Prime Difference Speed Sequence Graceful Graphs

S. Uma Maheswari¹, K. Indirani²

¹Department of Mathematics, CMS College of Science & Commerce, Coimbatore, India
²Head & Associate Professor, Dept. of Maths, Nirmala College for Women, Coimbatore, India

Abstract: The idea of prime difference speed sequence graphs are imposed on Fibonacci sequence. It is tested on various graphs like path, cycles, Kn, Knp, gear graph, D(Tn), fan graph, star graph, wheel graph etc. and the graceful labeling of those graphs are obtained. The strongly prime difference speed sequence graphs are also obtained.

Keywords: graceful labeling, difference speed sequence labeling, speed sequence graphs, prime difference speed sequence graphs, etc.

AMS Subject Classification: 05C78

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected graph G(V, E) with 'p' vertices and 'q' edges. A detailed survey of graph labeling can be found in the dynamic survey of labeling by J.A. Gallian. In this paper we introduce a new labeling called prime difference speed sequence labeling.

Definition 1.1
Let G = (V(G), E(G)) be a graph with p vertices. A bijection f : V(G) → {1, 2, ..., p} is called a prime labeling if for each edge e = uv, gcd(f(u), f(v)) = 1. A graph which admits a prime labeling is called a Prime graph.

Definition 1.2
In a graph G with q edges, if f is an injection from the vertices of G to the set {0, 1, 2, ..., q}, then we call the graph as a Fibonacci graceful graph.

Definition 1.3
A (p, q) graph G(V, E) is said to be a difference speed sequence graceful graph if there exists a bijection f : V(G) → {0, 1, 2, ..., q} such that the induced mapping f : E(G) → |Δ(x)|/i = 1, 2, 3, ..., n defined by f(uv) = |f(u) − f(v)| is a bijection. Here Δ(x) = (Δn, x) = (x1, x3, x5, ..., x2n−1) and (x) is the Fibonacci sequence. The function f is called a difference speed sequence graceful graph.

Definition 1.4
A (p, q) graph G(V, E) is said to be a prime difference speed sequence graceful graph if there exists a bijection f : V(G) → {Δ(x)/i = 1, 2, 3, ..., n} and for each edge e = uv, gcd(f(u), f(v)) = 1. Here Δ(x) = (Δn, x) = (x1, x3, x5, ..., x2n−1) and (x) is any sequence. A graph which admits Prime difference speed sequence labeling is called a Prime difference speed sequence graph.

Definition 1.5
Let u and v be two different vertices of graph G. A new graph Guv is constructed by identifying (fusing) two vertices u and v by a single new vertex x such that every edge which was incident with either u or v in G is now incident with x in Guv.

Definition 1.6
A Gear graph is a graph obtained from Wheel graph, with a vertex added between each pair of adjacent vertices of an outer cycle.

Definition 1.7
A triangular snake Tn is obtained from a path u1, u2, ..., un by joining ui and ui+1 to a new vertex vi for 1 ≤ i ≤ n − 1.

Definition 1.8
A Double triangular snake D(Tn) consists of two triangular snakes that have a common path.

2. Prime Difference Sequence Labeling of Some Graphs by Fibonacci Numbers

Theorem 2.1
The Path Pn is a Prime difference speed sequence graph.

Proof:
Let V(Pn) = {u1, u2, ..., un} where ui = (Δixk) where (xk) is a Fibonacci sequence.

When we label the vertices for the path using difference speed sequence, we see that the consecutive adjacent vertices having labels in such a manner that gcd(f(u), f(v)) = 1.

Here f(u1) = (x1 − x3), f(u2) = (x2 − x4), f(u3) = (x3 − x5), ..., f(un−1) = (xn−1 − x1+n), such that it satisfies the condition gcd(f(u), f(v)) = 1.

Therefore Pn is a Fibonacci Prime difference speed sequence graph.

Theorem 2.2
The cycle Cn is a Prime difference speed sequence graph.
Proof:
Let $V(C_n) = \{u_1, u_2, \ldots, u_n\}$

The same labeling pattern is followed as in the path for both the cases I when n is odd and II when n is even.

Let u_1, u_2, \ldots, u_n be the n vertices.

The vertices are labeled such that $f(u_1) = (x_1 - x_2), f(u_2) = (x_2 - x_3), f(u_3) = (x_3 - x_4), \ldots, f(u_n) = (x_1 - x_{i+2})$, such that it satisfies $\gcd(f(u), f(v)) = 1$.

Theorem 2.3
The complete graph K_n is not a Prime difference speed sequence graph for $n \geq 4$.

Proof:
Let $V(K_n) = \{u_1, u_2, \ldots, u_n\}$

$|E(G)| = \frac{n(n-1)}{2}$

When we assign labels the condition $\gcd(f(u), f(v)) = 1$ is satisfied for $n = 1$ to 4.

