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An Evaluation Of Inverse Reflectivity 
1

 𝑟 2
 as a 

Foundation of (w/wp) for  
𝑘

𝑘𝐹
  = 0.005, 0.05 and 0.1 

with rs = 0.3wp and 0.15 wp. 
 

 

T M Ehteshamul Haque 
 

Abstract: Nonlocal effects in metal optics lead to rapidly varying longitudinal field near the surface but far from the surface only 

transverse electromagnetic field survive. This is true even at and above the plasma frequency, since the damping plasma wave is typically 

by a factor c/vp longer than that of the transverse waves. Within the very successful classical longer than that of the transverse waves. 

Within the very successful classical Fresnel optics, which consider only transverse field, all the optics properties of a clean metal surface 

are determined by the bulk dielectric function of the metal (and the adjacent medium) which is a function of frequency. It seems 

desirable to have a similar description of the nonlocal surface effect in term of one or two general function which depend only on 

frequency and allow to calculate all the optical properties. 
 

Keywords: Non local, invers reflectivity
1

 𝑟 2
 , long wave length of surface response properties 

 

1. Introduction 
 

FEIBELMAN1-3 has shown from microscopic 

consideration that this can induced be achieved in the long 

wavelength limit (LWL) i.e. if the scale of the spatial 

variation of the transverse electromagnetic field is much 

long than the width of the surface region, in which deviation 

from the asymptotic transverse field are important with 

typical metals the condition for the LWL are not below and 

if a realistic damping is taken into account, also at and mean 

well above the plasma frequency and the nonlocal surface 

effects on the reflection amplitude and other measurable 

quantities can be expressed in terms of two surface response 

function 𝑑┴ (ω) and 𝑑||(ω) which depends only on the 

frequency ω. From a microscopic point of view, these 

surface response function involve integrals over the surface 

region and they can not be used to calculate the surface 

field. But they can be used to calculate the microscopic 

response properties of clean surface and also of surface 

covered with this field, and they can, in term, be evaluated 

from experimental results. They offer a general, meaningful 

and economical way to present experimental and also 

theoretical result. One optical properties of metal surfaces. A 

very transparent method to derive the surface parameter 𝑑┴ 

(ω) and 𝑑||(ω) which also clarifies their physical meaning, 

has been proposed by Apell
4
 and is presented in a slightly 

generalized form. The idea is old
5-7

 and has been extended 

by plieth and Naegele
8
. One extrapolate the asymptotic 

transverse field toward the surface and drives boundary 

condition for this filed by an integration of Maxwell’s 

equation in the surface region. These boundary conditions 

contain certain moment of the derivation of the exact fields 

from the extrapolated fields. Mukhopadhayay and 

Lundqvist9 have obtained the reflection coefficient in term 

of these moments. One shows that the expressing random in 

the LWL to FEIBELEMAN’S result and to equivalent 

expression given by Bagchi. et. al
10

. One consider the single 

local three layer model, which has been discussed by 

Macintyre and Asphs’’ and is frequently used to present 

experimental data. In the LWL such a model can be used to 

express the surface parameter 𝑑┴ (ω) and 𝑑||(ω) in terms of 

thickness d of the surface layer of the dielectric constant of 

the surface layer and metal substrate, provide the surface 

layer has a reduced symmetry  𝜀xx
𝑠 = 𝜀yy

𝑠 ≠ 𝜀zz
𝑠  . But it is 

not possible to determine these political constants and the 

thickness of the surface layer uniquely from the values of 𝑑┴ 

(ω) and 𝑑||(ω) or from political measurement. Moreover, the 

nonlocal calculation who that it does not increase the insight 

into the physics of the problem if one expresses the surface 

response function 𝑑┴ (ω) and 𝑑||(ω) interms of parameter of 

local mode, even if this if formally possible. Furthermore, it 

terms one that within the LWL nonlocal effects can be 

simulated by a local three layer model so that there is no 

good reason to express experimental data in terms of 

dielectric function of such a model. Then, one consider 

within the hydrodynamic approximation a three layer model 

in which both the surface layer and the bulk metal sustain 

longitudinal fields. Within the LWL, one present explicit 

analytic results for 𝑑┴ (ω) and 𝑑||(ω) and for the 

ellipsometry parameter. These forms are useful for the 

interpretation of experimental data on metal films absorbed 

on metallic substrate. 

