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Abstract: If one interpret the surface layer as the selvedge region of the metal half space, differing from thebulk metal only by a 

reduced density of free electrons, we deal with the hydrodynamic model used to discuss surface electro magnetic fields. The “local 

Plasmon” excitation discussed in that context is physically the same thing as a standing plasma wave in the surface layer. Surface 

resonances of this type are closely related to the “multiple surface Plasmon’s” 
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1. Introduction 
 

In the preceding discussion, excitation of standing plasma 

waves in the surface layer was related to pole type 

singularities of 𝑑┴ (ω) -𝑑||(ω) or, equivalently, of nz
 1  0  

given by (5.31). It must understood that a genuine 

singularity of nz
 1  0  as a function of ω can occur only in 

the LWL. Such  a singularity results from vanishing 

denominator of the LWL of λ.  

 

The ratio Ex
1/Ex

t  of the x component of longitudinal and 

transverse electric field being usually of the order of 

kx
2/PtP1 ≪ 1, is now of order unity, since a strong 

longitudinal field is accompanied with the standing wave. 

As a consequence, the value of nz
 1  0 given by (5.22) is, at 

the renance frequency, enhanced by a factor of PtP1/kx
2. In 

the LWL this enhancement appears as a singularity. 

 

2. Surface Plasmon’s 

One generalized the treatment of surface Plasmon’s in two 

directions. First, our express the Plasmon dispersion relation 

in terms of the surface response functions 𝑑┴ (ω) -𝑑||(ω) and 

obtain a general result which applies not only to the 

hydrodynamic model but also to microscopic surface 

models. In this part one follow FELIBELMAN’S 
1-3

. Second 

one extend the discussion to the so called “multipole surface 

plasmons”(MSP), which are additional surface modes 

including standing plasma waves in a surface region of low 

electron density. The possible existence of such modes at 

clean metal surfaces has been a matter of controversy for 

more than a decade
10-13

. Our discussion, following recent 

work of KEMPA and GERHARDTS
14

  will establish a 

relation between the MSP and the photoemission experiment 

on aluminium first pointed out by SCHWARTZ and 

SCHAICH
15

. The explicit results of sect. is helpful for a 

qualitative understanding of the frequency dependence of 

𝑑┴. The LWL is taken throughout the whole section. 

 

3. Feibeleman’s Treatment 

A surface Plasmon at a metal / vacuum interface can be 

defined as an Eigen solution of Maxwell’s equations with an 

electric field propagation along the interface and decaying 

exponentially into both the metal and the vacuum. Such an 

eigemode exists if the reflection amplitude for p-polarized 

light becomes singular for 

Pa= iPa,  Pt= iPt,  (5.36) 

 

And Pa> 0, Pt> 0. Then finite reflected and transmitted 

fields, both decaying way from the surface, are possible for 

vanishing incident field. Inserting (5.36) into (5.8), one 

obtain as condition for the existence of a surface Plasmon 

that the denominator of  

𝑟𝑝 =
𝜀𝑡𝑝𝑎−𝜀𝑎𝑝𝑡−𝑖 𝜀𝑎−𝜀𝑡   𝑝𝑎𝑝𝑡𝑑𝜋−kx

2𝑑┴ 

𝜀𝑡𝑝𝑎 +𝜀𝑎𝑝𝑡−𝑖 𝜀𝑎−𝜀𝑡   𝑝𝑎𝑝𝑡𝑑𝜋−kx
2𝑑┴ 

         (5.37) 

must vanish. From the dispersion of transverse waves. 

𝑘x
2 + 𝑝a

2= 𝜀𝑎ω
2  / c2=𝑃𝑡

2 + 𝜀𝑡ω
2  / c2                    (5.38) 

 

One has 

(𝜀𝑡𝑝𝑎 + 𝜀𝑎𝑃𝑡) 𝑝𝑎 − 𝑃𝑡 =  𝜀𝑎 − 𝜀𝑡 (𝑝𝑎𝑃𝑡 − 𝑘x
2) (5.39) 

 

If one assumes  PadП ~ kx d <
1

2
, then (5.39) show that for 

vanishing denominator of (5.37) the difference PaPt and kx
2. 

