
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2015): 3.791

Volume 4 Issue 10, October 2016
Licensed Under Creative Commons Attribution CC BY

Distinguishing Identifiers Using Code Inspection
Sujata S. Deshmukh1, S. Pratap Singh2

1Computer Engineering Dept., SP’s Institute of Knowledge, Pimple Jagtap, Pune

2Computer Engineering Dept., SP’s Institute Of Knowledge, College of Engineering College of Engineering, Pimple Jagtap, Pune

Abstract: Software quality is not defined in terms of quality attributes but instead must be inferred from characteristics that correlate
to quality attributes and defect attributes. Readability of source code in one such attribute. Software characteristics have been identified
by empirical research, which correlate well to source code. One of such software characteristic is choice of identifier name. Identifier
names are primary means by which source code authors communicate their concepts to their readers. They are key mechanisms by
which readers of source code such as maintenance programmers access and understands source code. There exists a relationship
between flawed identifier names and software maintenance cost. Studying such a relationship is useful to assess whether naming
conventions have impact on maintenance effort and to gain a deeper and finer-grained understanding of which program comprehension
issues lead to code quality problems. We present in this paper the identifier analysis method that can identify flaws in Java identifier
names. We found that percentage of using compound word identifier names is significantly more than simple word identifier names.
Also percentage of compound word identifier names with no dictionary meaning is significant at variable, class and method level
identifiers. It unnecessarily increase the splitting overhead of compound word identifier names before finding their dictionary meaning
without any clear benefit in readability of source code.

Keywords: Code Inspection, identifier analysis

1. Introduction

Modern programming languages permit the creation of clear,
readable and meaningful identifiers. Programming
conventions provide guidance on the typographical form of
identifier names associated with particular language
constructs and the parts of speech to be used in different
types of identifiers. However, only limited advice is given
on matters such as the length of identifiers. The poor
identifier names are barriers to source code comprehension
is sufficient reason to create good quality identifiers.
However, there might be other consequences of poor quality
identifier names such as poor understanding of code during
maintenance and increased cost of maintenance. Given the
importance of the natural language content and structure of
identifer names to the readability of source code one can
find relationship that exists between software quality and the
quality of identifiers names used in the source code.[1]

Identifier name quality is multifactorial. The use of
typography, as defined in programming conventions gives
the reader clues to the role of each identifier. However,
typography alone is insufficient. The good identifier name
should clearly communicate the concept represented and its
function through the use of natural language. Identifier
names are crucial components of source code which have
impact on program comprehension. As artifacts of the
programmers thought processes, identifier names are
mechanism by which source code may be accessed and
understood. Similarly, they may reflect difficulties the
programmer had understanding a problem and thus of
potential defects in the finished software. Although there is
work relating identifier naming and program
comprehension, work has not been done that directly relates
identifier naming and code quality. Studying such a relation-
ship is useful help to assess whether naming conventions
have impact on maintenance effort and to gain a deeper and
fine-grained understanding of which program
comprehension issues lead to code quality problems.[2][4]

As Eclipse is widely used platform for Java development,
we have used Eclipse Java Development Tool (JDT),
Eclipse Java Model and Eclipse Abstract Syntax Tree API
(AST API) to develop the identifier analysis module that can
be used as plug-in for Eclipse.

2. Literature Survey

A. Importance of Coding Conventions In Soft-

Ware Maintenance and Testing
Coding standards have become increasingly popular as a
means to ensure software quality throughout the devel-
opment process. They typically ensure a common style of
programming which increases maintainability and prevent
the use of potentially problematic constructs, thereby
increasing reliability. The rules in such standards are usually
based on expert opinion gained by years of experience with
a certain language in various contexts. Over the years
various tools have become available that automate the
checking of rules in a standard helping developers in
locating potentially difficult or problematic areas in the
code. These also include commercial offerings. Such tools
generally come with their own sets of rules against which
they check for violations of coding standards. However, in
spite of the availability of appropriate standards and tools,
there are several issues hindering adop-tion. In spite of the
widespread use of coding standards and tools enforcing their
rules, there is little empirical evidence supporting the
intuition that they prevent the introduction of faults in
software.[2][10][14][16]

Naming conventions make programs more understandable
by making them easier to read. They can also give
information about the function of the identifier-for example,
whether it is a constant, package or class which can be
helpful in understanding the code. Code conventions are
important to programmers for a number of reasons[5][6]:

Paper ID: IJSER15971 19 of 24

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2015): 3.791

Volume 4 Issue 10, October 2016
Licensed Under Creative Commons Attribution CC BY

1)80 percent of the lifetime cost of a piece of software goes
to maintenance.