When $n \geq 4$, for at least any one of the edges does not satisfy the required result. Therefore K_n, $n \geq 4$ is not a prime difference speed sequence graph.

Example 2.5
The Prime difference speed sequence labeling of the graph obtained by identifying the apex vertex with a pendant vertex of $K_{1,9}$.

Since the self-loop is counted twice, the $\deg(u_0) = 8 + 2 = 10$.

Example 2.6
The Prime difference speed sequence graph labeling obtained by identifying the apex vertex with two pendant vertices with a pendant vertex of $K_{1,9}$.

Suppose we fix $f(v_i) = (x_{1 - x_{i+2}})$, for all $i = 0, 1, \ldots, n$.

Then the vertices v_0 and v_{n-1} are identified.

In all the pendant vertices $\deg(v_i) = 1$ for all $i = 2$ to $n-2$, $\deg(u_0) = 2$, $\deg(v_0) = 9$.

Case 1: The apex vertex v_0 is identified with any of the pendant vertices (say v_i).

Let the new vertex be u_0 and the resultant graph be G.

Then $\deg(v_i) = 1$, for $i = 2, 3, \ldots, n$ and $\deg(u_0) = n + 1$ as there is a loop incident at u_0.

Define $f: V(G) \rightarrow \{\Delta(x)/i = 1, 2, 3, \ldots n\}$ as $f(v_i) = i$ for $i = 2, 3, \ldots, n$ and $f(u_0) = 1$.

Clearly f is an injection and $\gcd(f(u), f(v)) = 1$ for every pair of adjacent vertices u and v of G.

Hence G is a Prime difference speed sequence graph.

Case 2: Any two of the pendant vertices (say v_{n-1} and v_n) are identified.

Let the new vertex be u_0, and the resultant graph be G.

So, in G, $\deg(v_i) = 1$, for $i = 1, 2, \ldots, n-2$, $\deg(u_{n-1}) = 2$ and $\deg(v_0) = n$.

Define $f: V(G) \rightarrow \{\Delta(x)/i = 1, 2, 3, \ldots n\}$ as $f(v_i) = i + 1$ for $i = 0, 1, 2, \ldots, n-2$ and $f(u_{n-1}) = n$.

Obviously f is an injection and $\gcd(f(u), f(v)) = 1$ for every pair of adjacent vertices u and v of G.

Hence G is a Prime difference speed sequence graph.
Theorem 2.7
The graph obtained by identifying two vertices with label 1 and \(p \) of prime difference speed sequence graph is also a prime difference speed sequence graph if \(p \) is a prime and \(G \) is a prime labeling of \(G \).

Proof:
Assume that \(f \) is a prime labeling of \(G \).
Assign \(a \) as the label for the vertex \(v_a \) for \(a = 1 \) to \(p \).
Then the new vertex of the graph \(G' \) will be \(u_1 \) which is obtained by identifying \(v_1 \) and \(v_p \) of \(G \).
We define \(f_1: \{ u_1, v_2, v_3, \ldots, v_{p-1} \} \to \{ 1, 2, \ldots, p-1 \} \) as
\[
 f_1(x) = \begin{cases}
 f(v_a) & \text{if } x = v_a, a = 2, \ldots, p-1 \\
 1 & \text{if } x = u_1
\end{cases}
\]
Then \(f_1(x) = \begin{cases}
 a & \text{if } x = v_a, a = 2, \ldots, p-1 \\
 1 & \text{if } x = u_1
\end{cases}
\]
Clearly \(f \) is an injection.

We claim that \(\gcd(f(u), f(v)) = 1 \) for any arbitrary edge \(e = uv \) of \(G' \). Then the following cases arise. To prove our claim, the following cases are to be considered.

Case 1
If \(u = u_1 \), then
\[
 \gcd(f(u), f_1(f(v))) = \gcd(f(u_1), f_1(f(v))) \]
\[
 = \gcd(1, f_1(f(v)))
\]
\[
 = 1
\]

Case 2
If \(u \neq u_1 \), and \(v = u_1 \), then
\[
 \gcd(f(u), f_1(f(v))) = \gcd(f(u), f_1(u_1)) \]
\[
 = \gcd(f(u), 1)
\]
\[
 = 1
\]

Case 3
If \(u \neq u_1 \), and \(v \neq u_1 \), then \(u = v_a \), \(v = v_b \) for some \(a, b = 2, 3, \ldots, p - 1 \) with \(a \neq b \)
then \(\gcd(f_1(u), f_1(f(v))) = \gcd(f(v_a), f(v_b)) \)
\[
 = \gcd(f(v_a), f(v_b))
\]
\[
 = 1
\]
as \(v_a \) and \(v_b \) are adjacent vertices in the prime graph \(G \).
Hence \(f_1 \) admits a prime difference speed sequence labeling for \(G' \).

