## Efficient Estimators of Population Variance Using Known Population Mode & Variance of Auxiliary Variable

Harinder Kaur<sup>1</sup>, M. K. Sharma<sup>2</sup>

Punjabi University, Patiala, Punjab, India

Abstract: In this paper, using known information of population mode  $(M_x)$  along with population variance  $(S_x^2)$  of the auxiliary variable x, we have proposed the ratio-type and product-type estimators of population variance  $(S_y^2)$  of the main variable y. Also we have proposed the class of estimators of  $S_y^2$  whose proposed estimators are the members. Up to terms of order  $n^{-1}$ , expressions for biases, MSEs and minimum MSEs are obtained and compared with each other. Theoretical results are supported by the empirical study by taking five populations from the literature.

**Keywords:** Correlation coefficient, Coefficient of kurtosis, Coefficient of skewness, Population variance, Population mode, Product-type estimator, Ratio-type estimator, Regularity conditions, Taylor series.

### 1. Introduction

It is well known that the use of the auxiliary information increases the efficiency of the estimator at the estimation stage, which is developed to estimate the population parameter of the study variable. Rather than the population mean, population variance is also one of that main parameter in which researchers have keen interest to estimate. In some areas such as laboratories and industries, producer wants to know the effect of variations on their products. In literature so many researchers Srivastava and Jhajj (1980), Isaki (1983), Upadhyaya and Singh (1999), Kadilar and Cingi (2006),Subramani and Kumarapandiyan (2012a.b. 2013,2015), have done work in this direction by using different information of auxiliary variable such  $C_{x}, \beta_{1x}, \beta_{2x}, S_{x}, \rho, M_{d}, Q_{1}, Q_{3}, Q_{r}, Q_{d}, Q_{a}$ as their combinations.

Recently Sharma et al. (2016a) suggested the new parametric relationship for population mode  $(M_y)$  as

$$M_y = \bar{Y} - k \frac{\mu_{30}}{S_y^2}$$

where k is unknown constant to be determined. They obtained the value of k by minimizing the MSE (up to terms of order  $n^{-1}$ ) of the conventional consistent estimators of  $M_y$  as

$$\widehat{M}_{o1} = \overline{y} - k_1 \frac{m_{30}}{s_y^2}.$$

In this study, we first propose ratio-type and product-type estimator for population variance  $S_y^2$  by using the known information of population mode along with population variance of the auxiliary variable. The expressions for their minimum mean squared error are derived up to the first order of approximation. Then we propose generalized class of estimator of  $S_y^2$  and obtained minimum mean squared error, up to the first order of approximation. Theoretically and numerically we show that proposed estimators are more efficient than the existing estimators.

### 2. Notations and Results

Let y be the variable of interest and x is the auxiliary variable. The observations on both the variables y and x are taken out from the sample of the size n, which has been drawn from the finite population of size N with the technique of SRSWOR. On the  $i^{th}$  unit,  $Y_i$  and  $X_i$  denote the values of the variables y and x respectively and corresponding small letters  $y_i$  and  $x_i$  denote the sample values.

Taking,  

$$\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$
,  $\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$   
 $S_y^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \bar{Y})^2$ ,  $S_x^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2$   
 $\mu_{rs} = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \bar{Y})^r (X_i - \bar{X})^s$ ,  $\lambda_{rs} = \frac{\mu_{rs}}{\mu_{20}^{r/2} \mu_{02}^{s/2}}$ 

Obviously

 $\begin{array}{l} \rho_{xy} = \lambda_{11} = \rho(\text{Correlation between } x \text{ and } y), \\ \beta_{1y} = \lambda_{30}(\text{Coefficient of skewness of } y), \\ \beta_{1x} = \lambda_{03}(\text{Coefficient of skewness of } x), \\ \beta_{2x} = \lambda_{04}(\text{Coefficient of kurtosis of } x). \\ \text{Defining,} \end{array}$ 

$$\delta = \frac{s_y^2}{S_y^2} - 1, \qquad \epsilon = \frac{\bar{x}}{\bar{X}} - 1,$$
$$\eta = \frac{s_x^2}{S_x^2} - 1, \qquad \eta' = \frac{m_{03}}{\mu_{03}} - 1.$$

For the sake of simplicity, assume that N is large enough as compares to n so that finite population correction (fpc) terms are ignored throughout.

For the given SRSWOR, we have the following expectations,

#### Volume 4 Issue 10, October 2016

$$E(\delta) = E(\epsilon) = E(\eta) = E(\eta') = 0, \ E(\epsilon^2) = \frac{1}{n}C_x^2,$$
$$E(\epsilon\eta) = \frac{1}{n}\lambda_{03}C_x = \frac{1}{n}\beta_{1x}C_x, \qquad E(\epsilon\delta) = \frac{1}{n}\lambda_{21}C_x,$$

and up to terms of order  $n^{-1}$ 

$$\begin{split} E(\delta^2) &= \frac{1}{n} (\lambda_{40} - 1) = \frac{1}{n} (\beta_{2y} - 1), \\ E(\eta^2) &= \frac{1}{n} (\lambda_{04} - 1) = \frac{1}{n} (\beta_{2x} - 1), \\ E(\eta^2) &= \frac{1}{n} \frac{(\lambda_{06} - 6\lambda_{04} - \lambda_{03}^2 + 9)}{\lambda_{03}^2} = \frac{1}{n} \frac{(\lambda_{06} - 6\beta_{2x} - \beta_{1x}^2 + 9)}{\beta_{1x}^2} \\ E(\epsilon\eta^2) &= \frac{1}{n} \frac{(\lambda_{04} - 3)}{\lambda_{03}} C_x = \frac{1}{n} \frac{(\beta_{2x} - 3)}{\beta_{1x}} C_x, \\ E(\delta\eta) &= \frac{1}{n} (\lambda_{22} - 1), \\ E(\delta\eta^2) &= \frac{1}{n} \frac{(\lambda_{23} - 3\lambda_{21} - \lambda_{03})}{\lambda_{03}} = \frac{1}{n} \frac{(\lambda_{23} - 3\lambda_{21} - \beta_{1x})}{\beta_{1x}}, \\ E(\eta\eta^2) &= \frac{1}{n} \frac{(\lambda_{05} - 4\lambda_{03})}{\lambda_{03}} = \frac{1}{n} \frac{(\lambda_{05} - 4\beta_{1x})}{\beta_{1x}}. \end{split}$$

## 3. Proposed Estimators

If population mode  $M_x (= \bar{X} - K_x \frac{\mu_{0.3}}{s_x^2})$  of the auxiliary variable x is known then we here propose the ratio-type and product-type estimators of  $S_y^2$  as

$$\hat{S}_{yoR}^{2} = s_{y}^{2} \frac{S_{x}^{2} + M_{x}}{s_{x}^{2} + \hat{M}_{x}}$$

$$\hat{S}_{yoP}^{2} = s_{y}^{2} \frac{s_{x}^{2} + \hat{M}_{x}}{S_{x}^{2} + \hat{M}_{x}}$$
(3.1)
(3.2)

where the constants  $K_{xR}$  and  $K_{xP}$  involved in (3.1) & (3.2) are determined by minimizing the MSEs of the respective estimators.