 

In this chapter, we have evaluated the inverse reflectivity 
1

 𝑟 2
 

as a function of (ω/ωp).  These inverse reflectivity has been 

calculated by taking the 𝑑┴ (ω) values of chapter IV and by 

taking different values of kx/ky. 

 

2. Mathematical formula used in the evaluation 
 

In the long wavelength limit (LWL) the surface response 

properties can be expressed in terms of two function 𝑑┴ (ω) 

and 𝑑||(ω) which hare realted to mean values of the nonlocal 

dielectric tensor and its inverse. For optical frequency the 

wavelength (or decay length) of the transverse field both 
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inside and outside the metal is much longer than the typical 

length scale on which longitudinal fields and induced charge 

densities at the surface vary. Even at and above the plasma 

frequency the longitudinal fields decay (due to damping 

effects) much faster than transverse fields. This is easily 

visualized with the hydrodynamic approximation which 

yields for the z component of the wave vector of the 

longitudinal field pl, and of the transverse field pt. 

𝑝𝑙
2 =

5

3v𝐹
2  𝜔 𝜔 + 𝑖𝑟 −

𝜔𝑛
2

𝜀𝑏
 − 𝑘x

2             (5.1)  

and 

𝑝𝑡
2 =

𝜔𝜀𝑏

(𝜔+𝑖𝑟)

1

𝑐2  𝜔 𝜔 + 𝑖𝑟 −
𝜔𝑛

2

𝜀𝑏
 − 𝑘x

2            (5.2) 

Where VF is the Fermi velocity, r is damping, 𝜀𝑏  is dielectric 

constant bond electron 𝜔𝑛  is the frequency of plasma wave 

in a polarisable, screening bulk grad. 𝜔𝑝
2 = 𝜔𝑛

2/𝜀𝑏(𝜔𝑝 ). In 

the case of s-polarization and in long wavelength limit. The 

reflection coefficient and transverse coefficients are given 

by 

𝑟𝑠 =  
𝑝𝑡−𝑝𝑎

𝑝𝑡+𝑝𝑎
 1 + 2𝑖𝑝𝑎𝑑||(ω)     (5.3) 

𝑡𝑠 =  
2𝑝𝑎

𝑝𝑡+𝑝𝑎
 1 + 𝑖(𝑝𝑡 − 𝑝𝑎) 𝑑||(ω)       (5.4) 

Where  

𝑝𝑡 − 𝑝𝑎 = (𝜀𝑡 − 𝜀𝑎)ω2/ 𝑐2 𝑎𝑛𝑑 𝑑|| =
𝛿𝑦
 1 

(𝑎)

𝜀𝑎− 𝜀𝑡
+ 𝑎      (5.5) 

Where local dielectric constant 𝜀𝑎  in the half space z < a and 

𝜀𝑡 in the metallic half space z >a. 𝑘x
2 +  𝑝a

2= 𝜀𝑎ω
2  / c2 and 

𝑘x
2 + 𝑝t

2 = 𝜀𝑡ω
2 c2 . 𝛿𝑦

 1 (𝑎) is the difference between 

exact and reference filed in case of p-polarization the 

situation is little more complicated and the response function 

𝑑┴ (ω) and 𝑑||(ω) and reflection and transmission amplitude 

are given by 

 
an 

                 𝑑||

 ω = (εa − εt)
−1  𝑑𝑧 𝜀𝑧𝑧 𝑧 −

+∞

−∞

 𝜀𝑎𝜃−𝑧+                  𝜀𝑡𝜃(𝑧)   (5.7) 

