Designing of Single Sampling Plan on Sustainable Quality Region

Ramkumar .T .Balan¹, Seeman Kuhanga²

¹Associate Professor, Dept. of Statistics, UDOM, Tanzania

²PG Scholar, Dept. of Statistics, UDOM, Tanzania

Abstract: This is a paper developing a single sampling plan based on MAPD and SQR, which are representative of quality interest of all involved in production. The sustainable quality will exceed AQL and limited by MAPD so that consumers interest is highly appreciated along with producers protection. Tables were presented and examples were illustrated.

Keywords: SSP, MAPD, SQR, AQL, Operating Ratio

1. Introduction

There are many sampling plans developed in terms of Horsnell percent defectives by (1954),Cameron(1952), Dodge-Romig (1959)......Mandelson (1962) and Mayer (1967) are the pioneers suggested the significance of MAPD and Soundararajan (1975) Ramkumar (2011, 2013, 2017) developed interesting results on MAPD. Divya (2012) and Ramkumar (2012) had introduced the sampling plans on interval quality and explained how it is effective in what situations. Designing a Sampling plan with sustainable quality on consumer's point of view is to reject bad lots when it exceeds consumer's quality aspiration. To achieve this objective, the plan for designing SSP with MAPD is preferred so that consumer will be protected from getting lower quality product. The second quality level is fixed as SQR which is the difference of MAPD and AQL. SQR is the sustainable quality region under which the proportion of defective is exceeding acceptable quality level and limiting the proportions unto maximum allowable quality level. Thus (MAPD, SQR) is more consumer oriented but protection is assured to producer also. The properties of MAPD as well as AQL are significantly come under this model so that manufacturers, vendors, customers as well as the statisticians and quality controlling agencies were interested to use the sampling plan on this quality indices. When the exact AQL cannot be fixed due to lack of consistency of production information the SQR with MAPD can be taken in the production process confidently. Thus for the products at initial level of production SQR, MAPD based sampling plan is more effective than other designs.

2. Designing SSP with MAPD and SQR

Fix MAPD and SQR in a production process. The quality indices SQR and MAPD were used to design a new SSP by constructing an operating ratio

The new design is efficient to contain the variability of quality that can be accommodated in terms of MAPD. For example SQR = 2xMAPD - AQL, or $SQR = 0.5 \times MAPD - AQL$ etc will be a good measure for the producers as well as the consumers to identify their quality of the product.

There exist a monotonic increase sequence of operating ratio corresponding to the acceptance numbers using the Poisson unity values. Find appropriate c nearly less than or equal to the operating ratio and hence (MAPD,SQR) from the derived values of np^* or n^*SQR using the Poisson unity values, then $n = \frac{c}{p^*}$ or $n = \frac{nSQR}{SQR}$.

2.1 Construction of the Plan

It is assumed that the number of defectives in large production follows Poisson distribution. Then the probability of acceptance of the lot with c defectives is

AQL (p_1) is decided from the expression

$$P_{a}(p_{1}) = \sum_{r=0}^{c} \frac{e^{-np_{1}(np_{1})^{r}}}{r!} \ge (1-\alpha)....(3)$$

for specified values of n and c

The values of np_1 at 5% and 10% level are available in literature. Also from the definition of the point of inflection of a continuous function Pa(p), for specified n & c.

 $MAPD = p^* = c/n.....(4)$ By appropriate value of R, for given MAPD and SQR by the search procedure one can detect c by comparing the operating ratio to the tabled value of R .Hence n is calculated approximating to the nearest integer.