Re-write the estimators in terms of  $\delta$ ,  $\varepsilon$ ,  $\eta$ ,  $\eta'$  and expanding them up to second degree of approximation and taking the expectations as given in section second, upto terms of order  $n^{-1}$ , we get,

$$\begin{split} B(\hat{S}_{yoR}^2) &= \frac{1}{n} \frac{S_y^2}{S_x^2 + M_x} \left[ \delta_p \{ (\beta_{2x} - 1) S_x^2 + 2S_x \beta_{1x} - 2K_x \beta_x + 2K_x S_x (\lambda_{23} - 3\lambda_{21} - \beta_{1x} \lambda_{22}) - K_x S_x + 2K_x S_x (\lambda_{23} - 3\lambda_{21} - \beta_{1x} \lambda_{22}) - K_x S_x + B(\hat{S}_{yoP}^2) = \frac{1}{n} \frac{S_y^2}{S_x^2 + M_x} \left[ K_x S_x \{ \lambda_{05} - \beta_{1x} (\beta_{2x} + 3) \} + (\lambda_{22}) - K_x S_x + M_x + \frac{1}{n} S_y^4 \left[ (\beta_{2y} - 1) + (\beta_{2x} - 1) \delta_p^2 - 2(\lambda_{22} - 1) + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} - 2S_x \lambda_{21} - 2K_{xr} \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} + 2S_x \lambda_{21} - 2K_{xr} \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} + 2S_x \lambda_{21} - 2K_{xr} \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} + 2S_x \lambda_{21} - 2K_{xr} \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} + 2S_x \lambda_{21} - 2K_{xr} \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} + 2S_x \lambda_{21} - 2K_{xr} \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} + 2S_x \lambda_{21} - 2K_{xr} \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} + 2S_x \lambda_{21} - 2K_{xr} \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} + 2S_x \lambda_{21} - 2K_{xr} \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} + 2S_x \lambda_{21} + 2K_x \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} + 2S_x \lambda_{21} + 2K_x \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \left\{ \delta_p + 2\delta_p S_x \beta_{1x} + 2S_x \lambda_{21} + 2K_x \delta_p S_x (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - 2K + \frac{1}{(S_x^2 + M_x)} \right\} \right\} \right\}$$

Note that  $B(\hat{S}_{y_{0R}}^{2}) \& B(\hat{S}_{y_{0P}}^{2})$  are of order  $n^{-1}$  and hence their contribution to the MSEs will be the order of  $n^{-2}$ .

Above 
$$MSE(S_{y_{0R}}^2)$$
 and  $MSE(S_{y_{0P}}^2)$  are respectively minimized for  

$$K_{xR} = \frac{\{R_{1s}S_x\beta_x + R_{1s}S_x^2(\lambda_{05} - \beta_{1x}(\beta_{2x} + 3)) - S_y^2(\lambda_{22} - 3\lambda_{21} - \beta_{1x}\lambda_{22})\}}{\lambda_x}$$

$$K_{xR} = \frac{\{R_{1s}S_x\beta_x + R_{1s}S_x^2(\lambda_{05} - \beta_{1x}(\beta_{2x} + 3)) + S_y^2(\lambda_{22} - 3\lambda_{21} - \beta_{1x}\lambda_{22})\}}{\lambda_x}$$

and up to terms of order 
$$n^{-1}$$
 their minimum MSEs are given by

$$MSE_{min}(\hat{S}_{yoR}^{2}) = \frac{1}{n} S_{y}^{4} \Big[ (\beta_{2y} - 1) + ((\beta_{2x} - 1)\delta_{p}^{2} - 2(\lambda_{22} - \frac{(\beta_{2x} - 1)\beta_{y}^{2} - 2(\lambda_{2x} - \frac{\beta_{2x} - 2(\lambda_{2x} -$$

$$MSE_{min}(\hat{S}_{yoP}^{2}) = \frac{1}{n}S_{y}^{4}\left[(\beta_{2y}-1) + ((\beta_{2x}-1)\delta_{p}^{2} + 2(\lambda_{22} - \frac{(S_{x}\beta_{x}/(S_{x}^{2}+M_{x}) + \delta_{p}(\lambda_{05} - \beta_{1x}(\beta_{2x} + \lambda_{x}) + \delta_{p}(\lambda_{05} - \beta_{1x}(\beta_{2x} + \lambda_{x}) + \lambda_{x})\right]$$

where

$$\begin{split} \delta_{p} &= \frac{S_{x}^{2}}{S_{x}^{2} + M_{x}} \\ \lambda_{x} &= \lambda_{06} - 6\beta_{x} + \beta_{ox} \\ \beta_{x} &= \beta_{2x} - \beta_{1x}^{2} - 3 \\ \beta_{0x} &= \beta_{1x}^{2}\beta_{2x} - 2\beta_{1x}\lambda_{05} - 9 \\ B_{x} &= \lambda_{13} - 3\rho - \beta_{1x}\lambda_{12} \end{split}$$

## 4. Proposed Class of Estimators

Whatever be the sample chosen, let (u, v) assume values in a bounded closed convex subset R of two-dimensional real space containing the point (1, 1), we here propose the class of estimators of population variance  $S_y^2$  by using the known information of population variance  $(S_x^2)$  and population mode  $(M_x)$  of auxiliary variable x as

$$S_{yg}^2 = s_y^2 t(u, v)$$
 (4.1)  
where  $t(u, v)$  be the function of  $u(=s_x^2/S_x^2)$  and  
 $v(=\tilde{M}_x/M_x)$  which is continuous and bounded in R.The  
first and second partial derivatives of  $t(u, v)$  exist and are  
continuous and bounded in R and such that  $t(1,1) = 1$ .  
Since there is finite number of samples, therefore MSE of  
the class of estimators exist.  
Expanding the function  $t(u, v)$  about the point (11) in

Expanding the function t(u, v) about the point (1,1) in second order Taylor's series, we obtain,

## Volume 4 Issue 10, October 2016

<u>www.ijser.in</u>

ISSN (Online): 2347-3878, Impact Factor (2015): 3.791

$$\begin{split} S_{yg}^2 &= s_y^2 \left[ t(1,1) + (u-1)t_1(1,1) + (v-1)t_2(1,1) \right. \\ &+ \frac{1}{2} \{ (u-1)^2 t_{11}(1,1) + 2(u-1)(v-1)t_1 \right] \end{split}$$

where  $t_1(1,1) = t_1(say) \& t_2(1,1) = t_2(say)$  denotes the first order partial derivatives and  $t_{11}(1,1), t_{12}(1,1) \& t_{22}(1,1)$  denotes the second order partial derivatives.

Now re-write this equation in  $\delta$ ,  $\varepsilon$ ,  $\eta$ ,  $\eta'$  form and then taking expectations up to order  $n^{-1}$  we get,

$$MSE(S_{yg}^{2}) = \frac{1}{n} S_{y}^{4} \left[ (\beta_{2y} - 1) + t_{1}^{2} (\beta_{2x} - 1) + 2t_{1} (\lambda_{22} - 1) - 2t_{2} K_{xg} \frac{S_{x}}{M_{x}} (\lambda_{23} - 3\lambda_{21} - \beta_{1x} \lambda_{22}) + 2t_{1} t_{1} - 2t_{2}^{2} K_{xg} \frac{S_{x}^{2}}{M_{x}^{2}} \beta_{x} \right]$$

Where  $t_1$ ,  $t_2$  and  $K_{xg}$  are constant terms, whose values are obtained by minimizing the mean square error of  $\tilde{S}_{yg}^2$ . The  $MSE(\tilde{S}_{yg}^2)$  is minimized for

$$t_{1} = \frac{\{\lambda_{05} - \beta_{1x}(\beta_{2x} - 1)\}C - (\lambda_{22} - 1)B - \beta_{1x}A}{(\beta_{2x} - 1)B}$$
$$t_{2} = \frac{M_{x}A}{S_{x}B}$$
$$K_{xg} = \frac{C}{A}$$

and  

$$MSE_{min}(\tilde{S}_{yg}^{2}) = \frac{1}{n} S_{y}^{4} \left[ (\beta_{2y} - 1) - \frac{\{\{\lambda_{05} - \beta_{1x}(\beta_{2x} - 1)\}\}C}{(\beta_{2x} - 1)} - \frac{\{2(BC(\lambda_{23} - 3\lambda_{21} - \beta_{1x}\lambda_{22}) + AC\beta_{x} - 1)\}C}{R^{2}} \right]$$

where,

$$\begin{split} &a = \beta_x (\beta_{2x} - 1) - \beta_{1x} \{\lambda_{05} - \beta_{1x} (\beta_{2x} - 1)\} \\ &b = (\beta_{2x} - 1) (\lambda_{23} - 3\lambda_{21} - \beta_{1x} \lambda_{22}) - (\lambda_{22} - 1) \{\lambda_{05} - \beta_{1x} (\beta_{2x} - 1)\}^2 \\ &c = (\beta_{2x} - 1) \lambda_x - \{\lambda_{05} - \beta_{1x} (\beta_{2x} - 1)\}^2 \\ &A = c \{(\beta_{2x} - 1)\lambda_{21} - \beta_{1x} (\lambda_{22} - 1)\} - ab \\ &B = a^2 + c (\beta_{1x}^2 - \beta_{2x} + 1) \\ &C = a \{(\beta_{2x} - 1)\lambda_{21} - \beta_{1x} (\lambda_{22} - 1)\} + b (\beta_{1x}^2 - \beta_{2x} + 1) \end{split}$$

