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Abstract: This paper describes the design procedures and design of various controllers for stabilizing a Rotary Inverted Pendulum
System (RIPS). A PV (Position-Velocity) controller, LQR (Linear Quadratic Regulator) controller with different weighing matrices and
an observer-based controller are tried on RIPS in MATLAB Simulink. The outputs obtained with different weighing matrices are
observed and compared for different conclusions. The controllers with the best values obtained in the simulation are tested on a test-bed
of RIPS and are compared for various aspects. The controllers in Simulink are compared with the controllers in real time.
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1.Introduction

A typical unstable non-linear Inverted Pendulum system is
often used as a benchmark to study various control
techniques in control engineering. Analysis of controllers
on RIP illustrates the analysis in cases such as control of a
space booster rocket and a satellite, an automatic aircraft
landing system, aircraft stabilization in the turbulent air-
flow, stabilization of a cabin in a ship etc. RIP is a test bed
for the study of various controllers like PID controller,
LQR controller, Robust controllers, Fuzzy-Logic, Al
techniques, GA techniques and any more. A normal
pendulum is stable when hanging downwards, an inverted
pendulum is inherently unstable, and must be actively
balanced in order to remain upright, this can be done by
applying a torque at the pivot point, by moving the pivot
point horizontally as part of a feedback system.

In this paper controllers are developed that keep the
pendulum upright without any oscillations. The model is
simulated using the MATLAB application. The paper is
organized as follows. Section 2 deals with the modelling
of the system, Section 3 discusses the control techniques
PID, LQR, observer based controller, Section 4 gives the
test bed results, and Section 5 discusses the conclusion
drawn from the analysis of these controllers in Simulink
and on test bed.

2.Modelling of Rotary Inverted Pendulum

The Rotary Inverted Pendulum mainly consists of a rotary
arm, vertical pendulum, and a servo motor which drives
the system. An encoder is attached to the arm shaft in
order to measure the rotation angle of the arm and
pendulum.

The rotary pendulum model shown in in Fig. the rotary
arm in attached to the servo system and is actuated. The
arm has a length of L,, a moment of inertia J;, and its
angle, 0, increases positively when it rotates counter
clockwise (CCW). The servo should turn in the CCW
direction when the control voltage is positive, i.e. ,V,, >
0.

The pendulum link is connected to the rotary arm. It has a
total length of L, and its center of mass is%p. The moment

of inertia about its center of mass is J,. The inverted
pendulum angle, a, is zero when it is hanging downwards
and increases when rotated CCW.

>0 CCW e, n
o, Mg

Figure 2.1: Free-body diagram of RIPS

The equations of motion (EOM) for the pendulum system
were developed using the Euler-Lagrange method.More
specifically, the equations that describe the motion of the
rotary arm and the pendulum with respect to the servo
motor voltage will be obtained using Euler-Lagrange
equation

9’L  dL

ataq, og ¥

The Lagrangian of the system is described by
L=T-V
Where,

Tis the total kinetic energy of the system and V is the total
potential energy of the system

The generalized forcesQ; are used to describe the non-
conservative forces (e.g., friction) applied on the system
with respect to the generalized coordinates. In this case the
generalized force acting on the rotary arm is
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=1t-D,0 1 2, 2 . .
U r T= > (U + m,L,?)8% + §mpr2a2 —m, L, L cos(a)Ba
and acting on the pendulum is

Solving the above two equations for the Lagrangian and

Q, = -D,a the derivatives, the EOM of the system are

The total potential energy of the system is
L,
V= mg7cosi_f€‘xx)
and the total kinetic energy of the system is
, 1 , 1 _ G ! - .
(mp L.~ + 7™M Ly" — 7™M L,“cos*(a) + ]r) 0— (5 m, L, L, cos(oc)) a+ (E m, L, sin(a) cos(a)) 0a
1 .
+ (E m, L, L, sin(a)) &> =1t-D,0

