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Abstract: Classification of the biological data is a fundamental topic of research in computer science, especially in bioinformatics. 

Given an unknown sequence, finding the common patterns in it which appears in the known sequences and placing it into the most 

probable family is the classification problem. The bacteria’s of bacillus and clostridia are so conserved that they show nearly same 

characteristics which make them difficult to classify. In this paper we have tried to classify such biological sequences with the help of 

Hidden markov model (HMM) in combination with the Baum Welch model. In this experiment, we have tried to estimate the parameters 

of HMM so that the classification process should converge in the minimum number of iterations. We have achieved approximately 89% 

and 90.73% accuracy of classification in case of bacillus and clostridia respectively. 
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1. Introduction 
 

 Most of the biological data is available in the form of 

biological sequences which are nothing but the sequence of 

characters a, g, c, t and u stands for adenine, guanine, 

cytosine, thymine and uracil respectively. This five letters 

represents the bases. In DNA (deoxyribonucleic acid) and 

RNA (ribonucleic acid) sequences out of five any four bases 

are generally present. For example, ―ctggcggcgtgcctaata‖ is 

a segment of DNA sequence of Alicyclobacillus_sp._FR-6; 

_AJ133635 bacillus. This large amount of biological data is 

studied in the field of bioinformatics. One of the most 

important practices is to classify such biological sequences 

into different classes. The classification of biological 

sequences requires more efficient methodologies so that 

biological sequences grouped together in the most probable 

classes. 

 

One of the method of patterns or motifs discovery in protein 

and nucleotide sequences has been use to establish the 

evolutionary relationship among sequences. Organization of 

the protein cluster into Hierarchical trees is also used to 

establish functional and evolutionary relationships among 

proteins [6]. The problems with such methodology are that 

sequences can have limited homology but proteins can also 

have structural and mechanistic similarities. Even common 

ancestry is not visible through alignment [7].Promoter 

predication is also used to classify the sequences. But the 

development of efficient models for promoter prediction 

includes the relatively low number of characterized 

promoters and poor understanding of the signals for start 

and stop of transcription and translation, especially in 

eukaryotes [8]. The division of patterns can be deterministic 

and probabilistic on the general level. A deterministic 

pattern either matches given string or not. While for 

probabilistic patterns, probabilistic models are generated to 

assign some probabilistic value to each sequence. The 

higher relevance between the probabilities ensures the better 

is match between sequence and pattern. The problem with 

the deterministic approach is that it cannot capture the 

invisible information in a pattern. The types of patterns we 

have discussed so far are explicit in nature that it shows the 

user the important characteristics of the occurrences of a 

pattern. The BLAST tool that is popular for its simplest 

nearest neighbour approach [10]. It exploits pair wise local 

alignments to measure sequence similarity. The BLAST 

technique compares the queried unknown protein with the 

labelled and classified sequences in the database and 

produces normalized alignment scores for each and every 

comparison by calculating the expected value i.e. E-value. 

The best pair wise alignment scores produced which is the 

minimum E-value gives the bases of classification. Support 

vector machines (SVMs) [11] have been also applied to 

protein homology detection problems. Such an approach, 

which has been introduced in [12], feeds probabilistic score 

values from all motifs available (nearly 10000) in the 

BLOCKS database [12] into an SVM classifier. Obviously, 

this scheme uses only local features but the dimensionality 

of the input space is extremely high. Another method that 

combines the HMM with SVMs has been proposed in [13] 

for finding remote protein homologies. In particular, an 

HMM is first trained to model a protein family, and then the 

observed probabilities (in the log space) of each sequence 

with respect to each parameter of the HMM are calculated. 

The obtained gradient-log-probability vectors are applied to 

an SVM to identify the decision boundary between the 

family and the rest of the protein universe. The Techniques 

Neural Network based Classifier is better for non linear and 

non noisy data only. Rough Set based Classifier needs extra 

space and time and it also do not produce analytical output 

[14].Sometimes, representation of the patterns as some 

discriminating rule is more advantageous. Especially, 

discrimination rule, which decides whether a given sequence 

is an occurrence of the modelled pattern or not. Such a 

discrimination rule can be based on some stochastic model, 

such as hidden Markov model (HMM).Statistical methods 

are well suited for classification of problems and one of 

those is the Hidden Markov Model (HMM). This is because 

of its richness in mathematical structure. The basic theory 

was published in a series of classic papers by Baum and his 

colleagues [1]-[2] in the late 1960s and early 1970s and was 

implemented for speech processing applications by Baker at 

CMU, and by Jelinek and his colleagues at IBM in the 

1970s.[9] The structure of Hidden Markov Model is well 

suited for the analysis of biological sequences.  