### 5. Comparison

For comparison purpose, we consider the following existing modified ratio-type estimators of  $S_y^2$  from the literature (we exclude the estimators using known information of deciles and percentiles), which are listed and proposed by Subramani and kumarapandiyan (2015).

| Estimator                                                                                        | Mean squared error (MSE)                                                                          |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| $\hat{S}_{1}^{2} = s_{y}^{2} \frac{S_{x}^{2}}{s_{y}^{2}}$                                        | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{1}^{2}(\beta_{2x}-1)-2\delta_{1}(\lambda_{22}-1)]$   |
| Isaki (1983)                                                                                     |                                                                                                   |
| $\hat{S}_{2}^{2} = s_{y}^{2} \frac{S_{x}^{2} + C_{x}}{s_{x}^{2} + C_{x}}$ Kadilar & Cingi (2006) | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{2}^{2}(\beta_{2x}-1)-2\delta_{2}(\lambda_{22}-1)]$   |
| $S_{2}^{2} + \beta_{2}$                                                                          |                                                                                                   |
| $S_3^2 = s_y^2 \frac{x + r_{2x}}{s_x^2 + \beta_{2x}}$                                            | $-S_{y}^{z}[(\beta_{2y}-1)+\delta_{2}^{z}(\beta_{2x}-1)-2\delta_{3}(\lambda_{22}-1)]$             |
| Upadhyaya & Singh (1999)                                                                         |                                                                                                   |
| $\hat{S}_{4}^{2} = s_{y}^{2} \frac{S_{x}^{2} + \beta_{1x}}{s_{x}^{2} + \beta_{1x}} $ (2015)      | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{4}^{2}(\beta_{2x}-1)-2\delta_{4}(\lambda_{22}-1)]$   |
| Subramani & Kumarapandiyan (2015)<br>$S^2 \pm c$                                                 | 1                                                                                                 |
| $\hat{S}_{5}^{2} = s_{y}^{2} \frac{s_{x} + \rho}{s_{y}^{2} + \rho}$                              | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{5}^{2}(\beta_{2x}-1)-2\delta_{5}(\lambda_{22}-1)]$   |
| Subramani & Kumarapandiyan (2015)                                                                |                                                                                                   |
| $\hat{S}_{6}^{2} = s_{y}^{2} \frac{S_{x}^{2} + S_{x}}{s_{x}^{2} + S_{x}}$                        | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{6}^{2}(\beta_{2x}-1)-2\delta_{6}(\lambda_{22}-1)]$   |
| Subramani & Kumarapandiyan (2015)                                                                | 1                                                                                                 |
| $\hat{S}_{7}^{2} = s_{y}^{2} \frac{s_{x}^{2} + M_{d}}{s_{x}^{2} + M_{d}}$                        | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{7}^{2}(\beta_{2x}-1)-2\delta_{7}(\lambda_{22}-1)]$   |
| Subraman & Rumarapandryan (2012a) $S^2 + 0$                                                      | 1 (1)                                                                                             |
| $\hat{S}_{g}^{2} = s_{y}^{2} \frac{s_{x}^{2} + q_{1}}{s_{x}^{2} + q_{1}}$                        | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{g}^{2}(\beta_{2x}-1)-2\delta_{g}(\lambda_{22}-1)]$   |
| Subramani & Kumarapandiyan (2012b)                                                               | 1                                                                                                 |
| $\hat{S}_{9}^{2} = s_{y}^{2} \frac{S_{x}^{2} + Q_{3}}{s_{x}^{2} + Q_{3}}$                        | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{9}^{2}(\beta_{2x}-1)-2\delta_{9}(\lambda_{22}-1)]$   |
| Subramani & Kumarapandiyan (2012b)                                                               |                                                                                                   |
| $\hat{S}_{10}^{2} = s_{y}^{2} \frac{S_{x}^{2} + Q_{r}}{s_{x}^{2} + Q_{r}}$                       | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{10}^{2}(\beta_{2x}-1)-2\delta_{10}(\lambda_{22}-1)]$ |
| Subramani & Kumarapandiyan (2012b)                                                               | 1                                                                                                 |
| $\hat{S}_{11}^2 = s_y^2 \frac{S_x^2 + Q_d}{s_x^2 + Q_d}$                                         | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{11}^{2}(\beta_{2x}-1)-2\delta_{11}(\lambda_{22}-1)]$ |
| Subramani & Kumarapandiyan (2012b)                                                               |                                                                                                   |