 𝑟𝑝 =
𝜖𝑡𝑝𝑎−𝜖𝑎𝑝𝑡−𝑖 𝜖𝑎−𝜖𝑡  𝑝𝑎𝑝𝑡𝑑||−kx

2𝑑
┴
 

𝜖𝑡𝑝𝑎+𝜖𝑎𝑝𝑡−𝑖 𝜖𝑎−𝜖𝑡  𝑝𝑎𝑝𝑡𝑑||−kx
2𝑑

┴
 
             (5.8) 

 and 

 𝑡𝑝 =
2𝜖𝑎𝑝𝑎

𝜖𝑡𝑝𝑎+𝜖𝑎𝑝𝑡−𝑖 𝜖𝑎−𝜖𝑡   𝑝𝑎𝑝𝑡𝑑||−kx
2𝑑

┴
 
           (5.9) 

Now when 𝑑┴ (ω) become large even within LWL for large 

electric field induced in the surface region. This is possible 

under certain condition together with then so called 

multipole surface plasmon
12

. A part from this situation 𝑑┴ is 

small  𝑑|| ,  𝑑┴  ~ 𝑑 ≪ 𝑐/𝜔 where 𝑑 = (𝜀2 − 𝜀1) one can 

expand the denominator of equation (5.8). 

𝑟𝑝 =
𝜖𝑡𝑝𝑎−𝜖𝑎𝑝𝑡

𝜖𝑡𝑝𝑎+𝜖𝑎𝑝𝑡
 1 + 2𝑖𝑝𝑎

𝜀𝑎𝑝𝑡
2𝑑||−𝜀𝑡𝑘x

2𝑑┴

𝜀𝑎𝑝𝑡
2−𝜀𝑡𝑘x

2                (5.9) 

Where 𝜀t
2𝑝𝑎

2 − 𝜀a
2𝑝𝑡

2 = (𝜖𝑡-𝜀𝑎)(𝜀𝑎𝑝𝑡
2 − 𝜀𝑡𝑘x

2)          (5.10) 

 

Now consider a metallic surface layer (0 < z < d) separating 

a metallic halfspace (z>d) from the adjacent dielectric (z<0) 

with dielectric constant 𝜀𝑎 . Both metallic layer are allowed 

to sustain longitudinal field by the choice of model dielectric 

function. The longitudinal dielectric function in the surface 

layer is written as  

𝜀𝜇  𝑞, 𝜔 = 𝜀𝑏𝑠 𝜔  −
𝜔𝑛𝑠

2

𝜔 𝜔+𝑖𝑟𝑠 −𝛽𝑠𝑞
2     (5.11) 

Including spatial dispersion through a Dude-like free 

electron term in addition to a non dispersive local term 

which takes bond electron into account. The corresponding 

transverse dielectric function is 

𝜀𝑡𝑠 = 𝜀𝜇(0, 𝜔)                                (5.12) 

    

The electric field in the dielectric (z < 0), the transverse field 

in the bulk metal (z > d) and E
t
=E

>
. The total field 𝐸 =

−𝑡
𝐸

+
−𝑙
𝐸

 in the metallic halfspace containing in addition to 

−𝑡
𝐸

, the longitudinal field 

𝐸x
𝑙 𝑧 = 𝐸x

𝑙𝑒𝑖𝑠𝑝 𝑙 ,𝐸z
𝑙 𝑧 =

𝑝𝑙

𝑘x
𝐸x
𝑙(𝑧)             (5.13) 

Where 𝑘x
2 + 𝑝l

2 = 𝑞l
2 where q1(𝜔) is defined by 𝜀1 𝑞1,𝜔 =

0 and both the transverse wave number 𝑝t  and the 

longitudinal wave number 𝑝t have none-negative real and 

imaginary part. In the surface layer (0 < z < d) the transverse 

field is written as 

𝐸
 
x
z
 

𝑡𝑠  𝑧 =  
1

−kx/pts

  Ex+
ts eiz pts ± Ex−

ts e−iz pts            (5.14) 

With and upper (lower) symbol refer to the x(z) component. 