 

In our approach, we have simulated Hidden Markov Model 

for training and Baum Welch for optimizing the parameters. 

Paper ID: IJSER15739 21 of 29



International Journal of Scientific Engineering and Research (IJSER) 
www.ijser.in 

ISSN (Online): 2347-3878, Impact Factor (2015): 3.791 

Volume 4 Issue 4, April 2016 
Licensed Under Creative Commons Attribution CC BY 

We have used two datasets of gene 16S rRNA. The datasets 

are of two different families of bacteria bacillus and 

clostridia. We would train HMM separately by both the 

datasets. After generating and training the model we can 

group them into clusters and compare a unified sequence 

with these models on the basis of likelihood probability to 

determine the one which has the closest match to sequence. 

The primary advantage of HMMs over other sequence 

matching algorithms like distance based sequence matching 

algorithms is that it can automatically estimate, or be trained 

for, a cluster of unaligned sequences. With the proposed 

approached, we have achieved approximately 89% and 

90.73% accuracy of classification in case of bacillus and 

clostridia respectively. The paper is organized as follows: 

Section II describes the HMM model used for the 

classification of the biological sequences. In Section III, we 

have presented the experimental results. Section IV is the 

conclusion. 

 

2. HMM and Sequence Classification 
 

A Hidden Markov Model is a generalization of a Markov 

chain, in which each (―internal‖) state is not directly 

observable (hence the term hidden) but produces (―emits‖) 

an observable random output (―external‖) state, also called 

―emission‖, according to a given stationary probability law. 

In this case, the time evolution of the internal states can be 

induced only through the sequence of the observed output 

states. If the number of internal states is N , the transition 

probability law is described by a matrix with N  times N  

values; if the number of emissions is M , the emission 

probability law is described by a matrix with N  times M  

values. A model is considered defined once given these two 

matrices and the initial distribution of the internal states. We 

now formally define the elements of an HMM, and explain 

how the model generates observation sequences. 

 

An HMM is characterized by the following: 

 

1) N , the number of states in the model. Although the states 

are hidden, for many practical applications there is often 

some physical significance attached to the states or sets of 

states of the model. Generally the states are interconnected 

in such a way that any state can be reached from any other 

state (e.g., an ergodic model). We denote the individual 

states as },...,2,1{= NSSSS , and the state at time t  as tq . 

 

2) M , the number of distinct observation symbols per state, 

i.e., the discrete alphabet size. The observation symbols 

correspond to the physical output of the system being 

modelled. We denote the individual symbols 

as },....,,{= 21 MvvvV . 

 

3) The state transition probability distribution 
}{= ijaA

 

 

Where,  

 
]=|=[= 1+ ijtij SqSqPa

, Nji ≤,≤1               (1) 

 

For the special case where any state can reach any other 

state in a single step, we have 
0>ija

 for all
ji,
. For other 

types of HMMs, we would have 
0=ija

for one or more 

),( ji
 pairs. 

 

 4) The observation symbol probability distribution in 

state
j

, 
)}({= KbB j  where,  

 
]=|[=)( jtkj SqtatvPKb

 Ni ≤≤1              (2) 

  

 5) The initial state distribution }{= iππ where,  

  

]=1[= iSqPiπ , Ni ≤≤1                           (3) 

 

Given appropriate values of BAMN ,,,  and π , the HMM 

can be used as a generator to give an observation sequence 

 

TOOOO ...= 21 .                (4) 

 

 (Where each observation O  is one of the symbols fromV , 

and T  is the number of observations in the sequence) as 

follows: 

 

1) Choose an initial state Sq =1 , according to the initial 

state distribution π. 

2) Set 1=t . 

3) Choose kt vO = according to the symbol probability 

distribution in state iS i.e. )(kib . 

4) Transit to a new state jStq =1+ according to the state 

transition probability distribution for state jS
, i.e. ija

. 

5) Set 1+= tt ; return to step 3) if Tt < ; otherwise terminate 

the procedure. 

 

The above procedure can be used as both a generator of 

observations, and as a model for how a given observation 

sequence was generated by an appropriate HMM. 

 

It can be seen from the above discussion that a complete 

specification of an HMM requires specification of two 

model parameters ( N and M ), specification of observation 

symbols, and the specification of the three probability 

measures BA,  and π . For convenience, we use the compact 

notation ),,(= πBAλ  to indicate the complete parameter set of 

the model.  

