
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 1, January 2017
www.ijser.in

Licensed Under Creative Commons Attribution CC BY

Different Techniques of On-the-Fly Search on SQL
Relational Database: Survey

Ansari Aadil S.1, Ujwala M. Patil2

1Computer Science and Engineering, R. C. Patel Institute of Technology, Shirpur, India
2Associate Professor, Dept of Computer Engineering, R. C. Patel Institute of Technology, Shirpur, India

Abstract: Searching in a database was harder task in earlier times. In order to make search faster and easy, different techniques were
developed. Main aim was to enter a query, even by an ignorant user so that he can get the results easily and also the cost of retrieval
should be low. So we have selected some of the techniques and evaluated them. When the size of the increases it becomes even tough to
retrieve the results. An Optimal search technique must render the requested data in a stipulated time based on the user query. Since
large amount of data has to be processed, there has to be some order for ranking the queries to make the search a more efficient one.
On-the-fly search is a method which gives answers when user types in a keyword query, one after the another character by character.
This system which retrieves answers when a user types a keyword query is search-as-you-type The survey is based on the different
techniques for search-as-you-type on the data present in a relational DBMS. The main aim of different methods is how to implement
search as-you-type using the native language for database mainly SQL. Improving actual database functionalities to achieve improved
performance in order to get an interactive speed is the main problem. Performance of the search can be increased using auxiliary
indexes.

Keywords: component, DBMS, SQL, On-the-fly

1.Introduction

Extracting knowledge from the large amounts of data is
called as Data mining. In Relational database, information
and multiple dataset are stored. These Datasets are
represented in tables and records through rows and columns.
Currently keyword search handle with single databases.
Keyword Search is latest technique in database search. User
simply inserts a keyword for looking out and gets a result
associated with that keyword. The Solution of the tuples
which are connected to database keys like primary key and
foreign keys lies in keyword search on relational dataset.
Traditional information systems return answer only after the
submission of the entire query. When the user does not have
enough knowledge about data lying below they often feel
“left blind”, and have to use the luck approach for collecting
information.

New approach is to develop a separate application layer on
the database to construct indexes, and implement algorithms

for answering queries. Conventional approaches have the
advantage of getting a high performance, but its major
drawback is duplicating indexes and data which results in
additional hardware costs. User search experiences are
improved by the system which provides instant reaction as
users prepares the search queries. Autocompletion is
supported by nearly all search engines and online search
forms, which shows recommended queries or answers “on the
fly” as a user types in a keyword query character by
character. The user searches something in the system. The
database gives the results with already searched or with the
queries mostly searched. . Consider an example Netflix, Inc.
is a provider of on-demand Internet streaming media
available to viewers in all of parts of Europe, South America,
North America, and of flat rate DVD by-mail in the United
States, where mailed DVDs are sent via Permit Reply Mail.
Consider an example in Netflix Database, when the user
searches videos, the user will get help from database to
understand the actual query of the user.

2.Literature Survey

We have studied different techniques to search on SQL
Relational databases below are some of them.

Sr
No Author Title Publication Year Research

1 A. Nandi and H.V.
Jagadish

“Effective Phrase
Prediction” VLDB 2007

They Studied the problem of autocompletion not just at the level of a
single “word”, but at the level of a multi-word “phrase”. They found
couple of major challenges, one is that the number of phrases i.e. both the
number possible and the number actually observed in a corpus is
combined larger than the number of words; other is that a “phrase”, not
like a “word”, does not have a well-defined limits, so that the
autocompletion system has to decide not just what to predict, but also how
far it can go. They introduced a Fussy Tree structure to address the first
challenge and the concept of a significant phrase to address the second
[1].