Similarly the longitudinal field in the layer is given by 

𝐸
 
x
z
 

𝑙𝑠  𝑧 =  
1

pls /kx

  Ex+
ls eiz pts ± Ex−

ls e−iz pts              (5.15) 

With 𝑘x
2 + 𝑝ls

2 = 𝑞ls
2  and 𝜀𝑙𝑠 𝑞𝑙𝑠,𝜔 = 0 

 

The displacement field is determine by the transverse field 

and 𝐷2𝜀𝑡𝑠𝐸
𝑡𝑠  in the surface layer (0 < z < d), D=𝜀𝑡𝐸

𝑡  in the 

metallic halfsapce (z > d) and D=𝜀𝑎𝐸
< in the dielectric (z < 

0). At the metal-metal interface z=d, the two standard 

boundary condition 𝜀x  and Dz are continuous and the two 

additional boundary condition are 𝜀b𝐸𝑧and 𝑄𝐸x
𝑙  are 

continuous. Where  𝐸x
𝑙  stands for tangential component of 

the longitudinal electric field and 𝑄 = 𝜀𝑡 /(𝜀b-𝜀𝑡). Using 

these four boundary conditions, one can express the 

coefficients determine the field in the surface layer in term 

of the corresponding coefficient in the metallic half space 

one obtains 

Exτ
ts eiτpts

d
=

1

2
  1 + τ

εt pts

εts pt
 Ex

t eipt
d

+  1 −
Q

Qs
 Ex

l eipt
d
         (5.16) 

Exτ
ls eiτpls

d
=

1

2
 τ

kx
2

pt pls
 
𝜀𝑡
𝜀𝑡𝑠

−
𝜀𝑏
𝜀𝑏𝑠

 Ex
t eipt

d
+  

Q

Qs
+

𝜀𝑏𝑝𝑙
𝜀𝑏𝑠𝑝𝑙𝑠

 Ex
l eipt

d
 (5.17) 

 

Now the surface integral reduce to  

𝛿x
 𝑛  0 =  dz zn−1 εts Ex

ts z − εtEx
t eizp t  /Ex

t𝑑

𝑜
     (5.18) 

 

 

and 

𝜂z
 1  0 =   𝑑𝑧  𝐸𝑧

𝑡𝑠 𝑧 + Ez
ℓs z − Ez

>(z) +  𝑑𝑧 𝐸𝑧
ℓ 𝑧 

𝑑

𝑜

𝑑

𝑜
  /  𝐸𝑡Ez

>(0) 

    (5.19) 

The reflection amplitude 𝑟𝑝  is obtained in the form 

𝑟𝑝 =  𝐴 − 𝐵 /  𝐴 + 𝐵    (5.20) 

where 

𝐴 = 𝜀𝑡𝑝𝑎  cos 𝑝𝑡𝑠
𝑑 −

𝜀𝑡𝑠𝑝𝑡

𝜀𝑡𝑝𝑡𝑠
 1 +  1 −

𝑄

𝑄𝑠
 𝜆 i sin pts

d   (5.21a) 
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𝐵 = 𝜀𝑎𝑝𝑡   1 +  1 −
𝑄

𝑄𝑠
 𝜆 cos 𝑝𝑡𝑠

𝑑 −
𝜀𝑡𝑝𝑡𝑠

𝜀𝑡𝑠𝑝𝑡
i sin pts

d    

 −
kx

2

𝑝
𝑡
𝑝
ℓ𝑠

 
𝜀𝑡

𝜀𝑡𝑠
−

𝜀𝑏

𝜀𝑏𝑠
 i sin p

ℓs
d + 𝜆(

𝑄

𝑄𝑠

cos p
ℓs
d −

𝜀𝑏𝑝𝑙

𝜀𝑏𝑠𝑝ℓ𝑠

 i sin p
ℓs
d ) (5.21b) 