 

There are two approaches to the learning task based on the 

form of the database available for learning process, 

supervised and unsupervised training. If the training 

examples contain both the inputs and outputs of a process, 

we can perform supervised learning. It is done by equating 

inputs to observations, and outputs to states, but we have 

only the inputs datasets (gene 16S RNA) in the training data 

then we must use unsupervised training. Unsupervised 

training guesses a model that may have produced those 

observation sequences. 

 

2.1 Forward Algorithm 
 

The Forward Algorithm is used for the Training Phase of the 

HMM process. Each state’s values are dependent only on 

the pervious state. The aim of this problem is to find the 
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probability )|( λOP  of the observation sequences, 

},...,2,1{= TOOOO , given the model
),,(= πBAλ

. Consider a 

forward variable )(iαt , defined as: 

 

 
)|=,,...2,1(=)( λitqtoooPitα                         (5) 

 

Where t  represents time and i  is the state. This gives that 

)(itα  will be the probability of the partial observation 

sequence tooo ,...2,1  (until time t ) when being in state i  at 

time t . The forward variable for all N  states at time t  

multiplied with their corresponding state transition 

probability, 
ija

, and by the emission probability
)1+( tojb

. 

 

 
Figure 1: Flow chart for learning of model 

 

 
 

Figure 2: Illustration of sequence of operation required for 

the computation of the forward variable )(1+ jtα  where jS  

indicates state j  [3] 

 

The initialization step 1) arbitrarily defines )(iTβ to be 1 for 

all i . Step 2), which is illustrated in Fig.3, shows that in 

order to have been in state iS at time t , and to account for 

the observation sequence from time 1+t  on, you have to 

consider all possible states jS
 at time 1+t  accounting for 

the transition from iS
 to jS

, (the ija  term), as well as the 

observation ot+1 in state j (the )1+( totb term), and then 

account for the remaining partial observation sequence from 

state. 

 

The computation of )(itβ , Tt ≤≤1 , Ni ≤≤1  requires on the 

order of TN2  calculations, and can be computed in a lattice 

structure. 

 

 
Figure3: Illustration of the sequence of operations required 

for the computation of the backward variable )(itβ  [8]. 

 

2.2 Baum-Welch Algorithm 
 

In this section we discuss one iterative procedure, based 

primarily on the classic work of Baum and his colleagues, 

for choosing model parameters. In order to describe the 

procedure for reestimation (iterative update and 

improvement) of HMM parameters, we first define ),( jiξt , 

the probability of being in state iS
at time t , and state jS

at 

time 1+t , given the model and the observation sequence, 

i.e. 

 

),|=1+,=(=),( λOjStqiStqPjitξ                (6)  

 

The above equation can be shown as sequence of events in 

the figure 4.6.We can write 
),( jitξ using forward and 

backward variables as follows: 

  

 ),( jiξt
)|(

)(1+)1+t(Ojb ij(i)a 
=

λOP

jtβtα
                 (7) 

 

  

∑ ∑
1= 1=

)(1+)1+t(Ojb ij(i)a 

)(1+)1+t(Ojb ij(i)a 
=

N

i

N

j

jtβtα

jtβtα

                (8) 

  

Here, numerator term is 
)|,=1+,=( λOjStqiStqP
and division 

by 
)|( λOP

 gives the desired probability measure. 

 

Further we have to define
)(iγt , which is defined as the 

probability of being in state iS
at time t , given the 

observation sequence O , and the model λ . 

 

 
),||=(=)( λOiStqPitγ
                                                          (9) 
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Equation (1) can be expressed in terms of forward-backward 

variables as follows: 

 

 

∑
1=

)((i) 

)((i) 
=

)|(

)((i) 
=)(

N

i

jtβtα

jtβtα

λOP

jtβtα
itγ

                      (10) 

 

Since )(itα accounts for the partial observation sequence 

tooo ,...2,1  and state iS at t , while )(itβ  accounts for the 

remainder of the observation sequence Tototo ,...2+,1+  given 

state iS  at t . The normalization factor ∑
1=

)((i) =)|(

N

i

jtβtαAOP  

makes )(itγ  a probability measure so that  

 

 

∑ 1=)(
1=

N

i
t iγ

                                  (11) 

 

 
Figure 5: Illustration of the sequence of operations required 

for the computation of the joint event that the system is in 

state iS  at time t  and state jS  at time 1+t  [4] 