Volume 4 Issue 10, October 2016

www.ijser.in

| ISSN (Online): 2347-3878, Impact Factor (2015): 3.791                                                  |                                                                                                                       |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $\hat{S}_{12}^2 = s_y^2 \frac{S_x^2 + Q_a}{s_x^2 + Q_a}$                                               | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{12}^{2}(\beta_{2x}-1)-2\delta_{12}(\lambda_{22}-1)]$                     |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2012b)                                                                     | 1                                                                                                                     |  |  |  |  |  |  |
| $\hat{S}_{13}^2 = s_y^2 \frac{\beta_{2x} S_x^2 + C_x}{\beta_{2x} S_x^2 + C_x}$                         | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{12}^{2}(\beta_{2x}-1)-2\delta_{13}(\lambda_{22}-1)]$                     |  |  |  |  |  |  |
| Kadilar & Cingi (2006)<br>$_{22}$ $_{2}C_{x}S_{x}^{2} + \beta_{2x}$                                    | $\frac{1}{2} c^{4}[(a_{1}, a_{1}) + s^{2}(a_{2}, a_{1}) - s^{2}(a_{1}, a_{1})]$                                       |  |  |  |  |  |  |
| $S_{14}^{*} = S_y^{*} \frac{1}{C_x S_x^2 + \beta_{2x}}$<br>Kadilar & Cingi (2006)                      | $\frac{-S_{y}}{n}[(\beta_{2y}-1)+o_{14}(\beta_{2x}-1)-2o_{14}(\lambda_{22}-1)]$                                       |  |  |  |  |  |  |
| $\hat{S}_{15}^{2} = s_{y}^{2} \frac{\beta_{1x} S_{x}^{2} + C_{x}}{\beta_{1x} s_{x}^{2} + C_{x}}$       | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{15}^{2}(\beta_{2x}-1)-2\delta_{15}(\lambda_{22}-1)]$                     |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2015)                                                                      | $\frac{1}{2} e^{4} [(0, -1) + 2^2 (0, -1) - 2^2 (1, -1)]$                                                             |  |  |  |  |  |  |
| $S_{16}^{*} = S_y^* \frac{1}{C_x S_x^2 + \beta_{1x}}$<br>Subramani & Kumarapandiyan (2015)             | $\frac{-S_{y}}{n}[(\beta_{2y}-1)+o_{16}(\beta_{2x}-1)-2o_{16}(\lambda_{22}-1)]$                                       |  |  |  |  |  |  |
| $\hat{S}_{17}^{2} = s_{y}^{2} \frac{\rho S_{x}^{2} + C_{x}}{\rho s_{x}^{2} + C_{x}}$                   | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{17}^{2}(\beta_{2x}-1)-2\delta_{17}(\lambda_{22}-1)]$                     |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2015)                                                                      |                                                                                                                       |  |  |  |  |  |  |
| $S_{18}^2 = s_y^2 \frac{-x + x + r}{C_x s_x^2 + \rho}$                                                 | $\frac{-S_{y}}{n}[(\beta_{2y}-1)+\delta_{19}(\beta_{2x}-1)-2\delta_{19}(\lambda_{22}-1)]$                             |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2015)<br>$S_{2}S_{2}S_{2}^{2} + C_{2}$                                     |                                                                                                                       |  |  |  |  |  |  |
| $S_{19}^2 = s_y^2 \frac{x + x + x_x}{S_x S_x^2 + C_x}$<br>Subramani & Kumaranandiyan (2015)            | $-S_{y}^{-}[(\beta_{2y}-1)+\delta_{19}^{-}(\beta_{2x}-1)-2\delta_{19}(\lambda_{22}-1)]$                               |  |  |  |  |  |  |
| $\hat{s}^2 - s^2 \frac{C_x S_x^2 + S_x}{s^2}$                                                          | $\frac{1}{1-S^4}[(\beta_{22}-1)+\delta_{22}^2(\beta_{22}-1)-2\delta_{22}(\lambda_{22}-1)]$                            |  |  |  |  |  |  |
| Subramani & Kumaranadiyan (2015)                                                                       | $n^{5}y_{1}(r_{2}y_{1}) + \sigma_{20}(r_{2}y_{1}) + \sigma_{20}(r_{2}y_{1})$                                          |  |  |  |  |  |  |
| $\frac{c^2}{c^2} = c^2 \frac{M_d S_x^2 + C_x}{c^2}$                                                    | $\frac{1}{2} S^{4}[(\beta_{1} - 1) + \delta^{2}(\beta_{2} - 1) - 2\delta_{2}(\lambda_{2} - 1)]$                       |  |  |  |  |  |  |
| $S_{21} = S_y \frac{1}{M_d s_x^2 + C_x}$<br>Subramani & Kumarapandiyan (2015)                          | $n^{5y}[0^{2y}, 1) + 0^{21}(0^{2y}, 1) = 20^{21}(0^{2y}, 1)$                                                          |  |  |  |  |  |  |
| $\hat{S}_{22}^{2} = s_{y}^{2} \frac{C_{x} S_{x}^{2} + M_{d}}{C_{x} s_{x}^{2} + M_{d}}$                 | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{22}^{2}(\beta_{2x}-1)-2\delta_{22}(\lambda_{22}-1)]$                     |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2013)                                                                      | 1                                                                                                                     |  |  |  |  |  |  |
| $\hat{S}_{22}^2 = s_y^2 \frac{\rho_{1x} s_x + \rho_{2x}}{\beta_{1y} s_y^2 + \beta_{2y}}$               | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{23}^{2}(\beta_{2x}-1)-2\delta_{23}(\lambda_{22}-1)]$                     |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2015)                                                                      | 1                                                                                                                     |  |  |  |  |  |  |
| $\hat{S}_{24}^2 = s_y^2 \frac{\rho_{2x} s_x + \rho_{1x}}{\rho_{2y} s_x^2 + \rho_{1y}}$                 | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{24}^{2}(\beta_{2x}-1)-2\delta_{24}(\lambda_{22}-1)]$                     |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2015)                                                                      | 1                                                                                                                     |  |  |  |  |  |  |
| $\hat{S}_{25}^{2} = s_{y}^{2} \frac{\rho S_{x}^{2} + \beta_{2x}}{\rho s_{x}^{2} + \beta_{2x}} $ (2015) | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{25}^{2}(\beta_{2x}-1)-2\delta_{25}(\lambda_{22}-1)]$                     |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2015)<br>$_{22} _{2} \beta_{2r} S_r^2 + \rho$                              | $\frac{1}{2} c_{4}^{4} [(a + 1) + s_{2}^{2} ((a + 1) + 2s_{3}^{2} ((1 + 1))]$                                         |  |  |  |  |  |  |
| $S_{26}^{z} = s_{y} \frac{1}{\beta_{2x} s_{x}^{2} + \rho}$<br>Subramani & Kumarapandiyan (2015)        | $= \frac{-s_y[(p_{2y} - 1) + b_{26}(p_{2x} - 1) - 2b_{26}(\lambda_{22} - 1)]}{n}$                                     |  |  |  |  |  |  |
| $\hat{S}_{27}^2 = s_v^2 \frac{S_x S_x^2 + \beta_{2x}}{2 - 2 + 2 - 2}$                                  | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{27}^{2}(\beta_{2x}-1)-2\delta_{27}(\lambda_{22}-1)]$                     |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2015)                                                                      |                                                                                                                       |  |  |  |  |  |  |
| $\hat{S}_{2p}^2 = s_{y}^2 \frac{\beta_{2x} S_x^2 + S_x}{\beta_{2x} S_x^2 + S_x}$                       | $\frac{1}{n}S_{\nu}^{4}[(\beta_{2\nu}-1)+\delta_{22}^{2}(\beta_{2x}-1)-2\delta_{22}(\lambda_{22}-1)]$                 |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2015)                                                                      | n                                                                                                                     |  |  |  |  |  |  |
| $\hat{S}_{22}^2 = s_{z_{1}}^2 \frac{M_d S_x^2 + \beta_{2x}}{2}$                                        | $\frac{1}{-S_{\nu}^{4}}[(\beta_{2\nu}-1)+\delta_{2\rho}^{2}(\beta_{2\nu}-1)-2\delta_{2\rho}(\lambda_{22}-1)]$         |  |  |  |  |  |  |
| Subramani & Kumaranandiyan (2015)                                                                      | n 900 29 9 294 24 7 294 22 7 1                                                                                        |  |  |  |  |  |  |
| $\hat{S}_{30}^{2} = s_{y}^{2} \frac{\beta_{2x} S_{x}^{2} + M_{d}}{\beta_{2y} S_{y}^{2} + M_{d}}$       | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{30}^{2}(\beta_{2x}-1)-2\delta_{30}(\lambda_{22}-1)]$                     |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2015)                                                                      | 1                                                                                                                     |  |  |  |  |  |  |
| $\hat{S}_{31}^2 = s_y^2 \frac{\rho s_x + \beta_{1x}}{\rho s_x^2 + \beta_{1x}}$                         | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{31}^{2}(\beta_{2x}-1)-2\delta_{31}(\lambda_{22}-1)]$                     |  |  |  |  |  |  |
| $\hat{c}_{2} = -2\beta_{1x}S_{x}^{2} + \rho$                                                           | $\frac{1}{2} S^{4}[(\beta_{1} - 1) + \delta^{2}(\beta_{2} - 1) - 2\delta_{1}(\beta_{2} - 1)]$                         |  |  |  |  |  |  |
| $S_{32} = S_y \frac{1}{\beta_{1x} S_x^2 + \rho}$                                                       | $\frac{-3}{n} \frac{5}{3} \frac{1}{2} \left[ (p_{2y} - 1) + 0_{32} (p_{2x} - 1) - 20_{32} (\lambda_{22} - 1) \right]$ |  |  |  |  |  |  |
| Subramani & Kumarapandiyan (2015)                                                                      |                                                                                                                       |  |  |  |  |  |  |