Therefore \(G' \) is a prime difference speed sequence graph.

Example 2.8
In the following figures, the prime labeling of a graph \(G \) of order 6 and the prime labeling for the graph \(G' \) obtained by identifying the vertices of \(G \) with label 1 and 7 are shown.

Theorem 2.9
The graph obtained by identifying any two vertices of \(P_n \) is a Prime difference speed sequence graph.

Proof:
Let \(v_1, v_2, v_3, \ldots, v_n \) be the vertices of \(P_n \).
Let \(u \) be the new vertex of a graph \(G \) obtained by identifying two distinct vertices \(v_a \) and \(v_b \) of \(P_n \).

Then \(G \) is nothing but a cycle or loop with at most two paths attached at \(u \). Such a graph is a Prime difference speed sequence graph.

Example 2.10
The various graphs obtained by identifying any two vertices of path \(P_n \) are as follows.

A prime difference sequence labeling of \(P_3 \)

A prime difference sequence labeling of the graph obtained by identifying \(v_t \) and \(v_s \) of \(P_3 \)

A prime difference sequence labeling of the graph obtained by identifying \(v_t \) and \(v_s \) of \(P_5 \)

A prime difference sequence labeling of the graph obtained by identifying \(v_t \) and \(v_s \) of \(P_5 \)
A prime difference sequence labeling of the graph obtained by identifying v_1 and v_3 of P_3

Theorem 2.11
A Gear graph G_r, $r \geq 3$ is a Prime difference speed sequence graph.

Proof:
A Gear graph G_r, $r \geq 3$ has $2r + 1$ vertices and $3r$ edges.
Step 1: Assign the central vertex as label 1
Step 2: Remaining vertices in the outer cycle can be labeled as $2, 3, 5, \ldots$ upto the n^{th} vertex.
Let v_0 be the apex vertex $v_1, v_2, v_3, \ldots, v_{2r+1}$ be the rim vertices.
Let $f(u_0) = (x_1 - x_3), f(v_2) = (x_2 - x_4), \ldots \ldots, f(v_i) = (x_{2r+1} - x_{2r+3})$
so that $gcd(f(u), f(v)) = 1$ satisfying the prime difference speed sequence graph.

3. Strongly Prime Difference Speed Sequence Graphs

Definition 3.1
A graph G is said to be a strongly prime difference speed sequence graph if for any vertex v of G there exists a prime difference speed sequence labeling f satisfying $f(v) = 1$.

Theorem 3.2
The complete graph K_n is not Strongly Prime difference speed sequence graph for $n > 4$.

Proof:
It is obvious that K_1 and K_2 are Strongly Prime difference speed sequence graph.
Any vertex of K_3 and K_4 can be assigned the labels easily so that it satisfies the strongly prime difference speed sequence graph.
Let $v_1, v_2, \ldots \ldots, v_n$ be the n vertices of a graph.
Let $n > 4$.
Fix any vertex as v_1 and labeling the vertices consecutively, we see that atleast any one of the edge does not satisfy $gcd(f(u), f(v)) = 1$.
Therefore $n > 4$ is not a Strongly Prime difference speed sequence graph.

Theorem 3.3
Every path is a Strongly Prime difference speed sequence graph.

Proof:
Let $v_1, v_2, \ldots \ldots, v_n$ be the consecutive vertices of P_n.
If v_a is any arbitrary vertex of P_n, then the following two cases arise:

Case 1:
If v_a is either of the pendant vertices (say $v_a = v_1$) then the function $f: V(P_n) \rightarrow \{\Delta_i(x)/ i = 1, 2, 3, \ldots n\}$ defined by $f(v_1) = i, for all i = 1, 2, 3, \ldots n$ is a prime difference speed sequence labeling with $f(v_0) = f(v_1) = 1$.

Case 2:
If v_a is not a pendant vertex then $a = j$ for some $j \in \{2, 3, \ldots, n - 1\}$ then the function $f: V(P_n) \rightarrow \{\Delta_i(x)/ i = 1, 2, 3, \ldots n\}$ is a prime difference speed sequence labeling with $f(v_a) = f(v_j) = 1$.

Thus P_n is a strongly Prime difference speed sequence graph.

Example 3.4
By assigning label 1 to any arbitrary vertex of path P_a, we get different strongly prime difference speed sequence graphs.

A strongly prime difference sequence labeling of P_4 having v_1 as label 1:

A strongly prime difference sequence labeling of P_4 having v_2 as label 1:

A strongly prime difference sequence labeling of P_4 having v_3 as label 1:

International Journal of Scientific Engineering and Research (IJSER)

ISSN (Online): 2347-3878

www.ijser.in

Volume 5 Issue 1, January 2017

Paper ID: IJSER151192

License under Creative Commons Attribution CC BY
References