2)Hardly any software is maintained for its whole life by the
original author.

3)Code conventions improve the readability of the soft-
ware allowing engineers to understand new code more
quickly and thoroughly.

4)If developer ship source code as a product, developer need
to make sure it is as well packaged and clean as any other
product.

B. Naming Conventions for Java Identifiers
Naming conventions make programs more understandable
by making them easier to read. They can also give
information about the function of the identifier-for example,
whether it is a constant, package or class which can be
helpful in understanding the code. Following table enlists
the Java identifier naming guide-lines.[5][6]

C. Role of Intermediate Program Representation in
Software Maintenance
A fundamental goal of software engineering is to make
program development and maintenance easier, faster and
less error prone. This includes addressing problems like
1) Understanding what an existing program does and how it
works.
2) Understanding the differences between several versions
of a program.
3) Understanding whether design rules have been followed
in coding phase.

Tools that assist programmers with such problems are most
useful if they are language based that is, if they incorporate
knowledge about the programming language in use. On the
other hand, it is desirable to base these tools on language-
independent algorithms and data structures so as to avoid the
need to re-design and redevelop a set of tools for every
different programming language. One of such intermediate
representation which is widely used in software maintenance
is Abstract Syntax Tree(AST). Abstract syntax trees
(ASTs)[7] are known from compiler construction where they
build the intermediate data format which is passed from the
analytic front-end to the synthetic back-end. In software
development, ASTs are used as a model of the source code.
They represent a program on the level of the abstract syntax
that means that they are independent from the concrete
syntax for identifiers, operators, conditions or statements of
the underlying programming language. The striking
advantage in the use of ASTs in contrast to source programs
is the higher level of abstraction. Hence, the algorithms have
to be developed only once and can then

Figure 1: Naming conventions for JAVA identifiers

be used for programs written in various different languages.
The Abstract Syntax Tree is the base framework for many
powerful tools of the Eclipse IDE including re-factoring,
quick fix and quick assist. The Abstract Syntax Tree maps
plain Java source code in a tree form. This tree is more
convenient and reliable to analyze and modify
programmatically than text-based source.[7][14]

Achieving Code Quality through Identifier Names

The development of software, like any other manufacturing
processes can introduce defects in the resultant product.
However, unlike other manufacturing processes, software is
manufactured extensively once and then modified until
sufficient defects have been removed such that the customer
will accept the product. The customer may only be
concerned with capability and will have no further interest in
the internal software structure. However, some customers
are becoming increasingly interested in the internal structure
of software delivered to them as this has a flow-on effect to
the cost of maintaining the product (i.e., the cost of
modifying and adding new capability which is distinct from
the activity of software bug fixes). Customers may hence
contractually impose soft-ware quality standards on their
contractors. These standards are interpreted by the contractor
and typically further standards are derived such as the
project coding standards.[2][8][9] However, the software
engineer suffers from various cognitive limitations that
make the production of readable software a difficult task. In
addition, the software engineer is not prepared well by their
education to address quality in their software development
practices. Often, they are given very general instruction
regarding what constitutes software quality and rarely they
are instructed in how to achieve the quality production of

Paper ID: IJSER15971 20 of 24

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2015): 3.791

Volume 4 Issue 10, October 2016
Licensed Under Creative Commons Attribution CC BY

software. Their education is heavily waited towards
discussing the production phase of the software life cycle
with the maintenance phase given a rudimentary treatment.
Similarly, their peer culture and the culture of their
management places little emphasis on future maintenance of
the software during the development phase. There are no
industry wide adoption of software quality tools that actively
assist the software engineer to produce a quality
product.[9][15]

A software quality characteristic that has the potential to im-
prove software quality is the choice of identifier name and
this is particularly so in large software systems. Identifier
naming style guidelines supported by empirical evidence
and generally accepted by software professionals to direct
towards improved source code readability are candidates for
automation by a static analysis tool. Such an automated tool
could make visible aspects of software quality that are less
keenly perceived by the novice programmer and could assist
in their education along the path to expert status. Hence is
the motivation to develop a plugin that can do identifier
analysis in Eclipse IDE[19] which is widely used platform
for Java development.[1][8][10] Table I shows identifier
naming style guidelines in gen- eral to achieve code quality
through identifier names.[2]

3. Implementation Details

Todays large, complex software systems require automatic
software analysis and recommendation systems to help the
software engineer in completing maintenance tasks
effectively and efficiently. The software maintainer must
gain at least partial understanding of the concepts
represented by existing source code before making
modifications. A programmer codes the concepts and actions
in terms of program structure and helps to convey the intent
and application domain concepts to human readers through
identifier names and comments. Thus, many of the program
search, concern location, code reuse and quality assessment
tools for software engineers are based on analyzing the
words that programmers use in comments and identifiers.
Hence identifier analysis in source code becomes important.