  

We can relate )(itγ  to ),( jitξ , by summing over j , giving  

  

 

∑

1=
),(=)(

N

j
jitξitγ

                               (12)  

 

If we sum )(itγ over the time index t , we get a quantity 

which an be interpreted as the expected (over time) number 

of times that state iS is visited, or equivalently, the expected 

number of transitions made from state iS  (if we exclude the 

time slot Tt =  from the summation). Similarly, summation 

of ),( jitξ , over t  (from 1=t  to t = T-1) can be interpreted as 

the expected number of transitions from state iS to state 

jS . [4] That is 

 

 ∑
1-

1=
iS fromn  transitioofnumber  expected=)(

T

i

itγ       (13)  

 

 jS  toiS from ns transitioofnumber  expected=

1-

1=

),(∑
T

t

jitξ   (14) 

 

We can use above two formulas to give a method for 

reestimation of parameters of an HMM. The reestimation 

formulas can be given as follows: 

 

(i)1 =  1)=(t at time iS statein  frequency  expected= γiπ   (15)  

 

 
iS  state  fromon    transitiofnumber   expected

jS  state   toiS  state  fromon    transitiofnumber     expected
=ija   (16)  

 

)(∑
1-

1=

∑
1-

1=
),(

=

itγ
T

t

T

t
jitξ

                              (17)  

 

 

j statein     timesofnumber    expected

k vsymbol  observing and j statein     timesofnumber   expected
=)(kjb

  (18) 

 

∑

∑

1=

)(

=...
1=

)(

=
T

t

jtγ

T

kvtOts
t

jtγ

                                (19) 

 

Let’s define the current model a as ),,(  BA  and we 

define the reestimated model as  ),,(= πΒΑλ  then it has 

been proven by Baum and his colleagues [5], [6] that either  

 

1) The initial model λ defines a critical point of the 

likelihood function, in which case  

 

 λλ = ;                                                (20) 

 Or 

 

2) Model λ  is more likely than model λ  in the sense that 

)|( λOP  > )|( λOP  i.e., we have found a new model λ  

from which the observation sequence is more likely to 

have been produced. 

 

As per the above procedure, if we iteratively use λ  in place 

λ of and repeat the reestimation calculation, we then can 

improve the probability of O  being observed from the 

model until some limiting point is reached. The final result 

of this reestimation procedure is called a maximum 

likelihood estimate of the HMM. It should be pointed out 

that the forward—backward algorithm leads to local 

maxima only, and that in most problems of interest, the 

optimization surface is very complex and has many local 

maxima. 

 

The reestimation formulas can be derived directly by 

maximizing (using standard constrained optimization 

techniques) Baum’s auxiliary function 
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∑ )]|,(log[),|( =),Q(

Q

λQOPλOQPλλ                  (21)  

Over λ . It has been proven by Baum and his colleagues [9] 

[10] that maximization of ),Q( λλ  leads to increased 

likelihood, i.e. 

).|(≥)|(⇒)],([max λOPλOPλλQ
λ

                     (22)  

 

Eventually the likelihood function converges to a critical 

point. An important aspect of the reestimation procedure is 

the stochastic constraints of the HMM parameters, namely 

 

                    N ≤ i ≤ 1∑ 1=
1=

N

i

π       (23) 

  

   N ≤ i ≤ 1

1=

1=∑
N

j
ija ,                           (24) 

 

 N ≤ i ≤ 1

1=

1=)(∑
M

k

kjb ,                         (25) 

 

are automatically satisfied at each iteration. 

 

Parameter reuse in Baum Welch algorithm: 

 

HMM model is often learned from training data using the 

Baum-Welch algorithm. It’s an iterative process for 

estimation HMM parameters and guaranteed to be 

converged, but have some drawback such as local maxima 

and convergence requires more number of iterations. 

