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Abstract: This paper describes the design procedures and design of various controllers for stabilizing a Rotary Inverted Pendulum 

System (RIPS). A PV (Position-Velocity) controller, LQR (Linear Quadratic Regulator) controller with different weighing matrices and 

an observer-based controller are tried on RIPS in MATLAB Simulink. The outputs obtained with different weighing matrices are 

observed and compared for different conclusions. The controllers with the best values obtained in the simulation are tested on a test-bed 

of RIPS and are compared for various aspects. The controllers in Simulink are compared with the controllers in real time. 
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1.Introduction 
 

A typical unstable non-linear Inverted Pendulum system is 

often used as a benchmark to study various control 

techniques in control engineering. Analysis of controllers 

on RIP illustrates the analysis in cases such as control of a 

space booster rocket and a satellite, an automatic aircraft 

landing system, aircraft stabilization in the turbulent air-

flow, stabilization of a cabin in a ship etc. RIP is a test bed 

for the study of various controllers like PID controller, 

LQR controller, Robust controllers, Fuzzy-Logic, AI 

techniques, GA techniques and any more. A normal 

pendulum is stable when hanging downwards, an inverted 

pendulum is inherently unstable, and must be actively 

balanced in order to remain upright, this can be done by 

applying a torque at the pivot point, by moving the pivot 

point horizontally as part of a feedback system. 

 

In this paper controllers are developed that keep the 

pendulum upright without any oscillations. The model is 

simulated using the MATLAB application. The paper is 

organized as follows. Section 2 deals with the modelling 

of the system, Section 3 discusses the control techniques 

PID, LQR, observer based controller, Section 4 gives the 

test bed results, and Section 5 discusses the conclusion 

drawn from the analysis of these controllers in Simulink 

and on test bed. 

 

2.Modelling of Rotary Inverted Pendulum 
 

The Rotary Inverted Pendulum mainly consists of a rotary 

arm, vertical pendulum, and a servo motor which drives 

the system. An encoder is attached to the arm shaft in 

order to measure the rotation angle of the arm and 

pendulum. 

 

The rotary pendulum model shown in in Fig. the rotary 

arm in attached to the servo system and is actuated. The 

arm has a length of Lr, a moment of inertia Jr, and its 

angle, θ, increases positively when it rotates counter 

clockwise (CCW). The servo should turn in the CCW 

direction when the control voltage is positive, i.e. , Vm >
0. 

The pendulum link is connected to the rotary arm. It has a 

total length of Lp and its center of mass is
Lp

2
. The moment 

of inertia about its center of mass is Jp. The inverted 

pendulum angle, α, is zero when it is hanging downwards 

and increases when rotated CCW. 

 

 
Figure 2.1: Free-body diagram of RIPS 

 

The equations of motion (EOM) for the pendulum system 

were developed using the Euler-Lagrange method.More 

specifically, the equations that describe the motion of the 

rotary arm and the pendulum with respect to the servo 

motor voltage will be obtained using Euler-Lagrange 

equation 

∂2L

∂t ∂q i
−

∂L

∂q i
= Qi 

 

The Lagrangian of the system is described by 

L = T − V 

Where, 

 

Tis the total kinetic energy of the system and V is the total 

potential energy of the system 

 

The generalized forcesQi are used to describe the non-

conservative forces (e.g., friction) applied on the system 

with respect to the generalized coordinates. In this case the 

generalized force acting on the rotary arm is 
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Q1 = τ − Drθ  
 

and acting on the pendulum is 

 

Q2 = −Dpα  

 

The total potential energy of the system is 

 

V = mg
Lp

2
cos(α) 

and the total kinetic energy of the system is 

 

T =
1

2
 Jr + mpLr

2 θ 2 +
2

3
mpLp

2α 2 − mpLpLrcos α θ α  

 

Solving the above two equations for the Lagrangian and 

the derivatives, the EOM of the system are 

 

 

 

 

 

 

 

 

 mpLr
2 +

1

4
mpLp

2 −
1

4
mpLp

2cos2 α + Jr θ −  
1

2
mpLpLr cos α  α +  

1

2
mpLp

2 sin α cos α  θ α 

+  
1

2
mpLpLr sin α  α 2 = τ − Drθ  

1

2
mpLrLp cos α θ +  Jp +

1

4
mpLp

2 α −
1

4
mpLp

2 cos α sin α θ 2 +
1

2
mpLpg sin α = −Dpα  

 

The torque applied at the base of the rotary arm is described as 

 

τ =
ηgηm kgktkm (Vm − kmθ) 

Rm
 

 

When the nonlinear equations are linearized about the operating point θ, α = (0,0), the resultant EMO of the inverted 

pendulum are defined as: 

