
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 4 Issue 3, March 2016
Licensed Under Creative Commons Attribution CC BY

The Increase in Certified Software Reuse Decreases
Defects Thereby Increasing Quality and

Productivity
Ashwin Tomar1, V. M. Thakare2

1Computer Science, MCA Department, Under Pune University, Pune, India
Siddhant Institute of Computer Application

2Computer Engineering & Science, Amravati University, Amravati, India, P.G. Dept. of Computer Science

Abstract: Software reuse is very important to speed the work of development, reduce cost and time. Software reuse is associated with
requirement, architecture, code, components, documents in various phases of software development. In this paper independent and
dependent variable are consider using regression technique. Their behavior is studied and relationship is established between them.

Keywords: DRE – Defect removal efficiency, DP – defect potential, REQ-Requirement, DSN - Design, CDE - Coding, DOC-Document.

1. Introduction

Software reuse is the process of creating software system
from existing software rather than building from scratch.
Software is the process of implementing or updating
software systems using existing software components. A
software reuse process facilitates the increase of
productivity, quality & reliability, and the decrease of costs
and implementation time. An initial investment is required
to start a software reuse process, but that investment pays for
itself in a few reuses. So the development of a reuse process
and repository improves quality after every reuse,
minimizing the amount of development and reducing the
risk of new projects that are based on repository knowledge.

A defect is nothing but a variance from the given
specification, a hidden or coding error. Defects are
undesirable, they cause increase in risk, revenue loss to the
customer if they remain in the final product. DRE i.e defect
removal efficiency refers to the percentage of total defects
found and removed before software applications are
delivered to customers. Defect potential refers to the total
quantity of bugs or defects that will be found in five
software artifacts: requirements, design, code, documents,
and bad fixes or secondary defects [1].

A good data file from www.namookanalytics.com is
reported by Dr Caper Jones is considered. The data and
variables and their behavior is studied. The paper is arranged
in following sequence as introduction, literature survey,
methodology and data collection following by result,
conclusion and reference.

2. Literature Survey

P. D. Patel [2] presents defect forecasting algorithms to
analyze the defect using mining technique. Gunes K et.al[3],
proposed a defect prediction model. Researcher K A Briki
et.al[4], has worked on defect of code and suggested how to
minimize the code defect to improve quality and thereby
reduce development cost. B.H. Wu[5] worked hard for
modelling of defect in software system. Dr Caper Jones

worked on measuring area of software using metrics[6].
D.Y.Gattaiah et.al[7], improves Software Quality Assurance
using bug tracking system which is an automated system
that can be useful to employees and the managers in any
functional organization. This Bug Tracking System gives the
facility to define the tasks in the organization and also
allows the managers to track the bugs spent by the employee
for that particular task. A report generation facility is
supported in BTS(Bug Tracking System) that allows the
managers to analyze which those skills by employee are
utilized and those which are not utilized. This tool can help
managers for Bug estimation per project or application. This
tool helps employees to document their bugs and analyze
them.

3. Methodology

Software reuse is the use of engineering knowledge or
artifacts from existing software components to build a new
system. There are many work products that can be reused,
for example source code, designs, specifications,
architectures and documentation. Open source code can also
be reused[8]. Code reuse is accomplished through the
sharing of common classes and/or collections of functions,
frameworks and procedures. Reusable software components
can be simple like familiar push buttons, text fields list
boxes, scrollbars, dialogs. A component is a object in the
graphical representation of application that can interact with
user. The user must access these components accurately and
quickly, and be able to modify them if necessary. The
component reuse is the reuse at code level.

There can be different level of reuse Code level components
(modules, procedures, subroutines, libraries, etc) Entire
applications, Analysis level products, Design level products.
Code level reusable components can be in form of Class
libraries, Function libraries, Design patterns, Framework
Classes. Reused components have lower defect-density than
non-reused ones [9]. Four STAGES like Requirement
(REQ), Design (DSN), Coding (CDE), Document (DOC) are
considered with abbreviations as shown in Table 1.

Paper ID: 25021601 1 of 3

http://www.namookanalytics.com/

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 4 Issue 3, March 2016
Licensed Under Creative Commons Attribution CC BY

Table 1: Four Project Stages considered
Stage Description Remark
REQ Requirement It represents the short form
DSN Design It is the short form
CDE Coding CDE is abbreviation used
DOC Document DOC is short form of it

Table 2: Table showing Independent variable with its

description
Independent

Variable Description
STAGE Variable represents stage like requirement,

design, coding, documents
CReuse Variable represent certified reuse in percentage

Function points is a unit of measurement to express the
amount of business functionality an information system (as a
product) provides to a user. Function points measure
software size. Larger the number of function point larger
will be the size of software. The Table 3 shows defects per
function points which are related to the different phases. The
table 3 shows the defect potential circa 2012 for United
States average [10].

Table 3: Software Defect Potentials
Phases with defects Function Points

Requirements defects per 1.00 per function point
Architecture defects per 0.30 per function point

Design defects per 1.25 per function point
Code defects per 1.50 per function point

Document defects per 0.60 per function point
Test case defects per 0.75 per function point
Bad fix defects per 0.35 per function point

TOTAL DEFECTS defects per 5.75 per function point

There are different defect preventive methods like high
quality component reuse, Quality function deployment
(QFD), Root cause analysis, Six sigma, Clean room software
development, Total quality management (TQM),Quality
measurements, Quality Circles, Orthogonal defect analysis,
Defect tracking tools, Static analysis, Formal design
inspections, Formal code inspections, use certified
components, checklist, reviews.