Volume 4 Issue 10, October 2016 Licensed Under Creative Commons Attribution CC BY

www.ijser.in

| ISSN (Online): 2347-3878, Impact Factor (2015): 3.791 |                                                                                                       |                                                                                                   |  |  |  |  |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                       | $\hat{S}_{33}^{2} = s_{y}^{2} \frac{S_{x} S_{x}^{2} + \beta_{1x}}{S_{x} s_{x}^{2} + \beta_{1x}}$      | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{33}^{2}(\beta_{2x}-1)-2\delta_{33}(\lambda_{22}-1)]$ |  |  |  |  |
|                                                       | Subramani & Kumarapandiyan (2015)                                                                     |                                                                                                   |  |  |  |  |
|                                                       | $\hat{S}_{24}^2 = s_y^2 \frac{\beta_{1x} S_x^2 + S_x}{\beta_{1x} s_x^2 + S_x}$                        | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{34}^{2}(\beta_{2x}-1)-2\delta_{34}(\lambda_{22}-1)]$ |  |  |  |  |
|                                                       | Subramani & Kumarapandiyan (2015)                                                                     |                                                                                                   |  |  |  |  |
|                                                       | $\hat{S}_{35}^{2} = s_{y}^{2} \frac{M_{d} S_{x}^{2} + \beta_{1x}}{M_{d} s_{x}^{2} + \beta_{1x}}$      | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{35}^{2}(\beta_{2x}-1)-2\delta_{35}(\lambda_{22}-1)]$ |  |  |  |  |
|                                                       | Subramani & Kumarapandiyan (2015)                                                                     |                                                                                                   |  |  |  |  |
|                                                       | $\hat{S}_{36}^{2} = s_{y}^{2} \frac{\beta_{1x} S_{x}^{2} + M_{d}}{\beta_{1x} s_{x}^{2} + M_{d}}$      | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{36}^{2}(\beta_{2x}-1)-2\delta_{36}(\lambda_{22}-1)]$ |  |  |  |  |
|                                                       | Subramani & Kumarapandiyan (2015)                                                                     |                                                                                                   |  |  |  |  |
|                                                       | $\hat{S}_{27}^{2} = s_{y}^{2} \frac{S_{x}S_{x}^{2} + \rho}{S_{x}s_{x}^{2} + \rho}$                    | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{37}^{2}(\beta_{2x}-1)-2\delta_{37}(\lambda_{22}-1)]$ |  |  |  |  |
|                                                       | Subramani & Kumarapandiyan (2015)                                                                     |                                                                                                   |  |  |  |  |
|                                                       | $\hat{S}_{38}^{2} = s_{y}^{2} \frac{\rho S_{x}^{2} + S_{x}}{\rho s_{x}^{2} + S_{x}}$                  | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{3g}^{2}(\beta_{2x}-1)-2\delta_{3g}(\lambda_{22}-1)]$ |  |  |  |  |
|                                                       | Subramani & Kumarapandiyan (2015)                                                                     |                                                                                                   |  |  |  |  |
|                                                       | $\hat{S}_{29}^2 = s_y^2 \frac{M_d S_x^2 + \rho}{M_d s_x^2 + \rho}$                                    | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{39}^{2}(\beta_{2x}-1)-2\delta_{39}(\lambda_{22}-1)]$ |  |  |  |  |
|                                                       | Subramani & Kumarapandiyan (2015)                                                                     |                                                                                                   |  |  |  |  |
|                                                       | $\hat{S}_{40}^2 = s_y^2 \frac{\rho S_x^2 + M_d}{\rho s_x^2 + M_d}$                                    | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{40}^{2}(\beta_{2x}-1)-2\delta_{40}(\lambda_{22}-1)]$ |  |  |  |  |
|                                                       | Subramani & Kumarapandiyan (2015)                                                                     |                                                                                                   |  |  |  |  |
|                                                       | $\hat{S}_{41}^2 = s_y^2 \frac{M_d S_x^2 + S_x}{M_d s_x^2 + S_x}$                                      | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{41}^{2}(\beta_{2x}-1)-2\delta_{41}(\lambda_{22}-1)]$ |  |  |  |  |
|                                                       | Subramani & Kumarapandiyan (2015)                                                                     |                                                                                                   |  |  |  |  |
|                                                       | $\hat{S}_{42}^2 = s_y^2 \frac{S_x S_x^2 + M_d}{S_x s_x^2 + M_d}$<br>Subramani & Kumarapandiyan (2015) | $\frac{1}{n}S_{y}^{4}[(\beta_{2y}-1)+\delta_{41}^{2}(\beta_{2x}-1)-2\delta_{42}(\lambda_{22}-1)]$ |  |  |  |  |

where 
$$\begin{split} \delta_i &= \frac{S_x^2}{S_x^2 + w_i} \\ i - 1, 2, \dots, 42; \ and \ w_1 &= 1, w_2 = C_x, w_3 = \beta_{2x}, w_4 = \\ \beta_{1x}, w_5 &= \rho, w_6 = S_x, w_7 = M_d, w_8 = Q_1, w_9 = Q_3, w_{10} = \\ Q_r, w_{11} &= Q_d, w_{12} = Q_d, w_{13} = \frac{C_x}{\beta_{2x}}, w_{14} = \frac{\beta_{2x}}{C_x}, w_{15} = \\ \frac{C_x}{\beta_{1x}}, w_{16} &= \frac{\beta_{1x}}{C_x}, w_{17} = \frac{C_x}{\rho}, w_{18} = \frac{\rho}{C_x}, w_{19} = \frac{C_x}{S_x}, w_{20} = \\ \frac{S_x}{C_x}, w_{21} = \frac{C_x}{M_d}, w_{22} = \frac{M_d}{C_x}, w_{23} = \frac{\beta_{2x}}{\beta_{1x}}, w_{24} = \frac{\beta_{1x}}{\beta_{2x}}, w_{25} = \frac{\beta_{2x}}{\rho} \end{split}$$
 $\begin{array}{l} & \\ w_{32} = \frac{\rho}{\beta_{1x}}, w_{33} = \frac{\beta_{1x}}{s_x}, w_{34} = \frac{s_x}{\beta_{1x}}, w_{35} = \frac{\beta_{1x}}{M_d}, w_{36} = \\ & \\ \frac{M_d}{\beta_{1x}}, w_{37} = \frac{\rho}{s_x}, w_{38} = \frac{s_x}{\rho}, w_{39} = \frac{\rho}{M_d}, w_{40} = \frac{M_d}{\rho}, w_{34} = \\ & \\ \frac{s_x}{M_d}, w_{33} = \frac{M_d}{s_x}. \end{array}$ 

We corresponding hereintroducedthe product-type estimators by using the same amount of known information  $w_i$ ; i = 1, 2, ..., 42 as used in above modified ratio-type estimators as

 $\hat{S}_{ip}^{2} = s_{y}^{2} \frac{s_{x}^{2} + w_{i}}{S_{x}^{2} + w_{i}} (i = 1, 2, ..., 42)$ 

and to terms of order  $n^{-1}$  their MSE's are given as  $MSE(\hat{S}_{ip}^2) = \frac{1}{n} S_y^4 [(\beta_{2y} - 1) + \delta_i^2 (\beta_{2x} - 1) + 2\delta_i (\lambda_{22} - 1)]$ where  $\delta_i = \frac{n}{s_x^2 + w_i}$ ; i = 1, 2, ..., 42.

Srivasthava and Jhajj (1980) defined a class of estimator for population variance using the known information of population mean and population variance of auxiliary variable as - -2 h ( --

where 
$$h(u, v)$$
 is a function of  $u = \frac{x}{x}$  and  $v = \frac{s_x^2}{s_x^2}$  and satisfy

certain regularity conditions. Up to the terms of order  $n^{-1}$ , minimum MSE of this class of estimators is

$$MSE_{min}(T_{h42}) = \frac{1}{n}S_y^2 \left[ \left(\beta_{2y} - 1\right) - \lambda_{21}^2 - \frac{\left(\lambda_{22} - \lambda_{21}\beta_{1x} - 1\right)^2}{\beta_{2x} - \beta_{1x}^2 - 1} \right]$$

We compare proposed estimators with the existing estimators in form of theorems as:

**Theorem 1:** Up to the terms of order  $n^{-1}$  $MSE(\hat{S}_{VOR}^2) < MSE(S_{iR}^2), i = 1, 2, ..., 42.$ 

if  $(\lambda_{22}-1) = \begin{cases} >\frac{1}{2} \left\{ \left(\delta_p + \delta_i\right) \left(\beta_{2x} - 1\right) - \frac{\theta_1}{\left(\delta_p - \delta_i\right)} \right\} for \ \delta_p > \delta_i \ i.e. \ M_x < w_i \\ < \frac{1}{2} \left\{ \left(\delta_p + \delta_i\right) \left(\beta_{2x} - 1\right) + \frac{\theta_1}{\left(\delta_i - \delta_p\right)} \right\} for \ \delta_p < \delta_i \ i.e. \ M_x > w_i \end{cases}$ 