2.2 Construction of Tables

Values of np_1 , and np^* is obtained from equation (2) &(3) and using this values $nSQR = (np^* - np_1)$, $nMAPD = np^* = c$ are found out and *R* is determined from equation(1) for c=1,2.....40 (Table:1). Table 2, represents some sampling plans corresponding to specified MAPD and *SQR*. The operating ratio for each pairs of (MAPD, SQR) is calculated and corresponding sampling plan is developed under the construction of sampling plan. Table 3 is a conversion table to identify other quality indices of the designed plan like LTPD, AQL, AOQL, TQR and MAAOQ, where nLTPD, nAQL, nAOQL, nTQR and nMAAOQ, were taken from Ramkumar (2003, 2006) conversion table . Table 4 shows (MAPD, SQR) for various combination of (n,c), it

Volume 5 Issue 11, November 2017 <u>www.ijser.in</u> Licensed Under Creative Commons Attribution CC BY

International Journal of Scientific Engineering and Research (IJSER) ISSN (Online): 2347-3878 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

was constructed by finding *nSQR*, and *nMAPD* from Table 1 and hence MAPD and SQR for the values of n.

с	R	nSQR											
1	1.5504	0.645	11	2.6987	4.076	21	3.4392	6.106	31	4.0249	7.702		
2	1.692	1.182	12	2.7842	4.31	22	3.5026	6.281	32	4.0775	7.848		
3	1.836	1.634	13	2.866	4.536	23	3.5648	6.452	33	4.1302	7.99		
4	1.9704	2.03	14	2.9449	4.754	24	3.6265	6.618	34	4.182	8.13		
5	2.0947	2.387	15	3.0211	4.965	25	3.6862	6.782	35	4.2327	8.269		
6	2.2108	2.714	16	3.0954	5.169	26	3.7453	6.942	36	4.2827	8.406		
7	2.3186	3.019	17	3.1675	5.367	27	3.8028	7.1	37	4.3326	8.54		
8	2.4206	3.305	18	3.2386	5.558	28	3.8599	7.254	38	4.3814	8.673		
9	2.5182	3.574	19	3.3066	5.746	29	3.9157	7.406	39	4.4298	8.804		
10	2.6103	3.831	20	3.3738	5.928	30	3.9704	7.556	40	4.4773	8.934		

Table 1: Operating ratio R

Table 2: SSP for specified values of MAPD and SQR

	SQR											
MAPD	0.005	0.01	0.02	0.025	0.03	0.035	0.04	0.045				
0.01	(400,4)	(100,1)	(100,1)	(100,1)	(100,1)	(100,1)	(100,1)	(100,1)				
0.02	(1500,30)	(200,4)	(50,1)	(50,1)	(50,1)	(50,1)	(50,1)	(50,1)				
0.03		(467,14)	(33,1)	(33,1)	(33,1)	(33,1)	(33,1)	(33,1)				
0.04		(750,30)	(100,4)	(25,1)	(25,1)	(25,1)	(25,1)	(25,1)				
0.05			(180,9)	(80,4)	(40,2)	(20,1)	(20,1)	(20,1)				
0.06			(233,14)	(133,8)	(67,4)	(33,2)	(17,1)	(17,1)				
0.07			(314,22)	(171,12)	(100,7)	(57,4)	(43,3)	(14,1)				
0.08			(375,30)	(213,17)	(138,11)	(88,7)	(50,4)	(38,3)				
0.09			(444,40)	(256,23)	(156,14)	(111,10)	(78,7)	(44,4)				
0.1				(300,30)	(190,19)	(130,12)	(90,9)	(60,6)				

SSP for specified values of MAPD and SQR (Continued)

	SQR											
MAPD	0.05	0.055	0.06	0.065	0.07	0.075	0.08	0.085	0.09			
0.01	(100,1)	(100,1)	(100,1)	(100,1)	(100,1)	(100,1)	(100,1)	(100,1)	(100,1)			
0.02	(50,1)	(50,1)	(50,1)	(50,1)	(50,1)	(50,1)	(50,1)	(50,1)	(50,1)			
0.03	(33,1)	(33,1)	(33,1)	(33,1)	(33,1)	(33,1)	(33,1)	(33,1)	(33,1)			
0.04	(25,1)	(25,1)	(25,1)	(25,1)	(25,1)	(25,1)	(25,1)	(25,1)	(25,1)			
0.05	(20,1)	(20,1)	(20,1)	(20,1)	(20,1)	(20,1)	(20,1)	(20,1)	(20,1)			
0.06	(17,1)	(17,1)	(17,1)	(17,1)	(17,1)	(17,1)	(17,1)	(17,1)	(17,1)			
0.07	(14,1)	(14,1)	(14,1)	(14,1)	(14,1)	(14,1)	(14,1)	(14,1)	(14,1)			
0.08	(13,1)	(13,1)	(13,1)	(13,1)	(13,1)	(13,1)	(13,1)	(13,1)	(13,1)			
0.09	(33,3)	(11,1)	(11,1)	(11,1)	(11,1)	(11,1)	(11,1)	(11,1)	(11,1)			
0.1	(40,4)	(30,3)	(20,2)	(10,1)	(10,1)	(10,1)	(10,1)	(10,1)	(10,1)			