In previous section, it has been seen that there exist a
relation between identifier naming conventions and quality
of software developed as well as readability and
understanding of the same during maintenance. There is a
need of tool that can find identifiers automatically in Java
source code and validate them against identifier naming
conventions of Java. As Eclipse is widely used platform for
Java development, we have developed a module that can do
identifier analysis automatically of entire Java project in
Eclipse workspace. By extending the

Table 1: Identifier Naming Style Guidelines
Name Description

Capitalisation
Anomaly Identifiers should be appropriately capitalised.

Excessive
Words

Identfier names should be composed of no more
than four words or abbreviations.

External
Underscores

Identfiers should not have either leading or
trailing underscores.

Long
Identifier

Name

Identifier names of more than twenty above
characters should be avoided where possible.

Naming
Convention
Anomaly

Identiers should not consist of non-standard
mixes of upper and lower case characters.

Non-
Dictionary

Words

Identier names should be composed of words
found in the dictionary and abbreviations and

acronyms that are more commonly used than the
unabbreviated form.

Number of
Words

Identiers should be composed of between two
and four words.

Numeric
Identfiier

Name

Identiers should not be composed entirely of
numeric words and numbers.

Short
Identifier

Name

Identfiiers should not consist of fewer than eight
characters, with the exception of c, d, e, g, i, in,

inOut, j, k, m, n, o, out, t, x, y, z

Type
Encoding

Type information should not be encoded in
identifier names using Hungarian notation or

similar

Eclipse functionality with the addition of identifier analysis
plugin developers can get identifier analysis of all Java
projects in workspace in just single click of mouse. With
identifier analysis it doesnt only mean finding the identifiers
and validate them against naming conventions but also there
is need to find other fields related to identifiers which
contribute to readability of code being analyzed during its
maintenance.

For each identifier found there is need to find following
fields.

1) Type of identifier
It can be of type class, method, variable, interface or
constants.

2) Simple or compound word
This field find out whether identifier found is sin- gle word
identifier i.e. simple or it is combination of multiple words
i.e. compound word

3) Dictionary word or non dictionary word
This field find out whether name used for identifier is
belonging to English dictionary or not. This field has impact
on readability of code during maintenance of the same.

4) Grammatical sense of identifier
In this field if identifier found is dictionary word then there
is need to find grammatical sense of the same i.e. noun,
verb. According to Java coding conventions class identifiers
should be nouns and method identifiers must be verb.

To develop a plugin in Eclipse that can analyze identifiers in
Java source code and validate them against identifier naming
conventions, we have used Eclipse Java Development Tool

Paper ID: IJSER15971 21 of 24

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2015): 3.791

Volume 4 Issue 10, October 2016
Licensed Under Creative Commons Attribution CC BY

(JDT), Eclipse Java Model and Eclipse Abstract Syntax Tree
API (AST API). Following are the steps of implementation.

1) Create parser plugin project in Eclipse with appropriate
name and also choose appropriate Eclipse platform
version.

2) Select one of the available templates to generate a fully
functioning plugin. This work adds Id-Analyzer
command plugin in Eclipse platform, so hello world
command template is used.

3) Add packages on which this plugin depends without
explicitly identifying their originating plugin.

4) Modify plugin.xml file according to requirements to give
name to command and menu under the command.

5) After writing the handler program create Java archive of
the plugin project and copy it to appropriate destination
directory. Now archive is ready for deployment.

6) Copy created Java archive and dictionary into Eclipse
plugin directory (default directory is /usr/lib/eclipse) and
make it executable.

7) Restart eclipse. This plugin finds all indentifiers
including classes and methods in current Java project. It
displays its type, whether it is complex word, dictionary
word etc.