𝜆 is free electron current and is given by 

𝜆 =  Ex
ℓ/Ex

t  𝑒𝑖 𝑝ℓ−𝑝𝑡 𝑑     (5.22) 

Surface integrals are reduced to 

𝛿
 1 

x
 0 = i

εt

pt
  cos pts

d −
𝜀𝑡𝑠𝑝𝑡

𝜀𝑡𝑝𝑡𝑠

 1 +  1 −
𝑄

𝑄𝑠

 𝜆 i sin p
ts

d  e
ip

t
d

− 1 (5.23) 

                   𝛿
 2 

x
 0 =

εts

pts
2   1 +  1 −

𝑄

𝑄𝑠
 𝜆   (1 −

cosptsd)+                   
𝜀𝑡𝑝𝑡𝑠𝜀𝑡𝑠𝑝𝑡isinptsdeiptd−εtpt2(eiptd−1)         

(5.24) 
and 

𝜂z
 1  0 =

eipt
d

𝜀𝑡
 

p
t

ip
ts
2
 1 − cos p

ts

d
+
𝜀𝑡𝑝𝑡𝑠

𝜀𝑡𝑠𝑝𝑡

i sin pts
d    

 −  
𝜀𝑡

𝜀𝑡𝑠
−

𝜀𝑏

𝜀𝑏𝑠
 

sin pts
d

pℓs
−

1

ip t
 1 − e−ip t

d
 + λ

pt

ik x
2   1 −

Q

Qs
 (1 −

cosptsd−QQs1−cospℓsd+1−𝜀𝑏𝑝ℓ𝜀𝑏𝑠𝑝ℓ𝑠 isinpℓsd 
          (5.25) 

There results are exact. For thick metallic layer on metal 

substrates, it is necessary to work with the exact (within HD) 

formula but for thin surface layer and clean surfaces 

simplification are possible. 

 

Local Limits 

The general formulas (5.16-5.25) apply a also to be special 

cases that the dielectric response of the surface layer and / or 

the metallic half space is local, but it requires some care to 

pass from the nonlocal case to the local limit. 

 

If one wants to neglect nonlocal effects in the surface layer, 

one has to omit spatial dispersion, i.e. to set 𝛽𝑠=0 in (5.11), 

and thereby, to longitudinal fields in the layer. But if we 

naively perform the limit 𝛽𝑠→0 which implies, 𝑞𝑙𝑠 →
∞, 𝑝𝑙𝑠−>  ∞, we get wrong results which are different from 

those of a calculation which neglects longitudinal fields in 

the layer from the beginning. Similarly, if we want to retain 

nonlocality in the surface layer but not in the metallic 

halfspace, we get a wrong answer if we take the limit 

𝛽−> 0, 𝑝𝑡− >  ∞. The difficulty is related to the second 

ABC (QEy
x   continuous) at the metal-metal interface, which 

couples the induced charges on both sides of the interface. If 

there are longitudinal fields only on one side of the interface, 

this ABC cannot be satisfied. But in the limit 𝛽− > 0, which 

leaves the value 𝑄 = 𝜀𝑡/ (𝜀𝑏 − 𝜀𝑡) unchanged, this ABC is 

not abandoned. 

 

Fortunately there is a simple alternative way to swith off the 

spatial dispersion in (5.11). One may, for 0 < x <1, replace 

𝜔2
𝑛𝑠  in (5.11) by x𝜔2

𝑛𝑠  and include at the same time an 

additive contribution –  1 − x 𝜔2
𝑛𝑠

/ 𝜔 𝜔 + i𝛾𝑠   in the 

nondispersive part 𝜀𝑏𝑠 𝜔 . this procedure leaves 

thetransverse dielectric constant 𝜀𝑡𝑠  unchanged and leads in 

the limit x → 0 to the local case. 
 