1 " 1 1 , 1
EmerLp cos(a) 0 + (]p + Zmprz) a— Zmpr2 cos(a) sin(a) 62 + Emprg sin(a) = =D, &

The torque applied at the base of the rotary arm is described as

= T]gnmkgktkm (Vm - kme)
= R

When the nonlinear equations are linearized about the operating point(6, a) = (0,0), the resultant EMO of the inverted
pendulum are defined as:

5 .1 ) .
(m, L, +]r)9—zmprLra=t—Dr9
and
1 .. 1 5 . 1 .
EmerLpe + <]p +Zmpr )a +Emprga =—-Dya

Solving the above equations for the acceleration terms yields

.1 1 ) .1 N S 1 )
0 =—{— <]p +-m,L, )Dre +EmprLera+Zmp L, Lrga+(]p +-m,L, )T}

Jr 4 2
and
o1t . 1 o
a :]—T{EmprLrDrg - (]r + mer )Dpa —Emprg(]r + mpL, )0{ _EmprLrT}
Where

1
Jr :]pmerz +Jilp +Z]TmPLP2

The A and B matrices for state-space representation can then be found as

0 0 1 0
|[0 0 0 1 ]|
~Llo L) L 12) D L
A_]_T| 2t Ll —Upt7mly”) D omylyL.D, |
1 1
[0 —5mpLyg(r +myL,%) >MyLyLyDr ~(Jr +myL,2)D, |
0
0
1 1 5
B =]—T ]p +Zmpr
1
—EmprLr
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3.Design of Controllers for Rotary Inverted
Pendulum

3.1 PV (Position-velocity) Control

In this paper we will find control strategies that balance
the pendulum in the upright position while maintaining a
desired position of the arm. When balancing the system,
the pendulum angle ais small and balancing can be
accomplished with a simple PD controller, as shown in
Figure 3.1.1. The control law can then be expressed as

U=1kyg(0, —0) —kyoa —kyp0 —kgd

Where, k,, o is the arm angle proportional gain, k,, ., is the
pendulum angle proportional gain, k,, is the arm angle
derivative gain, k;, is the pendulum angle derivative
gain. The desired angle of the arm is denoted by 6, and
the reference for the pendulum position is zero (i.e.
upright position).

]
\/

Figure 3.1.1: Block Diagram of PV Controller

F

As mentioned, the integral term is eliminated taking the
constraints of noise and derivative control is used as a
velocity feedback and only negative velocity is fed-back
to the system. And in practical system we use a filter to
suppress the noise generated by the derivative control. By
trial and error method we obtain the gain values of the
controller as K4 = —2, K, = 2 for the control of the rotary
arm and Kq =2.5,K, =30 for the control of the
pendulum.

3.2 LQR Controller

Linear Quadratic Regulator (LQR) theory is a technique
that is ideally suited for finding the parameters of the
pendulum balance controller. Given that the equations of
motion of the system can be described in the form

x = Ax+ Bu
Where Aand Bare the state and input matrices,

respectively, the LQR algorithm computes a control law u
such that the performance criterion or cost function

I = [ Gt = x(9)" Qe = x(9) + (" Ru@a
0

is minimized. The design matrices Q and R hold the
penalties on the deviations of the state variables from their
set-point and the control actions, respectively. When an

element of Q is increased, therefore, the cost function
increases the penalty associated with any deviations from
the desired set-point of that state variable, and thus the
specific control gain will be larger. When the values of the
R matrix are increased, a larger penalty is applied to the
aggressiveness of the control action and the control gains
are uniformly decreased. In our case the state vector x is
defined

x=[0aba]”
Plant

Xr u

P(s)

\

Figure 3.2.1: Block diagram of an LQR Controller
Since there is only one control variable, R is a scalar. The

reference signal x..¢ is set to[6, 00 0], and the control
strategy used to minimize cost function ] is thus given by

u= K(Xref - X) = kp,e (er - e) - kp,oc(x - kd,eé - kd,c((x
This control law is a state-feedback control and is
illustrated in the above figure. It is equivalent to the PV

control designed.