Hence, in the LWL, the condition for a surface Plasmon can 

be written as 

𝜀𝑡𝑝𝑎 + 𝜀𝑎𝑃𝑡 +  𝜀𝑡 − 𝜀𝑎  𝑑┴ − dП Pa Pt = 0        (5.40) 

 

This form of the surface Plasmon dispersion relation 

(SPDR) has been derived by FEIBELMAN1
-3

 and in similar 

form (but with less transparent methods) also by other 

authors
16-18

. Since (5.40) depends only on the difference 

𝑑┴ − dП, the SPDR is not changed if the surface position is 

shifted by an amount a, whereas the values of both 

𝑑┴ anddП are changed by that amount a, as is easily seen 

from. This consistency requirement is also satisfied by the 

form 

𝜀𝑡𝑝𝑎 + 𝜀𝑎𝑃𝑡 +  𝜀𝑡 − 𝜀𝑎  𝑑┴ − dП 𝑘x
2 = 0           (5.41) 

Which is completely equivalent to (5.40) reduces fro the HD 

with a single step electron density profile (dП = 0, 𝑑┴ =/

𝑃1with 𝜀𝑎 = 𝜀𝑏 = 1) exactly to the SPDR with notation 

λ0 =, λ − iPt,ε = εt , n = P1) which is not restricted to the 

long wavelength limit. 

 

In the non-retarted(𝑐 → ∞)limit, (5.38) yields P=Pa=Kx, and 

both (5.70) (5.41) reduce to 

𝜀𝑡 + 𝜀𝑎 +  𝜀𝑡 − 𝜀𝑎  𝑑┴ − dП Kx = 0                   (5.42) 
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With the free electron dielectric constant, 𝜀𝑡 = 1 − 𝜔𝑝
2/𝜔2 , 

this takes for small Kx , the form 

𝜔𝑠 =
𝜔𝑝

 𝜀𝑎+1
 1 +

𝜀𝑎

𝜀𝑎 +1
(𝑑┴ − dП)Kx             (5.43) 

 

For the SPDP, where 𝑑┴-𝑑П is taken ω = ωs ≈ ωp/(𝜀𝑎 +

1)1/2. For this surface Plasmon the induced charge density 

p
ind

(z) is dominated by a single peak in the surface region, 

since 4𝜋𝑝𝑖𝑛𝑑  𝑧 = 𝑉. 𝐸. ≈ 𝑑𝐸/𝑑𝑧, and Ez(z) interpolates 

smoothly between the nearly constant (in the LWL) classical 

values outside and inside the metal. Then according to 𝑑┴ 

(ω) measures the position of this peak i.e. the mean position 

of the induced charge. Sign and value of 𝑑┴-𝑑П depend 

crucially on the diffuseness of the surface. If the electron 

density of the unperturbed metal is assumed to drop at the 

surface abruptly from the constant bulk value to zero, as in 

the simple hydrodynamic model or in the “semi classical 

infinite barrier” model, but also if the model density profile 

is too steep, as for the microscopic infinite barrier model, the 

induced charge lies on the metal side of the surface (of the 

jellim edge for the IBM) and 𝑑┴-𝑑Пcomes out positive. For 

the soft, sel-consistent Lang_Kohn profile, on the other 

hand, the induced charge is located essentially outside the 

jellim edge and 𝑑┴-𝑑Пnegative. Within the hydrodynamic 

model this can be simulated by a suitably choose surface 

layer of reduced electron density. If retardation effects are 

included, the negative values of 𝑑┴-𝑑Пobtained for diffuse 

surfaces lead to a plateau in the surface-plasmon dispersion 

relation. 

 

4. Additional Surface Plasmon Modes 
 

In order to understand how additional surface plasmons can 

be discussed in terms of the surface response function 𝑑┴ 

(ω) -𝑑||(ω), it is instructive to assume that 𝑑┴ (ω) exhibits at 

a certain “resonance frequency” ω𝑟  a pole singularity, e.g., 

𝑑┴-𝑑П ≈
𝑎𝑟ω𝑟

ω−ω𝑟
 𝑓𝑜𝑟 ω ≈ ω𝑟             (5.44) 

 