#### Volume 4 Issue 10, October 2016

<u>www.ijser.in</u>

where 
$$\theta_1 = -\frac{1}{(S_x^2 + M_x)} \{ 2S_x \lambda_{21} - \delta_p - 2\delta_p \beta_{1x} \} - \frac{\{ S_x \beta_x / (S_x^2 + M_x) + \delta_p (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) - (\lambda_{23} - 3\lambda_{21} - \beta_{1x} \lambda_{22}) \}^2}{\lambda_x}$$

**Theorem 2:** Up to the terms of order  $n^{-1}$   $MSE(\hat{S}_{yop}^2) < MSE(S_{ip}^2), i = 1, 2, ..., 42.$ If

$$(\lambda_{22} - 1) = \begin{cases} < -\frac{1}{2} \left\{ (\delta_p + \delta_i)(\beta_{2x} - 1) - \frac{\delta_2}{(\delta_p - \delta_i)} \right\} \text{ for } \delta_p > \delta_i \text{ i.e.} M_x < w_i \\ > -\frac{1}{2} \left\{ (\delta_p + \delta_i)(\beta_{2x} - 1) + \frac{\theta_2}{(\delta_i - \delta_p)} \right\} \text{ for } \delta_p < \delta_i \text{ i.e.} M_x > w_i \\ \text{where } \theta_2 = \frac{1}{(s_x^2 + M_x)} \left\{ 2S_x \lambda_{21} + \delta_p + 2\delta_p \beta_{1x} \right\} \\ - \frac{\{S_x \beta_x / (S_x^2 + M_x) + \delta_p (\lambda_{05} - \beta_{1x} (\beta_{2x} + 3)) + (\lambda_{23} - 3\lambda_{21} - \beta_{1x} \lambda_{22}) \right\}^2$$

Α

**Theorem 3:** Up to the terms of order  $n^{-1}$   $MSE(\hat{S}_{yg}^2) < MSE(T_{h42})$ if  $\{\{\lambda_{05} - \beta_{1x}(\beta_{2x} - 1)\}C - (\lambda_{22} - 1)B - \beta_{1x}A\}^2 = \{2(BC(\lambda_{22} - 3\lambda_{21} - \beta_{1x}))\}$ 

λx

$$\frac{\{\lambda_{05} - \beta_{1x}(\beta_{2x} - 1)\}C - (\lambda_{22} - 1)B - \beta_{1x}A\}}{(\beta_{2x} - 1)B^2} + \frac{\{2(BC(\lambda_{22} - 3\lambda_{21} - \beta_{1x}\lambda_{22}) + AC\beta_x - AB\lambda_{21}) - A^2 - C^2\lambda_x}{B^2}}{B^2}$$

$$> \lambda_{21}^2 + \frac{(\lambda_{22} - \lambda_{21}\beta_{1x} - 1)^2}{\beta_{2x} - \beta_{1x}^2 - 1}.$$

## 6. Empirical Study

We have taken 5 natural populations (where first 4 populations have positive correlation and  $5^{th}$  population has negative correlation) to show the efficiency of the proposed estimators over the existing estimators in Table 2.The descriptions of the populations are described below.

Pop. I: Murthy (1967), p-398 y= Number of absentees &x= Number of workers  $\overline{Y} = 9.6512, \lambda_{22} = 2.7094, \beta_{2y} = 6.5387, \rho = 0.6608.$ 

Pop. II: Chakravarty et al.(1967), p-207 y= Weight (kg) of female&x= Height (cm) of female  $\bar{Y} = 28.5313, \lambda_{22} = 1.3731, \beta_{2y} = 2.2575, \rho = 0.2306.$  Pop. III: Chochran (1999), p-325 y= Total number of persons&x= Average persons per room  $\overline{Y}$  = 101.1000,  $\lambda_{22}$  = 1.5433,  $\beta_{2y}$  = 2.3523,  $\rho$  = 0.6515.

Pop. IV: Singh (2003), p-1126 y= Crude Death Rate&x= Total Fertility Rate  $\overline{Y} = 10.8716, \lambda_{22} = 1.4154, \beta_{2y} = 3.6527, \rho = 0.5493.$ 

Pop. V: Maddala&Lahiri(1992),p-96 y= Deflated prices of veal&x= Consumption per capital of veal

$$\bar{\gamma} = 7.6375, \lambda_{22} = 0.8697, \beta_{2y} = 1.4348, \rho = -0.6823$$

**Table 2:**  $\frac{1}{n} \times MSE$  and Efficiencies for existing & proposed ratio-type estimators, induced product-type estimators and class of estimators of  $S_v^2$ 

| Ratio-type<br>Estimator      | Pop. I    | Pop.II   | Pop.III    | Pop.IV    | Product-type<br>Estimator    | Pop.V     |
|------------------------------|-----------|----------|------------|-----------|------------------------------|-----------|
| 82                           | 9832.8371 | 4.1239   | 62330.1456 | 1874.5592 | $\hat{S}_{y}^{2}$            | 2708.1634 |
| Jy                           | 100       | 100      | 100        | 100       |                              | 100       |
| ê2                           | 6625.5930 | 11.5193  | 69348.4784 | 1828.3506 | $\hat{S}_{1p}^{2}$           | 4579.5978 |
| 5 1R                         | 148.4069  | 35.7999  | 89.8796    | 102.5273  |                              | 59.1354   |
| ê2                           | 6625.7138 | 11.4880  | 69204.3612 | 1770.8799 | ê2                           | 4366.3591 |
| 3 2R                         | 148.4042  | 35.8975  | 90.0668    | 105.8547  | 5 <u>2</u> p                 | 62.0234   |
| $\hat{S}_{3R}^{2}$           | 6626.2970 | 8.5750   | 66997.7417 | 1721.3209 | Ŝ <sup>2</sup> 3p            | 3690.3141 |
|                              | 148.3911  | 48.0921  | 93.0332    | 108.9024  |                              | 73.3857   |
| ê2                           | 6625.7176 | 10.8328  | 69083.6625 | 1791.3313 | $\hat{S}_{4p}^{2}$           | 4573.0726 |
| 34R                          | 148.4041  | 38.0686  | 90.2241    | 104.6461  |                              | 59.2198   |
| Ŝ <sup>2</sup> <sub>5R</sub> | 6625.7692 | 11.2885  | 68628.2375 | 1768.2670 | Ŝ <sup>2</sup> <sub>5P</sub> | 5659.1956 |
|                              | 148.4030  | 36.5319  | 90.8229    | 106.0111  |                              | 47.8542   |
| Ŝ <sup>2</sup> <sub>6R</sub> | 6636.9948 | 8.5208   | 62619.4275 | 1720.7463 | Ŝ <sup>2</sup> <sub>6P</sub> | 3609.0639 |
|                              | 148.1519  | 48.3980  | 99.5380    | 108.9387  |                              | 75.0378   |
| $\hat{S}_{7R}^{2}$           | 6652.0510 | 3.9733   | 51528.6804 | 1715.2867 | Ŝ <sup>2</sup> <sub>7P</sub> | 2985.4082 |
|                              | 147.8166  | 103.7903 | 120.9620   | 109.2855  |                              | 90.7133   |