The LQR gain matrix K is obtained by using MATLAB
software, using code “Iqr(A,B,Q,R)”.

3.3 Observer-Based control

open-loop plant

observer with perfect model

Figure 3.3.1: Block diagram of observer based control

In LQR, all the states are utilised which is an unnecessary
action. Hence, here in observer control, we use only the
states which are necessary for the control action. To
address the situation where not all the state variables are
measured, a state estimator must be designed. A schematic
of the state estimator is shown below.

The condition to be met is that the system states are
completely observable. The dynamics of the state estimate
is described by the following equation.

R =AR+Bu+L(y—79)
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The dynamics of the error in the state estimate is described 4.1 PV Controller

by

é =X — % = (Ax + Bu) — (A% + Bu + L(Cx — C%))

é=(A—LCe

Combining the LQR with the state estimate gives us the
full compensator and the state-space matrices are given by

[:] = [A _oBK A ]iKLc] o]+ [BON] r

y=Ic ol[g]+ o

4. Simulation & Results

The model parameters are shown in below table. Figure 4.1.2: Response of arm for a PV Controller

Table 1: Rotary Inverted pendulum Parameters ) v Tnee—"

Motor ) \ |

: .4 ﬂ , ‘.
Rn=84 Resistance /‘4- ﬁ‘l‘s 41/_ —
K, =0.042 Current-torque (N-m/A) 4 |
Ky, =0.042 Back-emf constant (V-s/rad) ! — l I I T R
Rotary Arm Figure 4.1.3: Response of Pendulum for a PV
M; = 0.095 Mass (kg) 4.2 LQR Controller
L, =0.085 Total length (m)
3= M*L2/2 M/c\;ment of inertia about pivot (kg-

m”2)

D, = 0.0015 Equivalent Viscous Damping

Coefficient (N-m-s/rad)

Pendulum Link

M, = 0.024 Mass (kg) Figure 4.2.1: Simulink Model of an LQR Controller

L,=0129 Total length (m) For R=1; Q=[20000;0500;0010;0001]:
Moment of inertia about pivot (kg-

Jp = Mg*L,7/12 mn2) pivot (kg K = [4.4721 1.3528 0.9364 0.4866]

D, = 0.0005 Equivalent Viscous Damping

Coefficient (N-m-s/rad)

g=9.81 Gravity Constant

After substituting RIP parameters in A and B matrices, we

can get N LR
Figure 4.2.2: Response of arm
0 0 1 0
A= 0 0 0 1 ' P '
0 149.2751 —14.9183 49.1493
0 —261.6091 14.7448 —86.1356 w‘,t_,,, “w 4"/
0 |
B _ 0 . & L - . L

49.7275 Figure 4.2.3: Response of pendulum
—49.1493

For R=15,Q=[20000;0500;0010;0001]:

K =[1.1547 0.2361 0.2010 0.1185]
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4.4 Comparison of PV and LQR controllers

R | ‘ Figure 4.4.1: Resp'c‘)'huse of Rotary arm

Figure 4.2.5: Resr?bﬁse of pendulum ’ |

For R=25,Q=[20000;0500;0010;0001]:

Figure 4.4.2: Response of Pendulum

5.Conclusions

From the simulation results, we can observe that the
system can be stabilized by many controllers. But the
necessity is for the controller with better response. Among
PV and LQR controllers, LQR controller gives much
better response. Using the Observer-based control, we can
minimize the error and neglect the unnecessary states
while controlling. Even though there wouldn’t be any
difference in the output, but coming to the application
oriented it simplifies and reduces the cost required to build
the application.

Figure 4.2.8: Response of arm
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Figure 4.3.1: Simulink Model of observer-based control
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