One has discussed that this can happen for instance, in the 

nonlocal three layer model if the frequency is larger than the 

plasma frequency of the surface layer, but less than the 

plasma frequency of the bulk metal. Then, in addition to the 

“regular” surface plasmon, (5.43), the dispersin relation 

(5.42) yields a branch with frequency near ω𝑟  (for small) 

positive values of kx), 

ω = ω𝑟  1 +
𝜀𝑎−𝜀𝑡

𝜀𝑎 +𝜀𝑡
arkx              (5.45) 

 

where the bulk dielectric function 

𝜀𝑡 = 1 − (ω𝑝/ω)2 is taken at ω = ω𝑟 . These additional 

surface Plasmon modes are accompanied with standing 

plasma waves in the surface region of reduced electron 

density, BENNETT
19

 first pointed at their existence, and 

EQUILUZ et 
at20-23

, who discussed their appearance for 

arbitrarily shaped density profile, addressed them as “higher 

multipole” modes, since in the non retarded limit the total 

induced charge of these additional modes was found to 

vanish. If retardation effects are properly taken into account, 

this is no longer true. BOARDMAN et al
24

 investigated in 

detail the electric field and the fluctuation charge density in 

this case and obtained an oscillatory behaviour of the latter, 

although not a clear multipole structure. 

 

Quantum mechanical RPA calculations of MSP modes  in 

the non retarded limit have been presented by 

INGLESFIELD and WIKBORD25, who used a double step 

function to simulate the effective potential (not the density) 

of conduction electrons at a n aluminium surface covered 

with an over layer of alkali atoms. “Multipole” modes were 

found for over layers with a sufficiently extended how 

density region, but not for a single step potential, which was 

considered as a reasonable model of uncoated Al. 

 

Having related the existence of a MSP mode to a pole 

singularity of 𝑑┴(𝜔), we should understand how such a 

singularity can be consistent with telling that 𝑑┴(𝜔) is the 

“center of gravity”of the fluctuation charge density. Since 

𝑑┴(𝜔) is independent of the wave number kx, we can 

calculate 𝑑┴(𝜔), from the fields excited by an external plane 

wave impinging on the surface rather than by the fields 

related to a surface Eigen mode with kx> 𝜔/𝑐. According to 

the total fluctuation charge, determined by the transverse 

fields far from the surface, is insensitive to details of the 

surface region. Especially, it can not vanish at the resonance 

frequency ω𝑟  for excitation of a standing plasma wave in the 

low density surface region in order to produce the 

singularity of 𝑑┴(𝜔). On the other hand, near ω𝑟  the 

induced charge density will exhibit a spatial oscillation in 

the surface region and the numerator of measuring the dipole 

moment of this charge distribution, will diverge at 

resonance, ω = ω𝑟 , since then the amplitude of this spatial 

oscillation is enhanced by a factor (~𝑃𝑡𝑃ℓ/kx
2 is discussed at 

the end of Sect.) which diverges in the LWL. Moreover, as 

the frequency seeps through the resonance, the phase of the 

excited plasma wave in the surface layer will change, so that 

the induced dipole moment changes sign out ω𝑟 , whereas 

the total induced charge is completely insensitive to these 

surface effects. Thus, we see that the resonant excitation of 

standing plasma waves in the low density surface region 

indeed leads, in the LWL, to a pole structure 0, 𝑑┴(𝜔). Near 

the pole, 𝑑┴(𝜔). should be interpreted as dipole moment 

rather than as mean position of the induced charge 

distribution. 

 

So far discussion of MSP modes has neglected damping 

effects. If damping is included, the pole structure of 𝑑┴(𝜔). 
issmeared out, its imaginary part becomes a broadened 

𝛿function peaked at ω𝑟  and its real part exhibits the S-like 

shape of a smeared out principle value function. The 

reflection amplitude r𝑝  (5.37) no longer diverge for real 

values of ω and kx, and surface Plasmon’s are damped. 