With the redefined 𝜀𝑏𝑠 , the correct prescription for taking the 

local limit of the surface layer  x → 0 , is to set 𝜀𝑏𝑠 = 𝜀𝑡𝑠  

and 𝑄𝑠 = ∞. Then (5.22) reduces to  

λ =
kx

2

𝑝1𝑝2
(1 −

εt

εb
)    (5.26) 

And (5.7) yields Ex + 
1 s = Ex + 

1 s 0, the absence of longitudinal 

fields in the surface layer, Furthermore, (5.25) reduces to  

𝑛𝑠(1)(0) =
1

𝑖𝑝𝑡𝑠𝜀𝑡𝑠
[
𝜀𝑡𝑠𝑝𝑡
𝜀𝑡𝑝𝑡𝑠

(1 − cos𝑝𝑡𝑠𝑑) + 𝑖 sin 𝑝𝑡𝑠𝑑]𝑒𝑖𝑝𝑡
𝑑
 

1

𝑖𝑝𝑡𝜀𝑡
 𝑒𝑖𝑝𝑡

𝑑
− 1 +

1

𝑖𝑝ℓ𝜀𝑡
 1 −

εt

εb
 [1 +

kx
2

pts
2 (1 −

cos 𝑝𝑡𝑠𝑑)]𝑒𝑖𝑝𝑡
𝑑
             (5.27) 

independent of Pls. 

 

If we set in addition 𝜀𝑏 − 𝜀𝑡 , we neglect nonlocal effects in 

the metallic half space, λ=0, and 𝛿x
 𝑛  𝑜 , 𝑛z

 1 (𝑜)reduce to 

the local values with an isotropic surface dielectric tensor 

𝜀xx
𝑠 = 𝜀zz

𝑠 = 𝜀𝑡𝑠 . (Note that the last step, 𝜀𝑏 → 𝜀𝑡,𝑄 → ∞. 
Then Ex

1vanishes according to, but 𝜆𝑄/𝑄𝑠 remains finite and 

becomes independent of 𝑄𝑠 , the quantity which occurs only 

through the second ABC. It is straightforward to evaluate 

this limit, but the resulting formulas remain rather lengthy. 

We give explicit results only for the important LWL. 

 

Long Wavelength Limit 

One now assumed that the thickness d of the surface layer 

and the wavelength and / or decay length of the plasma 

waves in both the surface layer and the bulk metal are much 

smaller than the wavelength and/or decay length of 

transverse electric fields in any of the space regions, so that  

ptsd, ptd, kxd, kx/pls, kx/pl,  etc. are much smaller than unity, 

and Pls and Pl are effectively independent of the angle of 

incidence 𝜃𝑎[𝐾𝑥 = (𝜔/ 𝑐) 𝜀𝑎
1/2

 sin 𝜃𝑎 ]. For free electron 

metals, but also for noble metals, this is a good 

approximation for all frequencies of interest. 

In this long wave length limit reduces to  

𝜆 =
kx

2

pt

εt  [μs + μ−μs  cos pls d

pℓεb cos pℓsεbs (
Q

Q s )i
sin μℓsd

          (5.28) 

Where  

 

μs =  εbs − εts /εts             (5.29) 

and similar 𝜇, has been introduced for brevily, According to 

Q=1/𝜇 for our ABC. But we retain Q explicitly in order to 

see the possible effect of ABC on the final result (e.g. 

Q=𝑞ℓ
 2 𝑜𝑟 𝑄 = 𝛽𝑞1

 2 

 

To leading order in Ptsd the nonlocal correction to 𝛿x
 𝑛 (0) in 

(5.4) is negligible. 

𝛿x
 1  0 =  εts − εt d 𝛿x

 2  0 = 0           (5.30) 

                 and  5.22 reduces after some algebra to(5.31) 

            nz
 1  0 =  

1

εts
−

1

εt
 d+i 

  2μs−μ 
Q

Q s
−μs  (1−cos plsd )

P1εb cos Pls d−Pls εbs  
Q

Q s
 i sin Pls d

  

+
−μ cos Pls d + μs

P1εb

Pls εbs
i sin Pls d

Plεb
cos Pls d − Plsεbs

 
Q

Qs
 i sin Pls d

 

Which includes nonlocal effects in both the surface layer 

and the metallic half space, and reduces to the local result 

for 𝜇 = 𝜇𝑠 = 0. 
 