Volume 4 Issue 10, October 2016

ISSN (Online): 2347-3878, Impact Factor (2015): 3.791

| ĉ 2                 | 6643.3136 | 3.9731   | 51701.8940  | 1720.4807 | ê 2                | 3050.1771   |
|---------------------|-----------|----------|-------------|-----------|--------------------|-------------|
| J SR                | 148.0110  | 103.7955 | 120.5568    | 108.9555  | 5 SP               | 88.7871     |
| ê2                  | 6662.6405 | 3.9735   | 51447.2112  | 1730.6888 | ê2                 | 2933.1902   |
| 2 <sub>98</sub>     | 147.5817  | 103.7851 | 121.1536    | 108.3129  | 295                | 92.3283     |
| 2.7                 | 6639.5861 | 9.4574   | 61966.1378  | 1717.9022 | £ 2                | 3276.0327   |
| Sior                | 148.0941  | 43.6050  | 100.5874    | 109,1191  | Siop               | 82,6659     |
|                     | 6621.0604 | 10.2764  | 65150 1044  | 1720 5651 |                    | 2612 0264   |
| $\hat{S}_{11R}^2$   | 0051.9094 | 10.5764  | 05159.1944  | 1720.3031 | $\hat{S}_{11P}^2$  | 5012.0204   |
|                     | 148.2642  | 39.7431  | 95.6583     | 108.9502  |                    | /4.9/63     |
| Ŝ207                | 6652.5003 | 3.9733   | 51550.1126  | 1717.9347 | Ŝ <sup>2</sup> on  | 2980.2724   |
| - 128               | 147.8066  | 103.7903 | 120.9118    | 109.1170  | - 12P              | 90.8697     |
| ê 2                 | 6625.6392 | 11.5115  | 69283.9533  | 1791.3311 | ê 2                | 4426.4097   |
| J 13R               | 148.4059  | 35.8242  | 89.9633     | 104.6462  | J 13P              | 61.1819     |
| <u>.</u> 2          | 6627.1717 | 3.9727   | 57420.2897  | 1716.8799 | <u> </u>           | 3029.2716   |
| S <sub>14R</sub>    | 148 3715  | 103 8060 | 108 5507    | 109 1841  | S <sub>14P</sub>   | 89 3998     |
|                     | 6625 9521 | 11 4757  | 60746 9467  | 1721 2209 |                    | 2765 4921   |
| $\hat{S}^{2}_{15R}$ | 0025.8521 | 11.4/5/  | 08/40.840/  | 1721.3208 | $\hat{S}_{15P}^2$  | 2705.4831   |
|                     | 148.4011  | 35.9359  | 90.6662     | 108.9024  |                    | 97.9273     |
| Ŝ <sup>2</sup>      | 6625.8684 | 4.8297   | 67387.4631  | 1766.9741 | Ŝ1.cn              | 4550.3258   |
| - 104               | 148.4007  | 85.3863  | 92.4952     | 106.0887  | - 102              | 59.5158     |
| ê 2                 | 6625.7761 | 11.3848  | 69127.7771  | 1744.7859 | ê2                 | 4989.8752   |
| J 17R               | 148.4028  | 36.2229  | 90.1666     | 107.4378  | -9 17P             | 54.2732     |
| ê2                  | 6625.9831 | 7.1434   | 64462.8835  | 1739.3270 | 82                 | 140502.2139 |
| S <sub>18R</sub>    | 148.3982  | 57,7302  | 96.6915     | 107,7750  | S isp              | 1.9275      |
|                     | 6625 5964 | 11 5117  | 69329 2784  | 1792 0142 |                    | 4447 7655   |
| S <sub>19R</sub>    | 149 4069  | 25 0226  | 80 004E     | 104 6062  | S <sub>19P</sub>   | 60 8882     |
|                     | 146.4006  | 55.6250  | 69.9045     | 104.0005  |                    | 00.0002     |
| \$200               | 6654.9915 | 3.9732   | 51507.4314  | 1/1/.2306 | \$20p              | 2984.1072   |
| - 208               | 147.7513  | 103.7929 | 121.0119    | 109.9230  | 201-               | 90.7529     |
| ê 2                 | 6625.5947 | 11.5191  | 69345.9831  | 1803.7968 | ê2                 | 4548.9315   |
| J 21R               | 148.4069  | 35.8005  | 89.8828     | 103.9230  | - 21F              | 59.5341     |
| 0.7                 | 6698.3923 | 4.1146   | 57459.2257  | 1731.1195 | 0.2                | 2768.3310   |
| S <sub>22R</sub>    | 146 7940  | 100 2260 | 109 4772    | 109 2960  | S <sub>22P</sub>   | 07 8266     |
|                     | 140.7940  | 100.2200 | 100.4772    | 108.2800  |                    | 97.8200     |
| Ŝ220                | 6627.1232 | 7.8402   | 61345.0421  | 1/35.25/2 | Ŝ <sup>2</sup> 222 | 2/16./043   |
| - 248               | 148.3726  | 52.5994  | 101.6058    | 108.0277  | 205                | 99.6856     |
| ĉ 2                 | 6625.6406 | 11.3392  | 69229.6779  | 1805.7199 | ĉ2                 | 4575.0458   |
| <sup>3</sup> 24R    | 148.4058  | 36.3685  | 90.0339     | 103.8123  | <sup>3</sup> 24P   | 59.1942     |
| ê2                  | 6626.6663 | 5.3083   | 65874.5118  | 1716.0757 | 82                 | 22828.1889  |
| S 25R               | 148.3829  | 77.6878  | 94.6195     | 109.2352  | S <sub>25P</sub>   | 11.8632     |
| 2.7                 | 6625.6603 | 11.4607  | 69022.9144  | 1789.3581 | 0.2                | 5239.0876   |
| S <sub>26R</sub>    | 148 4054  | 35 9830  | 90 3036     | 104 7615  | S <sub>26P</sub>   | 51 6915     |
|                     | 6625 6122 | 10 6069  | 60016 1040  | 1742 0071 |                    | 2040 0125   |
| $\hat{S}_{27R}^2$   | 0023.0123 | 10.0008  | 09010.1049  | 1743.0071 | Ŝ <sub>27</sub> p  | 3340.0133   |
|                     | 148.4065  | 38.8/98  | 90.3125     | 107.5474  |                    | 68.7349     |
| \$200               | 6629.5359 | 10.5627  | 65938.7927  | 1741.0640 | \$200              | 3789.7640   |
| - 205               | 148.3186  | 39.0421  | 94.5273     | 107.6674  | 205                | 71.4599     |
| ĉ 2                 | 6625.6025 | 11.4889  | 69304.9324  | 1763.0768 | <u>ê</u> 2         | 4394.4801   |
| 29R                 | 148.4067  | 35.8946  | 89.9361     | 106.3232  | P 29P              | 61.6265     |
| ê 2                 | 6634.1287 | 4.4081   | 54862.9531  | 1723.8978 | ê2                 | 3095.3165   |
| 2 30R               | 148.2160  | 93.5528  | 113.6106    | 108.7396  | - 30F              | 87.4923     |
| 82                  | 6625.7817 | 9.0747   | 68943.7130  | 1769.6135 | ê2                 | 4589.2316   |
| S <sub>31R</sub>    | 148 4027  | 45 4439  | 90 4073     | 105 9304  | S <sub>31P</sub>   | 59 0113     |
|                     | 6625 9714 | 11 2000  | 66500 6409  | 1719 7693 |                    | 2690 6724   |
| S <sub>32R</sub>    | 1/9 209/  | 26 8205  | 02 7286     | 100 0006  | S <sub>32P</sub>   | 100 6501    |
| -                   | 140.3304  | 30.8203  | 55.7200     | 109.0000  |                    | 4575 7202   |
| Ŝ <sup>2</sup> 238  | 0025.5905 | 11.3437  | 09313.0884  | 1806.1728 | $\hat{S}^2_{33P}$  | 4575.7202   |
|                     | 148.4068  | 36.3541  | 89.9255     | 103.7863  |                    | 59.1855     |
| Ŝ2                  | 6653.9033 | 7.7805   | 53673.6322  | 1736.3317 | \$2.r              | 2715.4288   |
| - 94K               | 147.7755  | 53.0030  | 116.1281    | 107.9609  | - 692              | 99.7324     |
| ê2                  | 6625.5947 | 11.5139  | 69343.8772  | 1813.7519 | ĉ2                 | 4578.7370   |
| S 25R               | 148.4069  | 35.8167  | 89.8856     | 103.3526  | 3 35P              | 59.1465     |
| 82                  | 6695.5519 | 3.9888   | 54938.9042  | 1761.3520 | 82                 | 2709.7658   |
| S 36R               | 148.8563  | 103,3870 | 113,4536    | 106.4273  | 536P               | 99,9409     |
|                     | 6625 5979 | 11 4622  | 69251 07/19 | 1790 0687 |                    | 5118 1444   |
| S <sub>37R</sub>    | 1/10 /060 | 25 0702  | 00 0060     | 10/ 7200  | S <sub>37P</sub>   | 57 0120     |
|                     | L40.4000  | 53.3705  | 60122 4007  | 1716 2200 |                    | 77211 6702  |
| Ŝ <sup>2</sup> 388  | 147 0025  | 3.2013   | 102 05 47   | 100 2400  | Ŝ <sup>2</sup> 38P | 77211.0703  |
| 82                  | 147.9925  | /8.3/28  | 103.654/    | 109.2190  | 82                 | 3.50/5      |
| S 39R               | 6625.5954 | 11.5176  | 69335.7944  | 1802.3832 | S 39P              | 4680.1845   |

