
International Journal of Scientific Engineering and Research (IJSER) 
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2015): 3.791

Volume 4 Issue 10, October 2016 
Licensed Under Creative Commons Attribution CC BY

Strength and Stability of Copper Using Simple Two 
Body Potential 

Vikram Singh 

Agra College, Agra, Uttar Pradesh, India 

Abstract: Taking simple two body potential  = -A r -n +B exp (-Pr m), strength and stability of copper are estimated in case of two 
directional stresses. Computed values of theoretical strength of copper is 1.62GPa (tensile strength) and – 85.83GPa (compressive 
strength). We compare our results with calculated results of other workers. Second phase found in tension. 
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1. Introduction 

Calculations of theoretical strength of cubic metals have been 
active field in research. The ideal (theoretical) strength was 
originally defined as stress or strain at which perfect crystal 
lattice became mechanically unstable with respect to arbitrary 
homogeneous infinitesimal deformation. Many applications of 
theoretical strength [1-18] and stability are presents in 
literature. Recently many authors [19-50] are working on this 
problem in different loading conditions. Cerney and 
coworkers [27-33] studied mechanical stability of cubic 
metals (Ni, Ir, Fe, Cr) in hydrostatic loading and uniaxial 
loading using simulation technique. Based on Born- Hill- 
Milistein elastic stability theory Ho et al [34] investigates the 
effect of transverse loading on ideal tensile strength of six fcc 
materials using molecular statics and density function theory 
simulation. Mouhat [35] et al gives necessary and sufficient 
stability conditions for non-cubic and lower symmetry classes 
crystals. Ogata et al [36] gives review article on this topic. 

In this paper we evaluated theoretical strength of fcc copper 
when two forces of same sign (either compressive or tensile) 
are simultaneously applied along the a2 and a3 directions {i.e. 
F2=F3}, while zero force is applied along the a1 direction {i.e. 
F1=0}. This method was developed by Thakur et al [37] and 
calculated strength and stability of many cubic metals in this 
mode of deformations. Zhang et al [25] have calculated 
strength and stability of copper in this mode of deformation by 
using MAEAM. This type of deformation is named by Thakur 
et al [37] as two directional stresses. In this mode of 
deformation we calculate theoretical strength of copper by 
taking simple two body potential. 

2. Computational Details 

Two body potential as suggested by Kuchhal and Dass [51] is 
given by 

(1) 
Where A, B and P are positive constant and are expressed in 
unit of erg.cmn, erg and cm-m respectively. m and n are 
adjustable parameters and r  is the distance from the lattice 
site with coordinate specified by the three integers 321 ,, lll
are 

 r = ½ (a1
2 l1

2 + a2
2 l2

2 + a3
2 l3

2 )                                      (2)

Where 21,ll  and 3l are integers (chosen such that 321 lll 

is even for a fcc lattice) 21,aa and 3a are cell lengths. Since 
this potential is empirical in nature, there is no limit to the 
number of different functions, which can be calculated from a 
given set of experimental data. Thus any family of potential 
function should include relatively short-range steep potential 
as well as longer range shallower potentials.  

This potential contains two adjustable parameters m, n and 
three unknown potential parameters A, B and P which can be 
calculated  by using experimental values of lattice constant, 
bulk modulus and cohesive energy as an input data. The 
selection of adjustable parameters m and n are such that the 
calculated value of theoretical strength are close with 
experimental results. Table 1 gives calculated values of 
unknown potential parameters A, B and P of copper taking 
cohesive energy, lattice constant and bulk modulus as an input 
data [50]. Here we take adjustable parameters m =1 and 
n=1/5, since this potential gave the strength in (100) loading 
which are close with experimental results. 

Table 1: Potential parameters of copper 
Adjustable parameters Unknown parameters

m n P (cm-m) A(erg. cmn) B (erg)
1 1/5 5.135109 1.071510-16 1.45631042

Detailed theory has been given by Milstein [53] for applying 
Born [1] stability criteria to the determination of mechanical 
stability of cubic crystals in the presence of applied forces and
deformations. For cubic crystals with central interactions, the 
necessary and sufficient conditions for a lattice to be in stable 
equilibrium are    

 B12   0, B23  0                                             (3) 
B22 –B23  0                         (4) 
B11(B22 + B23) – 2 B12  0                              (5) 

For brevity of notation we represent {B22 –B23} by ab1 and 
{B11(B22 + B23) – 2 B12}by ab2.  
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Stress i  is being given by
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Where E is the energy per unit cell 
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Bij are given by 
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(8)                                               

for  i, j =1,2,3, where δij is the Kronecker delta and u is the 
number of atoms per unit cell. The summations are carried out 
over a number of atoms sufficiently large to ensure that 
convergence up to four significant figures is achieved.  