2.
H. Bast, A. Chitea,
F.M. Suchanek,
and I. Weber

“ESTER:
Efficient Search
on Text, Entities,
and Relations”

SIGIR 2007

They proposed a modular and highly efficient system for combined full-
text and ontology search. Their system is a query engine that supports
basic operations of prefix search and join. These can be implemented very
efficiently with a compact index, and in combination provide powerful

Paper ID: IJSER151200 85 of 88

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 1, January 2017
www.ijser.in

Licensed Under Creative Commons Attribution CC BY

querying abilities. They demonstrated how they can answer basic graph
pattern queries by reducing them to a small number of these basic
operations. Natural blend of such semantic queries with ordinary full-text
queries was supported by their system. Moreover, the prefix search
operation allows for a fully interactive and proactive user interface, which
suggests to the user possible semantic interpretations of his query, and
speculatively executes the most likely of these interpretations [2].

3. H. Bast and I.
Weber

“Type Less, Find
More: Fast
Autocompletion
Search with a
Succinct Index,”

SIGIR 2006

They Proposed an Indexing data structure which uses a state of-the-art
compressed inverted index and yields an order of magnitude faster query
processing times. They even achieve large TREC Terabyte collection,
which comprises over 25 million documents, on a single machine and
with the index on disk, average response times of one tenth of a second.
They have built a full-edged, interactive search engine that realizes the
proposed autocompletion feature combined with support for proximity
search, semi-structured (XML) text, sub word and phrase completion, and
semantic tags. They had introduced an autocompletion feature for full text
search, and presented a new compact indexing data structure for
supporting this feature with very fast response times [3].

4. S. Ji, G. Li, C. Li,
and J. Feng

“Efficient
Interactive Fuzzy
Keyword
Search,”

SIGMOD 2009

They Proposed a information-access paradigm, called “interactive, fuzzy
search,” the system which searches the underlying data “on the fly” as the
user types in query keywords. Autocomplete interfaces was extended by
allowing keywords to appear in multiple attributes (in an arbitrary order)
of the underlying data; and finding relevant records that have keywords
matching query keywords approximately. Their framework allowed users
to explore data as they type. They studied research challenges for large
amounts of data. Various incremental search algorithms were developed,
using previously computed and cached results in order to achieve an
interactive speed [4].

5. S.Chaudhuri and
R. Kaushik,

“Extending
Autocompletion
to Tolerate
Errors”

SIGMOD 2009

They Proposed a method capture input typing errors via edit distance.
They show that a native approach of invoking an offline edit distance
matching algorithm at each step performs poorly and present more
efficient algorithms. Their study demonstrated the effectiveness of
algorithms. However they focused on the algorithmic aspects of error-
tolerant autocompletion which are relevant regardless of the specific
application. Similarity function like, issue of performing error tolerant
autocompletion also needed to be addressed [5].

6. G. Li, S. Ji, C. Li,
and J. Feng,

“Efficient Type-
Ahead Search on
Relational Data:
A Tastier
Approach”

SIGMOD 2009

They Proposed a novel approach to keyword search in the relational
world, called Tastier. A Tastier system can bring instant gratification to
users by supporting type-ahead search, it find answers “on the fly” as the
user types in query keywords. Their main challenge is how to achieve a
high interactive speed for large amounts of data in multiple tables, so that
a query can be answered efficiently within milliseconds. To find
appropriate results on-the-fly by joining tuples in the database they
developed an index structures and algorithms. They improved the query
performance by grouping relevant tuples and pruning irrelevant tuples
efficiently also proposed a method to answer a query efficiently by
predicting highly relevant complete queries for the user. They developed a
graph-partition-based method and a query prediction technique to
improve search efficiency [6].

7. L. Qin, J.X. Yu,
and L. Chang,

“Keyword Search
in Data Bases:
The Power of
Rdbms”

SIGMOD 2009

They Proposed a system by using SQL to compute all the interconnected
tuple structures for a given keyword query. To control the size of the
structures they used three different types of interconnected tuple
structures. The main idea behind their approach is tuple reduction. A
middleware free approach to compute such m-keyword queries on
RDBMSs using SQL only. Their middleware free approach makes it
possible to fully utilize the functionality of RDBMSs to support keyword
queries in the same framework of RDBMSs [7].