If we set εts = εt , εbs = εb  and Qs = Q. etc.,  one recover 

(5.22) the result for a homogeneous metallic half space in 

z>0. 
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For local response of the surface layer, μs → 0, Qs →
 ∞  5.31  reduces to  

nz
 1  0 =  

1

εts
−

1

εt
 d +

i

P1
 

1

εb
−

1

εt
 ,            (5.32) 

 

The LWL of (5.84) 

 

If we retain non locality only in the surface layer but not in 

the bulk, 𝜇 → 0, 𝑄 →= ∞, we obtain from (5.31) 

nz
 1  0 =  

1

εts
−

1

εt
 d +

2

Pls
 

1

εts
−

1

εbs
 tan(

1

2
Pls d), (5.33) 

Which leads with to 

= 𝑑
𝜀𝑎

𝜀𝑡 − 𝜀𝑎
  εt − εts (

1

εts

−
1

εt

) − εt(
1

εts

−
1

εbs

)
tan(

1

2
Pls d)

1

2
Pls d

  

(5.34) 

Inserting this into the ellipsometry formula one obtained a 

result which has first been published and discussed by 

ABELES and LOPEZ
1
. From it becomes obvious that 

nonlocal effects in the surface layer are most important near 

its plasma frequency 𝜔𝑝𝑠 . for 𝜔 = 𝜔𝑝𝑠 , the value nz
 1  0 =

 εts
−1 − εt

−1 d of the local approximation becomes large and 

Pls  becomes small (in the absence of damping : Pts =
0, Pls = 0 for 𝜔 = 𝜔𝑝𝑠 ). then tan (Pls d/2) reduces to Pls d/2 

and (5.33) yields 𝑧 1  0 =  εts
−1 − εt

−1 d , i.e. the nonlocal 

effects remove the large structure in the 𝜔 dependence of 

nz
 1  0  predicted by the local approximation. The same 

mechanism is responsible for the large discrepancy between 

the local and the nonlocal calculation of the reflection 

coefficient neat the plasma frequency of the surface layer. 

Well below 𝜔𝑝𝑠  the nonlocal effects in (5.34) field only a 

small correction to the local results, since Pls ≈
i  Pls   and  Pls  d →  for typical metals, except for very thin 

surface layers (of a few Angstroms). For 𝜔 > 𝜔𝑝𝑠  and small 

damping, pls  is real and (5.33.34) predict strong plasma 

wave effects for such frequencies for which Pls d/2 becomes 

an odd multiple of 𝜋/2. In this case d is an odd multiple of 

the half plasma wavelength λls=2𝜋/𝑃𝑙𝑠  of the layer, and 

sanding plasma waves can be excited in the layer. These are 

the plasma resonance of or thin metallic film prodicted by 

MELNKY and HARRISON and observed by NILSON
2
. 

 

The important differences between the nonlocal formula 

(5.31) and the local approximation for the interpretation of 

ellipsometry experiments near the plasma frequency of the 

substrate have recently been emphasized in a numerical 

study by KEMPA and GERHARDTS
3
. 