Nevertheless, for sufficiently small damping, a damped 

Eigen mode is expected to 

 

5. Discussion of Result 
 

In this chapter, we have evaluated inverse reflectivity as a 

function of ω/ω𝑝 . We have used the value of surface 

response function 𝑑┴ calculated from Chapter IV for 

different values of kx/kF. We have taken the value of kx/kF as 

0.005, 0.05 and 0.1 respectively. There evaluation has been 

performed from Feibelman’s treatment. Relection 

coefficient in the surface regime (kx>ω/c) has been 

calculated from equation (5.37) with Feibelman’s 𝑑┴(𝜔) 
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result for rs=4. Feibelman’s𝑑┴(𝜔)result for rs=4 IS RPA 

result. From our result it indicates that with increasing value 

of Kx1/|rp|
2
 increases very fastly. We have also evaluated 

1/|rp|
2
 with hydrodynamic approximation keeping the value 

of kx/kF = 0.1 and surface damping rs=0.3ω𝑝  and 0.15ω𝑝 . In 

there calculation 1/|rp|
2
 gives a peak and after that it decay. 

The peak is must more proved the value of rs=0.1ω𝑝 . These 

peaks are supposed to be damped multipole surface 

Plasmon. 

 

This result is not really in conflict with the calculation of 

Inglishfield and Kborg
36

 who used a single-stop model for 

the electron potential at a clean surface. The resulting 

density profile is similar to that for the IBM and much 

deeper than the self-consistent lang-kohn profile. RPA 

calculation for the IBM
37

 also yield no MSP mode for  rs 

values  in the metallic range (2 to 6)
38

. Since the surface 

region of low density is too small. This region increases with 

increasing values of rs and for very large rs values (for bulk 

densities) MSP modes appear in the quantum mechanical 

mode. Recent microscopic calculation for charge surface 

support their arguements
39

. 

 

Finally one wants to emphasise an important difference 

between hydrodynamic and RPA calculations, namely the 

role played by damping effects. In hydrodynamic calculation 

damping (r,rs) appears as a free parameter which can be 

neglected completely (r=rs=0) for multipole surface 

Plasmon. In RPA calculation damping mechanism is 

included automatically, namely optical excitation of electron 

hole pair in the surface region, owing to the breaking of 

translational invariance. In strength of this damping effect 

depends susceptibility on shape of the electron density 

prifile
40

. For the Lang-Kohn profile and probably for real 

metals, the damping effects are so large that the MSP modes 

may easily be overlooked. Owing to the strong damping, 

direct observation of multipole surface Plasmon in the ATR 

experiment may be hard if not possible. On the other hand, it 

would be possible to excite their modes, in contract to the 

regular surface Plasmon, even at a perfectly flat surface by 

incident light become. They are related to peak in Im 

{𝑑┴(𝜔)} i.e. in the absorptance. Therefore exication of MSP 

would lead to a reduced intensity of reflected light. Our 

result are shown in tables 5T1. There results are exact. For 

thick metallic layer on metal substrates, it is necessary to 

work with the exact (within HD) formula but for this surface 

layer and clean surfaces simplification are possible. 

 
Table: Result of inverse reflectivity 1/ |r|2 for k/kx =0.005, 

0.05 and 0.1 with 𝑑┴(𝜔) values for RPA in Chapter IV. 

Other results are from HD approximation with kx/kF =0.1 

and rs=0.3ω𝑝  and 0.15ω𝑝  

𝜔/𝜔𝑝  

Result of 1/ |r|2 

kx/kF 

=0.005 

𝑑┴(𝜔)RP

A 

result 

kx/kF 

=0.05 

𝑑┴(𝜔) 

RPA 

result 

kx/kF =0.1 

𝑑||(𝜔) 

RPA 

result 

HD with 

kx/kF =0.1 

rs=0.3ω𝑝  

HD with 

kx/kF =0.1 

rs=0.15ω𝑝  

0.50 0.0685 0.0546 0.0479 0.0328 0.0437 

0.55 0.0324 0.0269 0.0186 0.0096 0.0586 

0.60 0.0059 0.0038 0.0017 0.0027 0.1073 

0.65 0.0214 0.0139 0.0106 0.0158 0.2786 

0.70 0.1053 0.0844 0.0655 0.0986 0.3849 

0.75 0.2565 0.1752 0.1234 0.1627 0.4268 

0.80 0.4598 0.3218 0.3008 0.1238 0.5137 

0.85 0.5985 0.4297 0.4039 0.1048 0.4032 

0.90 0.6713 0.6227 0.5882 101478 0.3546 

0.95 0.7532 0.7016 0.6379 0.2639 0.3045 

1.00 0.8059 0.7586 0.7016 0.3486 0.4176 
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