 

 mpLr
2 + Jr θ −

1

2
mpLpLrα = τ − Drθ  

 

and 

 
1

2
𝑚𝑝𝐿𝑟𝐿𝑝𝜃 +  𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 𝛼 +
1

2
𝑚𝑝𝐿𝑝𝑔𝛼 = −𝐷𝑝𝛼  

 

Solving the above equations for the acceleration terms yields 

 

𝜃 =
1

𝐽𝑇
 − 𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 𝐷𝑟𝜃 +
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝐷𝑝𝛼 +

1

4
𝑚𝑝

2𝐿𝑝
2𝐿𝑟𝑔𝛼 +  𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 𝜏  

and  

𝛼 =
1

𝐽𝑇
 
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝐷𝑟𝜃 −  𝐽𝑟 + 𝑚𝑝𝐿𝑟

2 𝐷𝑝𝛼 −
1

2
𝑚𝑝𝐿𝑝𝑔 𝐽𝑟 + 𝑚𝑝𝐿𝑟

2 𝛼 −
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝜏  

Where 

𝐽𝑇 = 𝐽𝑝𝑚𝑝𝐿𝑟
2 + 𝐽𝑟𝐽𝑝 +

1

4
𝐽𝑟𝑚𝑝𝐿𝑝

2 

 

The A and B matrices for state-space representation can then be found as 

 

𝐴 =
1

𝐽𝑇

 
 
 
 
 
 
0 0 1 0
0 0 0 1

0
1

4
𝑚𝑝

2𝐿𝑝
2𝐿𝑟𝑔 − 𝐽𝑝 +

1

4
𝑚𝑝𝐿𝑝

2 𝐷𝑟

1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝐷𝑝

0 −
1

2
𝑚𝑝𝐿𝑝𝑔 𝐽𝑟 + 𝑚𝑝𝐿𝑟

2 
1

2
𝑚𝑝𝐿𝑝𝐿𝑟𝐷𝑟 − 𝐽𝑟 + 𝑚𝑝𝐿𝑟

2 𝐷𝑝 
 
 
 
 
 

 

𝐵 =
1

𝐽𝑇

 
 
 
 
 
 

0
0

𝐽𝑝 +
1

4
𝑚𝑝𝐿𝑝

2

−
1

2
𝑚𝑝𝐿𝑝𝐿𝑟  
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3.Design of Controllers for Rotary Inverted 

Pendulum 
 

3.1 PV (Position-velocity) Control 

  

In this paper we will find control strategies that balance 

the pendulum in the upright position while maintaining a 

desired position of the arm. When balancing the system, 

the pendulum angle 𝛼 is small and balancing can be 

accomplished with a simple PD controller, as shown in 

Figure 3.1.1. The control law can then be expressed as 

 

𝑢 = 𝑘𝑝 ,𝜃 𝜃𝑟 − 𝜃 − 𝑘𝑝 ,𝛼𝛼 − 𝑘𝑑 ,𝜃𝜃 − 𝑘𝑑 ,𝛼𝛼  

 

Where, 𝑘𝑝 ,𝜃  is the arm angle proportional gain, 𝑘𝑝 ,𝛼  is the 

pendulum angle proportional gain, 𝑘𝑑 ,𝜃  is the arm angle 

derivative gain, 𝑘𝑑 ,𝛼  is the pendulum angle derivative 

gain. The desired angle of the arm is denoted by 𝜃𝑟  and 

the reference for the pendulum position is zero (i.e. 

upright position). 

 

 
Figure 3.1.1: Block Diagram of PV Controller 

 

As mentioned, the integral term is eliminated taking the 

constraints of noise and derivative control is used as a 

velocity feedback and only negative velocity is fed-back 

to the system. And in practical system we use a filter to 

suppress the noise generated by the derivative control. By 

trial and error method we obtain the gain values of the 

controller as Kd = −2, Kp = 2 for the control of the rotary 

arm and Kd = 2.5, Kp = 30 for the control of the 

pendulum. 

 

3.2 LQR Controller 

 

Linear Quadratic Regulator (LQR) theory is a technique 

that is ideally suited for finding the parameters of the 

pendulum balance controller. Given that the equations of 

motion of the system can be described in the form 

 

x = Ax + Bu 

 

Where Aand Bare the state and input matrices, 

respectively, the LQR algorithm computes a control law u 

such that the performance criterion or cost function 

 

J =   xref − x t  
T

Q xref − x t  + u t TRu t dt

∞

0

 

 

is minimized. The design matrices Q and R hold the 

penalties on the deviations of the state variables from their 

set-point and the control actions, respectively. When an 

element of Q is increased, therefore, the cost function 

increases the penalty associated with any deviations from 

the desired set-point of that state variable, and thus the 

specific control gain will be larger. When the values of the 

R matrix are increased, a larger penalty is applied to the 

aggressiveness of the control action and the control gains 

are uniformly decreased. In our case the state vector x is 

defined 

 

x = [θ α θ α ]T  

 
Figure 3.2.1: Block diagram of an LQR Controller 

 

Since there is only one control variable, R is a scalar. The 

reference signal xref  is set to [θr  0 0 0], and the control 

strategy used to minimize cost function J is thus given by 

 

u = K xref − x = kp,θ θr − θ − kp,αα − kd,θθ − kd,αα  

 

This control law is a state-feedback control and is 

illustrated in the above figure. It is equivalent to the PV 

control designed. 