Volume 4 Issue 10, October 2016

| ISSN (Online): 2347-3878, Impact Factor (2015): 3.791 |           |          |            |           |                               |           |  |
|-------------------------------------------------------|-----------|----------|------------|-----------|-------------------------------|-----------|--|
|                                                       | 148.4068  | 35.8052  | 89.8961    | 104.0045  |                               | 57.8645   |  |
| ê2                                                    | 6670.2155 | 4.0627   | 51487.4549 | 1728.4844 | Ŝ <sup>2</sup> <sub>40P</sub> | 2665.1590 |  |
| 540R                                                  | 147.4141  | 101.5064 | 121.0589   | 108.4510  |                               | 101.6136  |  |
| $\hat{S}_{41R}^{2}$                                   | 6625.7246 | 11.4881  | 69202.3819 | 1762.1034 | $\hat{S}_{41P}^{2}$           | 4365.4111 |  |
|                                                       | 148.4040  | 35.8971  | 90.0694    | 106.3819  |                               | 62.0368   |  |
| ê2                                                    | 6626.1371 | 4.4323   | 62505.3518 | 1724.5890 | ê2                            | 3153.5927 |  |
| 5 <sub>42R</sub>                                      | 148.3947  | 93.0420  | 99.7197    | 108.6960  | 5 <sub>42P</sub>              | 85.8755   |  |
| $\hat{S}_{yoR}^2$                                     | 6091.8894 | 3.8199   | 49386.5649 | 1647.0581 | <sup>22</sup> - (Droposed)    | 2629.1413 |  |
| (Proposed)                                            | 161.4087  | 107.9583 | 126.2087   | 113.8126  | Jop(110posed)                 | 103.0056  |  |
| T <sub>h43</sub>                                      | 6559.2363 | 3.6959   | 48053.8622 | 1550.6839 | T <sub>h43</sub>              | 2259.4322 |  |
|                                                       | 149.9083  | 111.5804 | 129.7089   | 120.8860  |                               | 119.8604  |  |
| $\hat{S}_{yg}^2$ (Proposed)                           | 5167.7832 | 3.5061   | 34790.0686 | 1548.5232 | $\hat{S}_{yg}^{2}$ (Proposed) | 2191.2309 |  |
|                                                       | 190.2719  | 117.6207 | 179.1607   | 121.0546  |                               | 123.5910  |  |

For graphical representation, we have considered the most efficient estimator among the ratio-type estimators taken by Subramani and kumarapandiyan (2015)&induced producttype estimators, optimum estimator of  $T_{h42}$  and the optimum estimator of the proposed class of estimators'  $S_{yg}^2$ .



Figure 1: The bar graph shows the performance of proposed estimators and exciting optimum estimators

## 7. Conclusion

From Table 2 and bar chart, we conclude that the performance of proposed ratio-type  $(\hat{S}_{yoR}^2)$  and product-type  $(\hat{S}_{yoP}^2)$  estimators is better than the existing modified ratiotype  $(S_{iR}^2)$  and induced product-type  $(S_{iR}^2)$  estimators for respectively. i = 1, 2, ..., 42Also the proposed optimum estimator of class  $(\hat{S}_{yg}^2)$  is more efficient than all the existing estimators and even from the class of estimators of Srivastava and Jhajj (1980) ( $T_{h43}$ ), in which they have used the known information of population mean and population variance of auxiliary variable x. From this study, we conclude that to estimate population variance  $(S_v^2)$ the known information of population variance  $(S_x^2)$  along with population mode  $(M_x)$  is optimum rather than use of known  $\bar{S}_x^2$  along with any other population parameter such that  $C_x, \beta_{1x}, \beta_{2x}, \rho, M_d, Q_1, Q_3$ , etc.

## References

[1] Chakravarty, I. M., Laha, R. G., & Roy, J. (1967). Handbook of Methods of Applied Statistics: Techniques of Computation, Descriptive Methods, and Statistical Inference. John Wiley & Sons.

- [2] Cochran, W. G. (1999). *Sampling Techniques (*Vol.3). John Wiley & Sons.
- [3] Gujarati, D. N. (2004). *Basic Econometrics*.Mc. Graw Hills Pub. Co, New York.
- [4] Isaki, C.T. 1983. Variance estimation using auxiliary information. *Journal of the American SepStatistical Association*, 78: 117-123.
- [5] Kadilar, C. and Cingi, H. 2006. Ratio estimators for population variance in simple and Extratified sampling. *Applied Mathematics and Computation*, 173: 1047-1058.
- [6] Kumar S. (2015). An estimator of the mean estimation of study variable using median of auxiliary variable. *Sri Lankan Journal of Applied Statistics*, Vol (16-2),107-115.
- [7] Maddala, G. S., &Lahiri, K. (1992). *Introduction to econometrics* (Vol. 2). New York: Macmillan.
- [8] Murthy, M. N. (1967). *Sampling theory and methods*. Statistical Publishing Society, Calcutta.
- [9] Sharma, M.K., Brar, S.S. &Kaur, H. (2016). Estimators of population mode using new parametric relationship mode. *International Journal of Probability and Statistics*, 5(1), 18-24.
- [10] Singh, S. (2003). Advanced Sampling Theory With Applications: How Michael"" Selected"" Amy (Vol. 2). Springer Science & Business Media.

## Volume 4 Issue 10, October 2016

International Journal of Scientific Engineering and Research (IJSER) <u>www.ijser.in</u> ISSN (Online): 2347-3878, Impact Factor (2015): 3.791

- [11] Srivastava, S. K. (1980). A class of estimator using auxiliary information in sample survey. *Canad. Jour. Stat. N, pp.*232-254.
- [12] Srivastava, S. K., &Jhajj, H. S. (1980). A class of estimators using auxiliary information for estimating finite population variance. *Sankhya*, *C*, 42(1-2), 87-96.
- [13] Subramani J. &Kumarapandiyan G. (2012a). Variance estimation using median of the auxiliary variable. *International Journal of Probability and Statistics*, Vol. 1(3),36-40.
- [14] Subramani J. &Kumarapandiyan G. (2012b). Variance estimation using quartiles and their functions of an auxiliary variable. *Internation Journal of Statistics and Applications*, Vol. 2(5), 67-42.
- [15] Subramani J. &Kumarapandiyan G. (2013). New modified ratio estimator for estimation of population mean when median of the auxiliary variable is known. *Pak. J. Stat. Oper. Res.* Vol.IX No.2, pp.137-145.
- [16] Subramani J. &Kumarapandiyan G. (2015). A class of modified ratio estimators for estimation of population variance.
- [17] Upadhyaya, L.N. and Singh, H.P. 1999. An estimator for population variance that utilizes the kurtosis of an auxiliary variable in sample surveys. *Vikram Mathematical Journal*, 19, 14-17.

## **Author Profile**

Harinder Kaur can be contacted at E-mail: harindercheema33@gmail.com

M.K. Sharma can be contacted at E-mail: drmksharma2004@yahoo.com