 

As mentioned in first issue the local maxima of Baum 

Welch can almost be solved by carefully starting the initial 

parameter selection and issue of number of iterations can be 

reduced in the following manner: Usually the O(t) length of 

observation sequences is in our work bacillus and clostridia 

have large number of strings. The Baum-Welch algorithm is 

trained incrementally on all observation sequences 

considering one by one observation sequence, at each value 

of t it consider input (Ot) and computes probability of this 

observation sequence. Here we consider a common 

parameter S0 (x0) on all observation sequence O= (2, 3, 4… 

T-1), which stores the maximum probability for this 

observation symbol calculation for next observation 

sequence (Ot+1). So the ratio of observation probability for 

next iteration is as follows: 

 

 
)(

)(
=

)(

)(

jj

jj

o

j

xb

ob

ob

ob

, 
N ≤ j≤ 1

                  (26) 

 

The left hand side of equation is likelihood function of 

observation probability scaled by factor bo(x). The right 

hand side of equation gives the testing criteria for the 

sufficiency of xj for state Sj vs. state S0. The dimensions at 

each state j are sufficient to discriminate it from the 

common state S0. For time t=2, 3, …, T, all the parameter 

estimation procedure is same except for the state likelihood 

function bj (x). 

 

The reestimation procedure of the HMM parameters using 

parameter reuse is provided here. 

 

HMM reestimation formulas: 

 

1. Re-estimation method of γ id same as estimated by 

conventional BW. 

2. Re-estimation of ξ  

  

 

∑ ∑ )(
]1+)[(

]1+)[(
)(

)(
]1+)[(

]1+)[(
)(

=),(

1= 1= 1+

1+

N
i

N
m t

oo

mm
imt

t
oo

jj

ijt

t

mβ
txb

tob
aiα

jβ
txb

tob
aiα

jiξ

   (27) 

 

We describe the reuse of parameters for training of HMM 

that uses maximum probability of observation sequence in 

the forward and backward procedures. The HMM trained 

with this way can reduce the number of iteration for 

convergence. 

 

Scaling of parameter to avoid floating point underflow: 

 

From the definition of αt(i), we can see that αt(i) consists of 

the sum of a large number of terms, each of the form  

 

 

∏ ∏ )(
1-

1= 1=
1+

t

s

t

s
ssqsqsq Oba

                                             (28) 

 

Since each a and b term is less than 1, it can be seen that as t 

start to get big, each term of αt(i) starts to head 

exponentially to zero. For sufficiently large t (e.g. 100 or 

more) the dynamic range of the αt(i) computation will 

exceed the precision range of essentially any machine (even 

in double precision). Hence the only reasonable way of 

performing the computation is by incorporating a scaling 

procedure. Hence, we need to scale parameters to avoid 

floating point underflow. 

 

We solve this problem differently for each algorithm e.g. 

forward, backward and Baum-Welch. 

 

Scaling of forward and backward variables: 

 

The basic scaling procedure which is used is to multiply 

αt(i) by a scaling coefficient that is independent of i (i.e., it 

depends only on t), with the goal of keeping the scaled αt(i) 

within the dynamic range of the computer for 1 ≤ j ≤ N. 

 

A similar scaling is done to the )( jtβ  coefficients (since 

these also tend to zero exponentially fast) and then, at the 

end of the computation, the scaling coefficients are canceled 

out exactly.  

 

The main difference between the scaled and non-scaled 

forward algorithm lies in steps two and four. By induction, 

the forward variable can be found in terms of the none 

scaled as: 

 

)(1-
1-
1=

=)(1-ˆ ∏ jtα
t
r Tcjtα , 1 ≤ j ≤ N               (29) 
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The ordinary induction step can be found as: 

 

 
∑

1=

)(1-)(=)(

N

j
jiajtαtoibitα , 1 ≤ j ≤ N                   (30) 

 

Now we can write equation: 

  

 
∑ ∑

∑

1=
1=

)(1-ˆ)(

1=

)(1-ˆ)(

=)(ˆ

N
k

N

j
jkajtαtoib

N

j
jiajtαtoib

itα

                      

(31) 

∑ ∑ ∏

∑ ∏

1=
1=

)(1-
1-
1=

)(

1=

)(1-
1-
1=

)(

=

N
k

N

j
jiajtα

t
r rctoib

N

j
jiajtα

t
r rctoib

                 (32)  

 

∑ ∑∏

∑∏

1=
1=

)(1-)(
1-
1=

1=

)(1-)(
1-
1=

=

N
k

N

j
jiajtαtoib

t
r rc

N

j
jiajtαtoib

t
r rc

                   (33)  

 
∑ )(

)(
=

1=
N
k t

t

iα

iα

, 1 ≤ j ≤ N                              (34) 

  

As (4.41) shows, each αt (i) is scaled by the sum over all 

states of αt (i) when the scaled forward algorithm is applied. 

 

The termination (step 4) of the scaled forward algorithm, 

evaluation of P(O|λ), must be done in different way, because 

the sum of )(ˆ iT  cannot be used, it is scaled already. 