Fi is the force along ai direction can also be written 

Where  and are the values of force and lattice constant 
at starting state values (which is initially supposed to 

equilibrium values) i.e.,  for which and are 
the values of force and lattice constant at nearby state of 
starting state.

In the absence of applied shear stress, the components a4, a5

and a6 will retain their initial values of 90° (at least up until 
failure occurs).  

Equation (12) can be written as

                                                                                       (9a) 

            
(9b) 

(9c) 

In this mode of deformation (
i.e. force in x- direction is absent). We can calculate all Bij

from equation 8 for starting values of 
ij

. For the known values of  we can calculate 
from equation 9a, and using the values of 

,  can be calculate from 
equation 9b or 9c. We can further calculate Bij from equation 

8 for the values of . If the stability 

condition is not violated, the set of  and 

 is now suppose as  and 

, and the same procedure follows until the any one  
of the stability condition is violated. Stress and strain of the 
set a1, a2 (= a3) and F2 (=F3) for which the stability conditions 
violated, gives the strength and stability of cubic metals. As 
mentioned previously this method were developed and applied 
by Thakur et al [37-41] for many metals and recently by 
Zhang et al [25] for copper. 

3. Results and Discussion 

Figure 1: Variation of B11 and B22 with respect to a2 (=a3) 

Figure 2: Variation of B12 and B23 with respect to a2 (=a3) 

Figure 3: Variation of ab1 and ab2 with respect to a2 (=a3) 
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Figure 4: Variation of σ2 (=σ3) and energy per unit cell (E) 
with respect to a2 (=a3) 

Figure 5: Variation of a1 with respect to a2 (=a3) 

Figure 6: Variation of σ2 (=σ3) with respect to a2 (=a3) 

Figure 7: Variation of energy per unit cell (E) with respect to 
a2 (=a3) 

Table 2: Strength of copper in case of two directional stresses  
Adjustable parameters Failure in tension Failure in 

compression
m n a2 (=a3)

(Å)
2 (=3)
(Gpa)

a2 (=a3)
(Å)

2 (=3)
(Gpa)

1 1/5 3.9252 1.62 3.50224 -85.83

Variations of Bij, it’s functions (i.e. ab1 and ab2), stresses (σ2=
σ3), energy per unit cell (E) and lattice constant a1 with respect 
to a2 (=a3) are shown in figure from 1 to 5 for fixed values of 
adjustable parameters m=1 and n=1/5 in K.D. potential. 
Figure 6 and 7 show the detail variation of stresses σ2 (= σ3)
and energy per unit cell of copper at m=1 and n=1/5. Table 2 
gives the calculated values of breaking stresses (i.e. 
theoretical strength) and lattice constant a2 (=a3) at which the 
instability occur of copper for different values of adjustable 
parameter m and n. 

Figure 8: Variation of Bij with respect to a2 (=a3) for q=6 in 
generalized Morse potential 
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Figure 9: Variation of ab1 and ab2  with respect to a2 (=a3)
for q=6 in generalized Morse potential 

Figure 10: Variation of σ2 (= σ3) and energy per unit cell (E) 
with respect to a2 (=a3) for q=6 in generalized Morse potential 
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Figure 11: Variation of a1 with respect to a2 (=a3) for q=6 in 
generalized Morse potential for copper 

Figure 12: Variation of σ2 (= σ3) with respect to a2 (=a3) for 
q=6 in generalized Morse potential 

Figure 13: Variation of energy per unit cell (E) with respect 
to a2 (=a3) for q=6 in generalized Morse potential 
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Figure 14: Variation of σ2 (= σ3) with respect to a2 (=a3) for 
q=1.25 in generalized Morse potential 
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Figure 15: Variation of energy per unit cell (E) with respect 
to a2 (=a3) for q=1.25 in generalized Morse potential 

Table 3: Strength of copper in case of two directional stresses 
for different values of q in generalized Morse potential 

Adjustable 
parameter

Failure in tension Failure in compression

q a2 (=a2)
(Å)

2 (=2)
(Gpa)

a2 (=a2)
(Å)

2 (=2)
(Gpa)

1.25 3.76108 3.101 3.44839 -8.656
2 3.76135 3.0965 3.44773 -8.7256
6 3.780942 3.25094 3.410242 -12.4568

We can compare our calculated results of K D potential with 
results of generalized Morse potential. So we calculate 
theoretical strength of copper by taking generalized Morse 
potential as an interaction between atoms.  Figure from 8 to 
11 show the variations of Bij, it’s functions (i.e. ab1 and ab2), 

stresses (σ2= σ3), energy per unit cell (E) and lattice constant 
a1 of copper with respect to a2 (=a3) for q=6 in generalized 
Morse potential. Figure 12 and 13 show the detail variation of 
stresses (σ2= σ3) and energy per unit cell (E) of copper with 
respect to a2 (=a3) for q=6 in generalized Morse potential. 
Figure 14 and 15 show the detail variation of stresses (σ2= σ3)
and energy per unit cell (E) of copper with respect to a2 (=a3)
for q=1.25 in generalized Morse potential. Table 3 gives the 
calculated values of breaking stresses (i.e. theoretical strength) 
and lattice constant a2 (=a3) at which the instability occur of 
copper for different values of adjustable parameter q in 
generalized Morse potential. 

