4	training	3	108
	burnt terminals	9	Fire	Corrosion	4	Regular maintenance	4	144
		,	Electric arc					111
			Shock/ injury					
	Loose or broken		Hazard			Good installation practice / user		
	connections	9	Fire	Excessive torque or pressure	4	instruction	4	144
			Electric	Improper site selection	1	Proper site selection	2	20
			shock/injury	Improper handling	3	Packaging / Handling	2	<u>20</u> 60
	Broken panel		hazard		5		2	00
	glass front	10	Fire	Hooliganism	1	No Control	n/a	-
			Mechanical	Material failure	1	Material Selection	5	40
			Breakage /	Improper installation	3	Installation by technician	4	96
			Damage of					
	Defect in Panel	0	panel		4		4	144
D. 11. '	mountings	8	Injury Hazards	Corrosion	4	Regular maintenance	4	144
Batteries	Swollen or	0	Inium Horond	Oversharsing	1	Viewal Inspection	2	10
	cracked case	9	Dorformance	Idle operation/	1	v isuai inspection	2	18
	Sulphation	8	deterioration	undercharging	3	Charge controller field test	3	72
	Sulphation	0	deterioration	Irregular cleaning of the	5	Regular maintenance / User	5	12
				hattery	4	instruction	4	144
	Dirt/corroded		Discharge of			Regular maintenance/User		
	connectors	9	battery	Corrosion	4	instruction	4	144
	Not electrically			Loose / Broken connector	2	Packaging / Handling	5	90
	connected	9	Open circuit	Material failure	1	Material Selection	3	27
			Damaga to					
	Davarsa		battery					
	connections are		Damage to	Inadequate polarization or				
	made.	10	connection	indexing	1	Manufacturing Inspection	4	40
	Intermittent	10	connection	Ageing	4	No control	n/a	-
	failure & reduced		Low energy				11/ u	
	battery capacity	9	output	End of lifespan	5	No control	n/a	-
				Faulty controller	3	Charge Controller Field test	2	54
	Low battery			Ageing	4	No control	n/a	-
	voltage	9	Low voltage	End of lifespan	5	No control	n/a	-
	Completely							
	discharge	10	No output	End of lifespan	5	No control	n/a	-
Charge			Improper					
controller /			charging &					
Inverter			discharging of					
			the battery	Interior design	3	Manufacturing Inspection/Design	2	54
	Failure of control		Damage to	Use of low quality				27
		9	Dattery	components		Material Selection	3	27
	Short aircuiting	10	rotective cost	Improper connection	1	operating/maintananga manual	2	20
l	Short circuiting	10	protective gear	mproper connection	1	operating/maintenance manual	5	30

International Journal of Scientific Engineering and Research (IJSER) www.ijser.in

155N (Online): 2547-5878, Impact Factor (2014): 5.05	ISSN (Online):	2347-3878,	Impact Factor	(2014): 3.05
--	----------------	------------	---------------	--------------

			Shock/injury					
			Hazard					
			Fire	Fault in electrical wiring	2	Continuity testing	5	100
	Not electrically			Loose / Broken connector	2	Packaging / Handling	5	90
	connected	9	Open circuit	Material failure	1	Material Selection	3	27
			Overheating	Improper selection of PV		Electrical load calculations &		
			Damage to the	system	1	study	5	40
	Overloading	8	module	Electrical Fault	3	Using Protective gears	3	72
						Electrical load calculations &		
				Overloading	2	study	5	80
				Busting of fuse	2	Visual inspection	2	32
	Low voltage			Abused Battery	1	Material Selection	3	24
	output	8	Low voltage	Failure of PV system	1	PV system field test	3	24
			Damage to					
			PCB					
			Fire			Material Selection /		
	Overheating	8	Injury Hazard	Failure of heatsink	1	Manufacturing inspection	3	24
				Material failure	1	Material Selection	5	45
			Electric arc			Good installation practice/User		
	Corroded or		Shock/injury	Loose connections	4	training	3	108
	burnt terminals	9	Hazard Fire	Corrosion	4	Regular maintenance	4	144
Wires				Insufficient conductor				
			Overheating	ampicity	3	User Instruction	3	72
	Overloading	8	Fire	Fault in the electrical system	3	Using Protective gears	3	72
			Short circuit –	Pinched wire	2	Check for current leakage	3	60
			no power					
			output, tripped					
			protective gear					
			Shock/ injury					
		10	Hazard		1		~	50
	Insulation Failure	10	Fire	iviecnanical damage	1	Packaging / Handling	3	50
			Open circuit –					
	Conductor fail	0	no output		2		4	64
	Conductor failure	ð	power	Repeated flexing of wire	2	Continuity testing	4	64