However the following properties can be used: 

 

 1=
1= 1=

)(∏ ∑T
r

N
k

iTαrc
                                                         (35)

 

 
∏ 1=)|(1=

T
r r λOPc

                                                         (36) 

 
∏

1
=)|(

1=
T
r rc

λOP

                            (37)  

 

The scaled backward algorithm can be found more easily, 

since it will use the same scale factor as the forward 

algorithm. The notations used are similar to the forward 

variable notations, )(itβ  denote the non-scaled backward 

variable, )(ˆ itβ  denote the scaled and iterated variant of )(itβ . 

  

Scaling of training Variables during Baum-Welch algorithm  

 

With scaled variables we will find ),( jitξ  as: 

 

∑ ∑
1= 1=

)(1+
ˆ)1+()(ˆ

)(1+
ˆ)1+()(ˆ

=),(
N
i

N
m

jtβtojbijaitα

jtβtojbijaitα
jitξ                (38) 

∑
1=
∑

1= )(1+∏
1+=)1+()(∏

1=

)(1+∏
1+=)1+()(∏

1=
=

N
i

N
j jtβ

T
tr rctojbijaitα

t
r rc

jtβ
T

tr rctojbijaitα
t
r rc

 (39) 

∑ ∑ ∏∏

∏∏

1= 1=
)(1+)1+()(

1+=1=

)(1+)1+()(
1+=1=

=
N
i

N
j

jtβtojbijaitα
T

tr rc
t
r rc

jtβtojbijaitα
T

tr rc
t
r rc

  (40) 

∑ ∑ )()()(

)()()(
=

1= 1= 1+1+

1+1+

N
i

N
j ttjijt

ttjijt

jβobaiα

jβobaiα

            (41) 

)(iγt  is same if scaled or not scaled such as: 

 

∑ )(ˆ)(ˆ

)(ˆ)(ˆ
=)(

1=

N

i
tt

tt
t

jβiα

jβiα
iγ

                         (42)  

 

∑ ∏∏

∏∏

1=

)(ˆ
1+=

)(ˆ
1=

)(ˆ
1+=

)(ˆ
1=

=
N

i

jtβ
t

rr rcitα
t
r rc

jtβ
t

rr rcitα
t
r rc

                (43) 

  

∑
1=

)()(

)()(
=

N

i

jtβitα

jtβitα                                   (44)  

  

As the above equations shows, )(itγ  and ),( jitξ  are the 

same if scaled or not scaled. 

 

Since π, A and B uses )(itγ  and ),( jitξ  for calculation, will 

these probabilities also be independent of which forward 

and backward variables are used (scaled and none scaled). 

 

All these algorithms mentioned in above section solve the 

problem of clustering biological sequences into different 

groups according to their functionality or sequence 

structure. The simulation of HMM based on these algorithm 

and implementation issues are presented in the following 

section of report.  

 

3. Experimental Setup and Results 
 

In our approach, the algorithm we have followed for the 

generation of model for the given sequences can be shown 

in flowchart given below.  

 

Fig. 1 shows that the first step in this process is initialization 

of starting parameters for HMM (calculating the initial state 

probabilities, the transition probabilities, and the emission 

probabilities). Once these values have been initialized, we 

use the Forward, the Backward and the Baum-Welch 

Algorithms. The next step is learning of model. This part 

requires the Baum-Welch Algorithm where iterative 

approach is applied on the given observation sequence to 

maximize likelihood for given observation sequence until 

the model converges and a feasible model is obtained. 
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We repeat this process until a satisfactory model is 

generated. Once a feasible model is generated, then we 

proceed to Evaluation phase of HMM. Evaluation phase of 

HMM uses the Forward and the backward algorithm to test 

and validate the learned model. 

 

We have applied the proposed approach and used a 

simulated model of the same. We have experimented with 

the two types of data sets of 16S rRNA sequences of highly 

conserved bacteria’s bacillus and clostridia.  

 

Here our aim is to estimate the parameters of HMM for the 

models generated for bacillus and clostridia and to classify 

them in their affinity groups. The experiments and their 

results are presented as follows. 

 

Experiment 1: 

 

We have used 16S bacillus data set for the simulation of 

HMM. The fig. 3.1 shows the snapshot text file of dataset of 

bacillus sequences. For each species, first line contains its 

name and next line includes DNA sequence of that species. 