4. Performance Evaluation and Result Analysis

For performance evaluation, comparison of the identifier
flaws found by FindBugs[12] and identifier analysis plug-in
of Eclipse has been made. we have used a total of 4
established Java open source applications and libraries for
investigation from a variety of domains and uses including
GUI applications, programmers tools and charting
applications. The variety of projects chosen reduces the
possbility of any unanticipated project or domain specific
influence on identifier names. Table II shows the version
and size of each code base analyzed in terms of number of
classes and thousands of non-commenting source statements
(KNCSS), as measured by FindBugs[12] which is static
analysis tool for finding flaws in Java source code.

FindBugs is a static analysis tool used for Java source

Table 2: Source Code Analyzed
Source KNCSS classes

Ant 1.71 72 1639
Tomcat 6.08 114 2128

jEdit 4.3 58 2069
jFreeChart 1.01 61 1031

code which generate priority warnings for identifier naming
flaws present in Java source code. In each Java open source
applications considered for performance evaluation with
respect to same naming conventions of Java identifers, e.g.
capitalization anomaly of class and method level identifiers,
grammatical sense of class and method level identifiers.
Figure 1 shows comparison of identifier naming flaws found
by FindBugs and Id-Analyzer in each Java open source
applications considered for performance evaluation with
respect to same naming conventions of Java identifers After
analyzing the warnings generated by FindBugs, it has been
found that warnings have been generated for minority of
classes. Similarly, many of the identifier flaws were found in
minority of classes. Also, it shows that associations between

priority one warnings and identifier naming flaws are less
common than the more consistent associations for priority
two warnings. All the identifier naming flaws of Java are
associated with priority two warnings in all open source
projects.

While analyzing the results of plug-in, it has been observed

Figure 2: Comparison of identifier flaws found by
FindBugs and plug-in

That percentage of using compound word identifier names is
more as compare to simple word identifier names in all open
source projects considered during result analysis. The reason
behind is single word may not be as meaningful as
compound word considering its English dictionary meaning.
The compound word identifier name also convey the
purpose of using that name and function actually it performs.
In short compound word identifier names increase
readability of code during maintenance and testing if
constructed properly.

It has been also found that majority of the compound word
identifier names used in all open source Java projects con-
sidered are non-dictionary words. If compound word iden-
tifier names are used and they are not carrying dictionary
meaning then they are not useful in increasing readability
and understanding of code during maintenance and testing.
Also, compound word identifier names poses a challenge of
splitting them before finding out their dictionary meaning.
So, use of compound word identifier names that doesnt have
dictionary meaning should be avoided because unnecessarily
it increase splitting overhead before finding out their
dictionary meaning without any clear benefit in enhancing
readability and understanding of code. Figure 2 shows
percentage of compound word identifier names with
dictionary meaning. It includes identifier names at variable,
class and method level in all open source Java projects
considered. It also shows overall percentage of compound
word identifier names that are dictionary words.

Also, as a part of result analysis, percentage of dictionary
word identifiers found in all Java open source project has
been calculated which will have impact on readability and
understanding of code during maintenance. Also number of
simple and compound word identifier names found in each
Java project have been recorded. Figure 3 shows percentage
of

Paper ID: IJSER15971 22 of 24

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2015): 3.791

Volume 4 Issue 10, October 2016
Licensed Under Creative Commons Attribution CC BY

Figure 3: Percentage of compound word identifier names
with dictionary meaning in Java open source applications

found by plug-in

Dictionary word identifier names found during analysis of
Java open source projects considered for performance
evaluation. This percentage found during analysis will have
impact on readability and understanding of code during
maintenance of the same. If more is the percentage of
dictionary word

Figure 4: Percentage of dictionary word identifier names
found in Java open source applications by plug-in module

identifier names found, more will be the readability and
understanding of the code during maintenance. This can help
in reducing maintenance effort and cost of source code.
Figure 4 shows percentage of simple and compound word
identifiers found in all Java open source projects considered
for result analysis. It clearly shows that percentage of using
compound word identifier names is more than than simple
word identifier names because well constructed compound
word identifier names with dictionary meaning can enhance
readability of code during maintenance.

Figure 5: Percentage of simple and compound word
identifier names found in Java open source applications by

plug-in module

5. Conclusion

The contribution of this paper is a detailed understanding of
the composition of a good quality identifier name and the
relationship between identifier quality and source code
quality. While this will allow the creation of detailed naming
conventions, the emphasis must be on making a coherent
contribution to improve the software development process
rather than overloading the programmer with new rules to
remember. With the same identifier naming guidelines of
Java, comparison of identifier naming flaws of plug-in
module and FindBugs has been made. Comparison shows
clear enhancement in finding out identifier naming flaws
with plug-in in all Java open source applications considered.