The RPN is an optional step that can be used to help prioritize failure modes for action. In general, the failure modes that have the greatest RPN receive priority for corrective action. The RPN should not firmly dictate priority as some failure modes may warrant immediate action although their RPN may not rank among the highest. For using The RPN methodology The range of RPN values is divided into classes: For example

•From 1 to 50: No action necessary

•From 51 to 99: Corrective action is advisable

•For more than 99 : Immediate corrective action

This classification varies from system to system.

4. Conclusions

A FMEA analysis is a good help in finding better solution for a trouble free operation of the Rooftop PV systems. Using this systematic approach gives better understanding of system failures, their effects and remediation methods. Finding and preventing hidden failures is a very important task. Using the right solutions during manufacturing, packaging, installing and to end applications can reduce the risk of serious damage & failure of the system.

The analysis results as checklists and information on critical points at various levels. The FMEA report can be used to improve the system's reliability. Further research could apply this methodology to other PV systems, more components in

any topology (e.g., MPPT, etc.), design of fault tolerance, and actual field failure rates. Even though FMEA models use a fixed failure rate, which might not be accurate since failure rates generally vary with time and area of installation, the proposed methodology serves the purpose of a comprehensive, straightforward, and versatile procedure for smooth operation of a Rooftop PV system.

References

- [1] Ashely, Steven, "Failure Analysis Beats Murphy's Laws", Mechanical Engineering, September 1993, pp. 70-72.
- [2] Burgess, John A., Design Assurance for Engineers and Managers, Marcel Dekker, Inc., New York, 1984, pp. 246-252
- [3] Failure Mode, Effects and Criticality Analysis., Kinetic, LCC. http://www.fmeca.com (Retrieved January, 2000)
- [4] "A Guideline for the FMEA/FTA", ASME Professional Development – FMEA: Failure Modes, Effects and Analysis in Design, Manufacturing Process, and Service, February28-March 1, 1994.
- [5] Jakuba, S.R., "Failure Mode and Effect Analysis for Reliability Planning and Risk Evaluation", Engineering Digest, Vol. 33, No. 6, June 1987.
- [6] Singh, Karambir, Mechanical Design Principles: Applications, Techniques and Guidelines for Manufacture, Nantel Publications, Melbourne, Australia, 1996, pp. 77-78.

<u>www.ijser.in</u>

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

- [7] Gilchrist, W. (1993). Modelling failure modes and effects analysis. International Journal of Quality and Reliability Management, 10(5), 16-23.
- [8] Kukkal, P., Bowles, J. B., and Bonnell, R. D. (1993). Database design for failure modes and effects analysis. 1993 Proceedings Annual Reliability and Maintainability Symposium, 231-239.
- [9] Price, C. J., Pugh, D. R., Wilson, M. S., and Snooke, N. (1995). The Flame system: Automating electrical failure mode & effects analysis (FMEA). 1995 Proceedings Annual Reliability and Maintainability Symposium, 90-95.
- [10] International Electrotechnical Commission (IEC), Analysis Techniques for System Reliability: Procedure for Failure Mode and Effects Analysis (FMEA), July 1985.

Author Profile

Jayanta Bhusan Basu received the M.E. degree in Electrical Engineering from Bengal engineering & Science University in 2006. He Has worked with Development Consultants Ltd. & BSES Ltd. Now he is with Siliguri Institute Of technology, Siliguri, India.