For example, first line of the figure contains name of 

bacillus 

 

―>Alicyclobacillus_sp._FR-6;_AJ133635‖.Here._FR-6; 

_AJ133635 is name of species and Alicyclobacillus is the 

type of bacteria. Next line 

―ctggcggcgtgcctaatacatgcaagtcgagcggtttt…‖is a DNA 

sequence of that bacterium. In the same way, this file 

contains name of 3821 different species and DNA sequence 

of each species 1000  

 

DNA sequences had been used for the training and 2844 

sequences had been used for testing purpose in this model. 

For this model we were able to achieve 89% of correctness. 

Figure illustrate the tradeoff of probability of observation of 

given sequences P(O|λ) versus number of iteration for 

training of HMM. P(O|λ) is given in logarithmic scale. It can 

be seen from the Fig. that in the very first iteration the 

probability of outputting the sequence is in the range of ―E-

118‖ but after second iteration onwards, it improved up to 

the ―E-12‖. Here, it may require on an average five 

iterations to converge. 

 

We have trained the model for bacillus in previous section 

using BW algorithm with some randomly chosen initial 

parameters (A and π) and B according to the method we 

have described for HMM model, which are as follows 

 


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Estimated parameters are as follows 
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Figure 6: Datasets of bacillus for training 
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Figure 7: Estimated (P|λ) and number of iterations require 

converging for Bacillus dataset while training HMM 
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Experiment 2: In Fig: 3.3 second data set used for our 

simulation. We have considered here gene 16S rRNA 

Clostridia dataset. 

 

Figure illustrate the tradeoff of probability of observation of 

given sequences P(O|λ) versus number of iteration for 

training of HMM. P(O|λ) is given in logarithmic scale. 

Figure shows that in the very first iteration, the probability 

of outputting the sequence is in the range of ―E-124‖ but 

after second iteration onwards, it improved up to the ―E-

2‖.Here, we have experimented with the data set of 

clostridia. We have used the same initial parameters as used 

for bacillus dataset while training and estimating with HMM 

and Baum Welch algorithms. 
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Estimated parameters are as follows  
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Figure 8: Datasets of Clostridia for training 

 

 
Figure 9: Estimated (P|λ) and Number of Iterations require 

converging for Clostridia   data set 

 

4. Conclusion 
 

We have used the HMM in combination with the Baum 

Welch model successfully to classify the two highly 

conserved bacteria’s i.e. bacillus and clostridia with the 

correctness of 89% and 90% respectively. We have 

estimated the parameters of HMM model generated for the 

classification of the biological sequences so that the 

classification process can converge in minimum time i.e. in 

minimum number of iterations. We can look forward the for 

the improvement in training phase, initial parameter setting 

and handling floating point underflow in a better way so that 

use of HMM can be made more suitable for the 

classification of biological sequences. Parallel execution can 

be done on multi-processor machine to improve 

performance of forward, backward and parameter estimation 

process. We can work on optimizing expected number of 

hidden states to generate HMM model. 

 

 

 

 

Acknowledgment 
 

We would like to thanks Prof. M. P. Kurhekar for his 

guidance and kind support for completing this paper. 

Special Thanks to Prof. Pranay Meshram, Namrata Agrawal, 

Durgesh Sharma and Bhooshan Humane. Thanks to Our 

families for inspiring us for writing this paper. 

 

References 
 

[1] Palmondon R, Srihari S N. On-line and off-line 

handwriting recognition: A comprehensive survey 

[J].IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 2000, 22(1):63-84. 

[2] Rath T M, Kane S, Lehman A. Indexing for a digital 

library of George Washington’s manuscripts: A study 

of word matching techniques[R]. Massachusetts: Center 

for Intelligent Information Retrieval, Computer Science 

Department, University of Massachusetts, 2004 

[3] Itay Bar Yosef, Klara Kedem, et al. Classification of 

Hebrew calligraphic handwriting style[A]. In: 

Proceedings of the 1st International Workshop on 

Document Image Analysis for Libraries, Palo Alto, 

California, 2006.299-305 

[4] Shi Baile, Zhang Liang, Wang Yong, et al. Content-

based Chinese script retrieval through visual similarity 

criteria[J]. Journal of Software, 2001, 12(9):1336-

1342(in Chinese) 

[5] Zhang Xiafen, Zhuang Yueting, et al.Chinese 

calligraphic chracter retrieval based on shape 

similarity[J]. Journal of Computer-Aid Design & 

Computer Graphics, 2005, 17(11):2565-2569) 

[6] Wu Youshou, Ding Xiaoqing. Chinese Chracter 

Recognition: Theory, Approach and 

Implementation[M].Beijing: High Education Press, 

1992(in Chinese) 

[7] Zhang KuangZhong. Chinese Character Recognition 

Technology[M].Beijing: Tsinghua University Press, 

1992(in Chinese) 

[8] John Canny. A computational approach to edge 

detection[J]. In: IEEE transactions Pattern Analysis and 

Machine Intelligence, 1986, 11(2), 678-698. 