 

Our discussed the interesting question whether standing 

plasma waves can also be optically excited in a thing metal 

film on a metallic substrate. Within the present context the 

answer is given by (5.31). Plasma resonances in the surface 

layer will occur, if the denominator becomes small i.e. if 

𝑡𝑎𝑛 𝑃𝑙𝑠𝑑 ≈  𝑃1𝜀𝑏𝑄𝑠/ (𝑖Pls𝜀𝑏𝑠𝑄).            (5.35) 

 

If one neglect damping and assume the bulk plasma 

frequency 𝜔𝑝𝑠 , for 𝜔𝑝𝑠<𝜔 < 𝜔𝑝 , 𝑃𝑙𝑠  is real whereas 

Pl=i[Pl] is purely imaginary, so that he right hand side of 

(5.35) is a smoothly varying, real function of 𝜔. Thus, if the 

values of Plsd varies in the interval 𝜔𝑝𝑠<𝜔 < 𝜔𝑝  by more 

than 𝜋, (5.35) is satisfied in this interval at least once, 

whereas for 𝜔 < 𝜔𝑝𝑠  and 𝜔 > 𝜔𝑝 (5.35) can not be satisfied 

(if we assume both 𝜀𝑏  and 𝜀𝑏𝑠  positive. If damping effects 

are not too large, one expects therefore in the frequency 

interval between the plasma frequency of the surface layer 

and that of the bulk metal resonances due to excitation of 

standing plasma waves in the layer, provided the layer is 

thick enough and the difference between the plasma 

frequencies , 𝜔𝑝 − 𝜔𝑝𝑠 > 0, is large enough. This 

qualitative discussion applies to the FORSTMANN-

STENSCHKE ABC
4[𝑄 = 𝜀𝑡/(𝜀𝑏 − 𝜀𝑡)] and to the 

BOARDMAN-RUPPIN ABC
5(𝑄 = 𝑞1

2) as well 

characteristic differences become apparent, if one assumes 

the bulk plasma frequency 𝜔𝑝  to be much larger than that 

the surface layer, 𝜔𝑝𝑠 . Then for 𝜔𝑝𝑠 < 𝜔<𝜔𝑝  one finds 

𝑃𝑙𝑠 <  𝑃𝑙   and (5.35) is satisfied for cot (𝑃𝑙𝑠𝑑) ≈ 0. i.e., if 

𝑃𝑙𝑠𝑑 is to close to an odd multiple of 𝜋/2, which means that 

the surface layer contains an odd multiple of one quarter of a 

plasma wavelength. If the BAC in changed (Q=𝑞𝑙
 2 𝑜𝑟 𝑄 =

𝛽𝑞1
 2) (5.35) is satisfied for tan (𝑃𝑙𝑠𝑑) ≈ 0. i.e. 𝑃𝑙𝑠𝑑 is close 

to an integer multiple of 𝜋, which means that the surface 

layer accommodates an integer (non-zero) multiple of a half 

plasma wavelength
6
. This demonstrates that the frequency 

dependence of nz
 1  0 or, equivalently, of 𝑑┴contains the 

information about excitation modes in the surface layer. 

 

If one interpret the surface layer as the selvedge region of 

the metal half space, differing from the bulk metal only by a 

reduced density of free electrons, we deal with the 

hydrodynamic model used to discuss surface electro 

magnetic fields. The “local Plasmon” excitation discussed in 

that context is physically the same thing as a standing 

plasma wave in the surface layer. Surface resonances of this 

type are closely related to the “multiple surface plasmons”.
7-

9 

 

In the preceding discussion, excitation of standing plasma 

waves in the surface layer was related to pole type 

singularities of 𝑑┴ (ω) -𝑑||(ω) or, equivalently, of nz
 1  0  

given by (5.31). It must understood that a genuine 

singularity of nz
 1  0  as a function of ω can occur only in 

the LWL. Such  a singularity results from vanishing 

denominator of the LWL of λ. Given by (5.17). From the 

general definition of λ, we understand the meaning of this 

singularity. The ratio Ex
1/Ex

t  of the x component of 

longitudinal and transverse electric field being usually of the 

order of kx
2/PtP1 ≪ 1, is now of order unity, since a strong 

longitudinal field is accompanied with the standing wave. 

As a consequence, the value of nz
 1  0 given by (5.22) is, at 

the renance frequency, enhanced by a factor of PtP1/kx
2. In 

the LWL this enhancement appears as a singularity. 
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