8.
G. Li, J. Fan, H.
Wu, J. Wang, and
J. Feng

“Dbease: Making
Data Bases User-
Friendly and
Easily
Accessible”

CIDR 2011

They Proposed a search method DBease which make databases user-
friendly and easily available. It allows users to explore data “on the fly” as
they type in keywords, even in the presence of minor errors. DBease made
databases user friendly and easily accessible. They developed various
techniques to improve keyword search, form-based search, and SQL-
based search for enhancing user experiences. Search as-you-type help
user’s on-the-fly to explore the underlying data. Form-based search can
provide on-the-fly faceted search. SQL suggestion can help various users
to formulate SQLs based on limited keywords [8].

9.

L. Gravano, P.G.
Ipeirotis, H.V.
Jagadish, N.
Koudas,
S.Muthukrishnan,
and D. Srivastava

“Approximate
String Joins in a
Data Base
(Almost) for
Free”

VLDB 2001

They Proposed a method for building approximate string join capabilities
for commercial databases by exploiting facilities. Their technique relies
on matching short substrings of length called q-grams at the core, and
taking into account both positions of individual matches and the total
number of such matches. Their approach applies to both full string
matching and substring matching, with a different possibility of edit
distance functions. They demonstrated experimentally the benefits of our
technique over the direct use of UDFs, using commercial database

Paper ID: IJSER151200 86 of 88

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 1, January 2017
www.ijser.in

Licensed Under Creative Commons Attribution CC BY

systems and real data [9].

10.

S. Chaudhuri, K.
Ganjam, V. Ganti,
R. Kapoor, V.
Narasayya, and T.
Vassilakis,

“Data Cleaning
in Microsoft
SQL Server
2005”

SIGMOD 2005

They Proposed couple of new data cleansing operators, one is Fuzzy
Lookup and other one is Fuzzy Grouping, it address problems in a
scalable and domain-independent manner. These operators were
implemented within Microsoft SQL Server 2005 Integration Services.
They demonstrated their functionality and highlighted multiple real world
scenarios in which they can be used to achieve high data quality [10].

11.

S. Agrawal, K.
Chakrabarti, S.
Chaudhuri, and V.
Ganti

“Scalable Ad-
Hoc Entity
Extraction from
Text
Collections,”

VLDB 2008

They Proposed the entity extraction task where entities of interest are
bounded to be from a list of entities that is specific to the task. In such
scenarios, traditional entity extraction techniques that process all the
documents for each ad-hoc entity extraction task can be significantly
expensive. They proposed an efficient approach that leverages the inverted
index on the documents to identify the subset of documents relevant to the
task and processes only those documents. They demonstrated the
efficiency of our techniques on real datasets. Their main observation is
that in many scenarios, there exists a significant overlap of tokens among
entities they exploit this observation to develop techniques to efficiently
identify a set of documents which need to be processed for entity
extraction. Through an extensive empirical evaluation using real datasets,
and demonstrated that their techniques result in significant improvements
over prior approaches [11].

12. G. Li, J. Feng, X.
Zhou, and J. Wang

“Providing Built-
in Keyword
Search
Capabilities in
Rdbms”

VLDB 2011

They Proposed a concept called Compact Steiner Tree (CSTree), which
can be used to approximate the Steiner tree problem for answering top-k
keyword queries efficiently. A novel structure- aware index, together with
an effective ranking mechanism for fast, progressive and accurate retrieval
of top-k highest ranked CSTrees. Their proposed techniques can be
implemented using a standard relational RDBMS to benefit from its
indexing and query-processing capability. This techniques was
implemented in MYSQL, which can provide built-in keyword-search
capabilities using SQL. The experimental results showed a significant
improvement in both search efficiency and result quality comparing to
existing state of- the-art approaches [12].