[9] Blum H. A transformation for extracting new 

description of shape [A]. In Wathen-Dunn W ed. Model 

for the Perception of Speech and Visual[C].Cambiride, 

Massachusetts: MIT Press, 1967.362-380 

[10] Zhao chunjinag, Shi wenkang. A robust algorithm for 

distilling the skeletons of images [J]. Computaer 

Appliacation, 2005, 6(1), 1305-1306(in Chinese) 

[11] Wan Hualin, Morshed U, Hu Hong, etal. Texture 

feature and its application in CBIR [J]. Journal of 

Computer-Aid Design & Computer Graphics, 2003, 

15(2):195-199(in Chinese) products of Bessel functions, 

‖ Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–

551, April 1955. 

[12] Haili Chui, Anad, Rangrarajan. A new point matching 

algorithm for non-rigid registration [J]. Computer 

Vision and Image Understanding archive, 2003, 

89(2):114-14 

[13] L u Y, Zhang H J, Yin L W, et al. Joint semantic and 

feature based image retrieval using relevance feedback 

[J ]. IEEE Transaction on Multimedia, 2003, 5 (3): 

3392347. 

Paper ID: IJSER15739 28 of 29



International Journal of Scientific Engineering and Research (IJSER) 
www.ijser.in 

ISSN (Online): 2347-3878, Impact Factor (2015): 3.791 

Volume 4 Issue 4, April 2016 
Licensed Under Creative Commons Attribution CC BY 

[14] Inoue T, A be S. Fuzzy support vector machines for 

pattern classification[C]. In: Proceedings of 

International Joint Conference on N eural Networks ( 

IJCNN ’01), July 2001, 2: 1449-1454. 

[15] A be S, Inoue T. Fuzzy support vector machines for 

multiclass problems [C ]. In: Proceedings of the Tenth 

European Symposium on Artificial Neural Networks 

(ESANN " 2002), Bruges, Belgium, April 2002, 113-

118. 

[16] Wang Shang fei, Xue J ia, W ang Xifa. Contented-

based emotion image retrievalmodel[J]. Computer 

Science, 2004, 31 (9): 186-190. 

[17] Hsia T C. A note on invariantmoments in image 

processing [J].IEEE Trans. On SMC, 1981, 11 (12): 

831-834. 

[18] Vapnik V N. Statistical learning theory [M ]. John W 

iley &Sons, NewYork, N Y, 1998. 

[19] Abe S. Analysis of multiclass support vector 

machines[C]. In: Proceedings of International 

Conference on Computational Intelligence fo 

rModelling Control and Automation (C IMCA ’2003), 

Vienna, Austria, February 2003, 385-396. 

[20] Xu Yang.Chinese Calligraphy Production Method 

Based on HMM Genetics Analogy [J].Journal of 

Wuhan University, 2008, 54(1):85-89. 

[21] Xu Song Hua, Lau Francis, Cheung William K, Pan 

Yun.He.Auto matic generation of artistic Chinese 

calligraphy.IEEE Intelligent Systems, 2005, 20(3):32-

39  

[22] Zhang Jun-song, Yu Jin-hui, Mao Guo-hong, Ye Xiu-

zhi. Generating Brush Texture for Cursive Style 

Calligraphy with Auto regressive and Stratified 

Sampling[J].Journal of Computer-Aided Design & 

Computer Graphics, 2007, 19(11): 1399-1403. 

[23] Dong Jun, Xu Miao, Pan Yun-he, Ye. Statistic Model-

Based Simulation on Calligraphy Creation [J].Chinese 

Journal of Computers, 2008, 31(7): 7720-7725 

 

Authors’ Profiles 
 

Shitalkumar R. Sukhdeve: Post Graduated in Computer 

Science & Engineering from the Visvesvaraya National 

Institute of Technology, Nagpur. 

 

Prof. Manish P. Kurhekar: Assistant Professor in the 

Visvesvaraya National Institute of Technology, Nagpur 

branch CSE 

Paper ID: IJSER15739 29 of 29