4. Data Collection and Application of
Regression Technique

A good data file with 61 cases(0 to 60) of Software Risk
Master™ Quality collected by Dr Caper Jones with details

on Stage (requirement, design, code, document, bad fixes)
was considered. The file has Independent variable like
Certified Reuse in percentage, dependent variable like
Defects(d). The excel file the operation on data was
performed and relationship was established between percent
reuse with various stages of defect [10].

Regression analysis is a statistical process for estimating the
relationships among variables. Regression analysis helps one
understand how the typical value of the dependent variable
(or 'criterion variable') changes when any one of the
independent variables is varied, while the other independent
variables are held fixed. Regression analysis estimates the
conditional expectation of the dependent variable given the
independent variables - that is, the average value of the
dependent variable when the independent variables are
fixed. The estimation target is a function of the independent
variables called the regression function. Regression analysis
is widely used for prediction and forecasting. Regression
analysis is also used to understand which among the
independent variables are related to the dependent variable,
and to explore the forms of these relationships. In restricted
circumstances, regression analysis can be used to infer
causal relationships between the independent and dependent
variables[12].The regression technique is applied on the data
file and after many operation on the data file, the
relationship is established between defect, reuse and
STAGES.

Table 4: Average defects at various stages as per reuse %
0 15 20 25 30 40

Bad fixes 272.98 200.68 151.52 152.76 167.78 39.24
Code 1090.7 592.61 557.48 648.41 487.11 417.32

Design 1223.85 1070.72 890.69 842.02 915.65 376.99
Documents 563.41 483.36 380.55 369.53 401.08 116.53

Requirements 934.61 848.01 719.449 742.39 693.51 301.59

Table 5: Average defects at various stages as per reuse …
continued from above Table

50 60 75 80 85 90 93
99.39 27.88 40.84 40 29.24 15.93 4.03
254.52 97.34 77 132.41 71.12 41.05 20.6
593.08 156.61 275.01 239.24 175.8 106.46 56.43
261.03 71.32 121.27 102.32 79.39 46.95 22.24
478.08 134.58 233.94 189.48 137.83 90.56 50.07

The linear and exponential graph is obtained from the data.
The linear equation is written as

y = mx + c and of exponential it is written as y = m.e-x

Table 6: Finding relationship between Defect & Reuse
CMM Linear Exponential

REUSE R Square Equation R Square Equation
REQ R² = 0.903 y = -9.597x + 916.7 R² = 0.865 y = 1260.e-0.02x

DESIGN R² = 0.899 y = -12.21x + 1155 R² = 0.859 y = 1603.e-0.02x

DOCU R² = 0.863 y = -5.443x + 509.8 R² = 0.832 y = 691.3e-0.02x

CODE R² = 0.882 y = -9.531x + 831.3 R² = 0.918 y = 1326e-0.03x

BAD Fixes R² = 0.841 y = -2.467x + 221.3 R² = 0.796 y = 323.3e-0.03x

Paper ID: 25021601 2 of 3

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 4 Issue 3, March 2016
Licensed Under Creative Commons Attribution CC BY

5. Result

Except coding all graphs are linear. It is obvious that with
increasing certified reuse, the occurrence of defects
decreases. At most stages the decrease shows a linear trend,
which is proportional to the extent of reuse. However in case

of coding the reuse of codes comes into effect, where as in
other cases reuse could be of documents, design patterns etc.
When it comes to coding the effectiveness is exponential.
Developers and source code writers benefit most by reuse.

 Figure 1: Relationship between Defect & REUSE

6. Conclusion

The relationship between percent certified reuse is
established with defect in relation to various STAGES like
Requirement (REQ), Design (DSN), Coding (CDE),
Document (DOC), Bad Fixes. Except coding all graph shows
linear trend. Increase in certified reuse decreases defect
thereby increasing quality and productivity.

References

[1] Caper Jones, “Measuring Defect Potentials and Defect
Removal Efficiency”, Software Productive Research,
June, 2008

[2] P. D. Patel, “Defect Forecasting In Software System -
Mining Approach,” IJECS, vol. 3, no.1, pp. 3763–3767,
2014.

[3] A. Günes¸ Koru Hongfang Liu, "Building Effective
Defect Prediction Models in Practice", IEEE
SOFTWARE, Vol 22, No 6, p.p 23-29, Nov - Dec 2005.

[4] K A Briski, Poonam Chitale, Valerie Hamilton, Allan
Pratt, "Minimizing code defects to improve software
quality and lower development costs", IBM,
Development solutions White paper, Oct 2008.

[5] B. H. Wu, “Modeling defects in software systems,”
2011 IEEE International Conference on Granular
Computing, pp. 739–744, Nov. 2011.

[6] Capers Jones, "Software Defect Origins and Removal
Methods", Dec 28, 2012, www.Namcook.com.

[7] R. Kumar, D. Y. Gattaiah, S. Shahi, and T. A.
Nagendra, “Improving Software Quality Assurance
Using Bug Tracking System,” IJCSIT, vol. 4, No 3, pp.
492–497, 2013.

[8] Y. Tung, C. Chuang, and H. Shan, “A Framework of
Code Reuse in Open Source Software,” 2014.

[9] P. Mohagheghi, R. Conradi, O. M. Killi, H. Schwarz,
“An Empirical Study of Software Reuse vs Defect-
Density and Stability,” Vol no. 4898, Proceedings of the
26th International Conference on Software Engineering
(ICSE’04) 2004.

[10] Caper Jones," Software defect origin and removal
methods", www.namcock.com

[11] Ashwin Tomar, V.M.Thakare, “The Study of models for
Software Quality Assurance, reuse and predicting a
customized model" 2015, Thesis.

[12] www.wikepedia.com.

Paper ID: 25021601 3 of 3