After analyzing the results it has been observed that
percentage of using compound word identifier names is
more as compare to simple word identifier names in all open
source projects considered. The reason behind is single word
may not be as meaningful as compound word considering its
English dictionary meaning. The use of compound word
identifier names with no dictionary meaning should be
avoided during development because it increases the
overhead of splitting them without any enhancement in code
readability and understanding. The plug-in would require
evaluation through empirical study; initially with a small
group of programmers and subsequently through surveys of
users and the collection of anonymised usage statistics.

References

[1] Simon Butler, Michel Wermelinger, Yijun Yu, Helen
Sharp Exploring the Influence of Identifier Names on
Code Quality: an empirical study 14th European
Conference on Software Maintenance and
Reengineering. IEEE 2010.

[2] Simon Butler, Michel Wermelinger, Yijun Yu, Helen
Sharp Relating Identifier Naming Flaws and Code
Quality: an empirical study 16th Working Conference
on Reverse Engineering. IEEE 2009.

Paper ID: IJSER15971 23 of 24

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2015): 3.791

Volume 4 Issue 10, October 2016
Licensed Under Creative Commons Attribution CC BY

[3] F. Deissenboeck and M. Pizka, Concise and consistent
naming Software Quality Journal, vol. 14, no. 3, pp.
261-282, Sep 2006.

[4] V. Rajlich and N. Wilde, The role of concepts in
program comprehen-sion in Proc. 10th Intl Workshop
on Program Comprehension. IEEE 2002, pp. 271-278.

[5] Sun Microsystems, Code conventions for the Java
programming lan-guage
http://java.sun.com/docs/codeconv, 1999.

[6] A. Vermeulen, S. W. Ambler, G. Bumgardner, E. Metz,
T. Misfeldt, J. Shur, and P. Thompson, The Elements of
Java Style Cambridge University Press, 2000.

[7] G. Fischer, J. Lusiardi, J.Wolff von Gudenberg Abstract
Syntax Trees and their Role in Model Driven Software
Development International Conference on Software
Engineering Advances. IEEE 2007.

[8] R. P. Buse and W. R. Weimer, A metric for software
readability in Proc. Intl Symp. on Software Testing and
Analysis. ACM 2008, pp. 121-130.

[9] P. A. Relf, Achieving software quality through
identifier names 2004, presented at Qualcon 2004
http://www.aoq.asn.au/conference2004/conference.html

[10] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, Whats
in a name: A study of identifiers in 14th IEEE Intl Conf.
on Program Comprehen- sion. IEEE 2006, pp. 3-12.

[11] C. Boogerd and L. Moonen, Evaluating the relation
between coding standard violations and faults within
and across software versions in Proc. 6th Intl Working
Conf. on Mining Software Repositories. IEEE 2009, pp.
41-50.

[12] FindBugs, Find Bugs in Java programs
http://fndbugs.sourceforge.net/, 2008.

[13] K. Atkinson, SCOWL readme
http://wordlist.sourceforge.net/scowl-readme, 2004.

[14] Paul Anderson, Thomas Reps, Tim Teitelbaum and
Mark Zarins, Design and Implementation of a Fine
Grained Software Inspection Tool IEEE Transactions
on Software Engineering, vol. 29, no. 8, August 2003,
pp. 721-733

[15] Paul Anderson, Thomas Reps, Tim Teitelbaum and
Mark Zarins Tool Support for Fine-Grained Software
Inspection Published by the IEEE Computer
Society,IEEE 2003.

[16] Cathal Boogerd Leon Moonen, Prioritizing Software
Inspection Results using Static Profiling Proceedings of
the Sixth IEEE International Workshop on source Code
Analysis and Manipulation, IEEE 2006. f the First
Workshop On Inspection in Software Engineering,
PARIS, JULY, 2001

[17] Butler, S., Wermelinger, M. , Yijun Yu, Sharp, H.”

INVocD: Identifier name vocabulary dataset” Mining

Software Repositories (MSR), 2013 10th IEEE Working
Conference in May 2013

[18] Arnaoudova, V., Eshkevari, L.M., Di Penta, M.,
Oliveto, R. more authors ”REPENT: Analyzing the

Nature of Identifier Renamings” Software Engineering,

IEEE Transactions on (Volume:40 , Issue: 5) March
2014

[19] http://www.eclipse.org

Paper ID: IJSER15971 24 of 24