 

The LQR gain matrix K is obtained by using MATLAB 

software, using code “lqr(A,B,Q,R)”. 

 

3.3 Observer-Based control 

 

 
Figure 3.3.1: Block diagram of observer based control 

 

In LQR, all the states are utilised which is an unnecessary 

action. Hence, here in observer control, we use only the 

states which are necessary for the control action. To 

address the situation where not all the state variables are 

measured, a state estimator must be designed. A schematic 

of the state estimator is shown below. 

 

The condition to be met is that the system states are 

completely observable. The dynamics of the state estimate 

is described by the following equation. 

 

x  = Ax + Bu + L(y − y ) 
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The dynamics of the error in the state estimate is described 

by 

 

e = x − x  =  Ax + Bu − (Ax + Bu + L Cx − Cx  ) 

 

e =  A − LC e 

 

Combining the LQR with the state estimate gives us the 

full compensator and the state-space matrices are given by 

 

 
x 
e 
 =  

A − BK BK
0 A − LC

  
x
e
 +  BN 

0
 r 

 

y =  C 0  
x
e
 +  0 r 

 

4.Simulation & Results 
 

The model parameters are shown in below table. 

 

Table 1: Rotary Inverted pendulum Parameters 
Motor  

Rm = 8.4 Resistance 

Kt = 0.042 Current-torque (N-m/A) 

Km = 0.042 Back-emf constant (V-s/rad) 

Rotary Arm  

Mr = 0.095 Mass (kg) 

Lr = 0.085 Total length (m) 

Jr = Mr*Lr
2/12 

Moment of inertia about pivot (kg-

m^2) 

Dr = 0.0015 
Equivalent Viscous Damping 

Coefficient (N-m-s/rad) 

Pendulum Link  

Mp = 0.024 Mass (kg) 

Lp = 0.129 Total length (m) 

Jp = Mp*Lp
2/12 

Moment of inertia about pivot (kg-

m^2) 

Dp = 0.0005 
Equivalent Viscous Damping 

Coefficient (N-m-s/rad) 

g = 9.81 Gravity Constant 

 

After substituting RIP parameters in A and B matrices, we 

can get  

 

A =  

0 0 1 0
0 0 0 1
0 149.2751 −14.9183 49.1493
0 −261.6091 14.7448 −86.1356

  

  

B =  

0
0

49.7275
−49.1493

  

 

 

 

 

 

4.1 PV Controller 

 

 
Figure 4.1.1: Simulink Model of PV Controller 

 

 
Figure 4.1.2: Response of arm for a PV Controller 

 

 
Figure 4.1.3: Response of Pendulum for a PV 

 

4.2 LQR Controller 

 

 
Figure 4.2.1: Simulink Model of an LQR Controller 

 

For R=1; Q=[20 0 0 0; 0 5 0 0; 0 0 1 0; 0 0 0 1]: 

 

K = [4.4721 1.3528 0.9364 0.4866] 

 

 
Figure 4.2.2: Response of arm 

 

 
Figure 4.2.3: Response of pendulum 

 

For R=15, Q=[20 0 0 0; 0 5 0 0; 0 0 1 0; 0 0 0 1]: 

 

K = [1.1547 0.2361 0.2010 0.1185] 
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Figure 4.2.4: Response of arm 

 

 
Figure 4.2.5: Response of pendulum 

 

For R=25, Q=[20 0 0 0;0 5 0 0; 0 0 1 0; 0 0 0 1]: 

 

K = [0.8944 0.1586 0.1499 0.0889] 

 
Figure 4.2.8: Response of arm 

 

 
Figure 4.2.9: Response of pendulum 

 

4.3 Observer-Based control 

 

 
Figure 4.3.1: Simulink Model of observer-based control 

 

 
Figure 4.3.2: Response of Rotary arm 

 

 
Figure 4.3.3: Response of pendulum 

 

 

4.4 Comparison of PV and LQR controllers 

 

 
Figure 4.4.1: Response of Rotary arm 

 

 
Figure 4.4.2: Response of Pendulum 

 

5.Conclusions 
 

From the simulation results, we can observe that the 

system can be stabilized by many controllers. But the 

necessity is for the controller with better response. Among 

PV and LQR controllers, LQR controller gives much 

better response. Using the Observer-based control, we can 

minimize the error and neglect the unnecessary states 

while controlling. Even though there wouldn’t be any 

difference in the output, but coming to the application 

oriented it simplifies and reduces the cost required to build 

the application. 
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