We can point out from these figure the variation of Bij, it’s 

functions (i.e. ab1 and ab2), stresses (σ2= σ3), energy per unit 
cell (E) in both potential are similar. Same type of variation of 
stresses σ2 (=σ3) and energy per unit cell (E) of Ni with 
respect to lattice constant a2 (=a3) were find by Thakur et al 
(36). For K D potential (m=1, n=1/5), when we increase a2
(=a3) the stability condition (B23>0) violated at a2 (=a3) = 
3.9252 (Å) and similarly when we decrease a2 (=a3) the 
condition (ab1>0) violated at a2(=a3) = 3.50224 (Å). At 
a2(=a3) =3.9252 (Å), the breaking stresses (tensile strength) is 
equal to 1.62GPa. Similarly at a2(=a3) =-3.50224 (Å) the 
breaking stresses (compressive strength) = -85.83 GPa. These 
values give theoretical strength 1.62 GPa (in tension) at 
8.57% of strain and -85.83 GPa (in compression) at - 3.13% 
of strain. The strength of copper in case of unidirectional 
stress {(100) loading} is calculated and equal to 3.215GPa.   

In generalized Morse potential the stability condition ab1>0 is 
violated at a2 (=a3) = 3.78094 (Å) in tension and the stability 
condition ab2>0 is violated at a2 (=a3) = 3.41024 (Å) in 
compression. The breaking stresses at these points are σ2 (=σ3)
= 3.2509GPa (in tension) and σ2 (=σ3) = -12.457GPa (in 
compression). These values give the theoretical strength 
3.2509 GPa in tension at 4.58% of strain and -12.457 GPa in 
compression at - 5.67% of strain. Table 3 shows calculated 
values of breaking stress for different values of adjustable 
parameter q in generalized Morse type of interaction between 
atoms. We conclude from these results that breaking stresses 
decrease in tension and compression if we increase adjustable 
parameter q in generalized Morse potential.    In K D potential 
figures 6, 7 show a minima in stress and minima in energy per 
unit cell in tension which shows the second phase in tension. 
Figure 12-15 gives the similar results in case of Morse 
potentials.   

As per our knowledge the experimental values of strength in 
this case of deformation were not available in literature, so we 
compare our calculated results with theoretical results of Cu 
[25] and Ni [37]. Zhang et al have calculated the strength of 
copper from -15.131GPa to 2.803GPa at strain -5.801% to 
4.972% in this mode of deformation taking MAEAM  [25] 
and 7.525GPa in (100) loading [26]. The calculated value of 
Nickel is 6 GPa [37] when two directional stresses are applied 
and is 15.55GPa [54] when unidirectional stress {i.e. (100) 
loading} is applied. Thus from these result the strength in case 
of unidirectional stress  is approximately 2 times the strength 
in case of two directional stresses. In our case we too are 
getting the same results.  

From figures 6, 12 and 14 show a dip in stresses curve in 
tension i.e. if we increase the lattice constant a2, initially 
stresses increase and then decrease and after reaching a 
minimum values it again increases. Similarly figures 7, 13 and 
15 show very small dip in energy per unit cell curve. So these 
results show that another phase exit in tension. We found from 
our result this phase is unstable in both type of 
phenomenological interaction. Milstein [54] and recently 
Wang et al [20] reported the second phase in compression of 
(100) loading for fcc metals. In (100) loading this second 
phase exit, when we decrease a1 and a2 (=a3) increase due to 
the presence of force F1 (i.e. the force in x direction). When 
we compare these results with our results, the situation of a1,
a2 (=a3) are same but only difference is that this situation 
created by force F1 in (100) loading and by forces F2 (=F3) in 
this mode of deformation i.e. in two directional stresses. So 
we conclude that a second phase exit in tension of this mode 
of deformation. Zhang et al [25] also reported same second 
unstable phase for copper. 

4. Conclusions 

As such no experimental data is available in this mode of 
deformation. We compare our results with calculated results 
of other workers and found our results are same order in 
magnitude of results of other theoretical investigators. Zhang 
et al [25] calculated strength and stability of copper in this 
mode of deformation using MAEAM.  We know that the 
calculations in pair potential are simple in comparison to 
EAM. So our analysis is simple in comparison to Zhang et al. 
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