3.Conclusion

Keyword search in different scenarios enables information
discovery without requiring from the user to know the
schema of the database. Undergoing with the above survey
we draw a conclusion, to develop a separate application layer
on the database to construct indexes, and implement
algorithms for answering queries. In this article, we studied
the problem of using the SQL to support the system search-
as-you-type in data bases and also studied various kinds of
search techniques. We mainly concentrated on the challenge
of how to make full use of the existing DBMS functionalities
to meet high performance requirement to get an interactive
speed. To support the prefix matching, we can propose a
solution that uses the auxiliary tables as index structures and
SQL queries to support the search-as-you-type. We can
enhance the techniques in the case of fuzzy queries, and can
propose various techniques to improve the query
performance. We can also propose multi keyword queries
search, and study how to support first-N queries and the
incremental updates.

References

[1] A. Nandi and H.V. Jagadish, “Effective Phrase
Prediction,” Proc.33rd Int’l Conf. Very Large Data
Bases (VLDB ’07), pp. 219-230, 2007.

[2] H. Bast, A. Chitea, F.M. Suchanek, and I. Weber,
“ESTER: Efficient Search on Text, Entities, and
Relations,” Proc. 30th Ann. Int’l ACM SIGIR Conf.
Research and Development in Information Retrieval
(SIGIR ’07), pp. 671-678, 2007.

[3] H. Bast and I. Weber, “Type Less, Find More: Fast
Autocompletion Search with a Succinct Index,” Proc.
29th Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR ’06), pp.
364-371, 2006.

[4]]S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive
Fuzzy Keyword Search,” Proc. 18th ACM SIGMOD
Int’l Conf. World Wide Web (WWW), pp. 371-380,
2009.

[5] S. Chaudhuri and R. Kaushik, “Extending
Autocompletion to Tolerate Errors,” Proc. 35th ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD
’09), pp. 433-439, 2009.

[6] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead
Search on Relational Data: A Tastier Approach,” Proc.
35th ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’09), pp. 695-706, 2009.

[7] L. Qin, J.X. Yu, and L. Chang, “Keyword Search in Data
Bases: The Power of Rdbms,” Proc. 35th ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD
’09), pp. 681-694, 2009.

[8] G. Li, J. Fan, H. Wu, J. Wang, and J. Feng, “Dbease:
Making Data Bases User-Friendly and Easily
Accessible,” Proc. Conf. Innovative Data Systems
Research (CIDR), pp. 45-56, 2011.

[9] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas,
S.Muthukrishnan, and D. Srivastava, “Approximate
String Joins in a Data Base (Almost) for Free,” Proc.
27th Int’l Conf. Very Large Data Bases (VLDB ’01), pp.
491-500, 2001.

[10] S. Chaudhuri, K. Ganjam, V. Ganti, R. Kapoor, V.
Narasayya, and T. Vassilakis, “Data Cleaning in
Microsoft SQL Server 2005,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’05), pp.
918-920, 2005.

[11] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti,
“Scalable Ad-Hoc Entity Extraction from Text
Collections,” Proc. VLDB Endowment, vol. 1, no. 1, pp.
945-957, 2008.

[12] G. Li, J. Feng, X. Zhou, and J. Wang, “Providing Built-
in Keyword Search Capabilities in Rdbms,” VLDB J.,
vol. 20, no. 1, pp. 1-19, 2011.

Paper ID: IJSER151200 87 of 88

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 1, January 2017
www.ijser.in

Licensed Under Creative Commons Attribution CC BY

Author Profile

Aadil S. Ansari received the B.E. degree from
NMU Jalgaon, Maharashtra, and M.E. degree in
Computer Science Engineering pursuing from R.
C. Patel Institute of Technology, Maharashtra,
India respectively. From 2014-present, working

as a lecturer in MMANTC, Mansoora Malegaon, in the
Applied Science Department.

Mrs Ujwala M. Patil, she is an Associate Professor in
RCPIT, Shirpur, Maharashtra, India in department of
Computer Engineering.

Paper ID: IJSER151200 88 of 88