Table 3: MAPD (%) & SQR % for specified SSP (n,c)

	n												
	50		100		200		500		1000				
с	MAPD	SQR	MAPD	SQR	MAPD	SQR	MAPD	SQR	MAPD	SQR			
1	0.02	0.0129	0.01	0.00645	0.005	0.003225	0.002	0.00129	0.001	0.00065			
2	0.04	0.02364	0.02	0.01182	0.01	0.00591	0.004	0.002364	0.002	0.00118			
3	0.06	0.03268	0.03	0.01634	0.015	0.00817	0.006	0.003268	0.003	0.00163			
4	0.08	0.0406	0.04	0.0203	0.02	0.01015	0.008	0.00406	0.004	0.00203			
5	0.1	0.04774	0.05	0.02387	0.025	0.011935	0.01	0.004774	0.005	0.00239			
6	0.12	0.05428	0.06	0.02714	0.03	0.01357	0.012	0.005428	0.006	0.00271			
7	0.14	0.06038	0.07	0.03019	0.035	0.015095	0.014	0.006038	0.007	0.00302			
8	0.16	0.0661	0.08	0.03305	0.04	0.016525	0.016	0.00661	0.008	0.00331			
9	0.18	0.07148	0.09	0.03574	0.045	0.01787	0.018	0.007148	0.009	0.00357			
10	0.2	0.07662	0.1	0.03831	0.05	0.019155	0.02	0.007662	0.01	0.00383			
11	0.22	0.08152	0.11	0.04076	0.055	0.02038	0.022	0.008152	0.011	0.00408			
12	0.24	0.0862	0.12	0.0431	0.06	0.02155	0.024	0.00862	0.012	0.00431			
13	0.26	0.09072	0.13	0.04536	0.065	0.02268	0.026	0.009072	0.013	0.00454			
14	0.28	0.09508	0.14	0.04754	0.07	0.02377	0.028	0.009508	0.014	0.00475			
15	0.3	0.0993	0.15	0.04965	0.075	0.024825	0.03	0.00993	0.015	0.00497			
16	0.32	0.10338	0.16	0.05169	0.08	0.025845	0.032	0.010338	0.016	0.00517			
17	0.34	0.10734	0.17	0.05367	0.085	0.026835	0.034	0.010734	0.017	0.00537			

Volume 5 Issue 11, November 2017 <u>www.ijser.in</u> Licensed Under Creative Commons Attribution CC BY

International Journal of Scientific Engineering and Research (IJSER) ISSN (Online): 2347-3878

Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

18	0.36	0.11116	0.18	0.05558	0.09	0.02779	0.036	0.011116	0.018	0.00556
19	0.38	0.11492	0.19	0.05746	0.095	0.02873	0.038	0.011492	0.019	0.00575
20	0.4	0.11856	0.2	0.05928	0.1	0.02964	0.04	0.011856	0.02	0.00593

I able 3: Conversion table for WIAPD and SQR a=nn* P p/n* TOP/n* MAAOO/n*											
c=np*	K	p_1/p^*	p ₂ /p*	1QR/p*	AUQL/p*	MAAOQ/p*					
1	1.5504	0.3550	3.8858	3.5308	0.8400	0.7360					
2	1.6920	0.4090	2.6622	2.2532	0.6855	0.6765					
3	1.8360	0.4553	2.2266	1.7/12	0.6473	0.6473					
4	1.9704	0.4925	1.9981	1.5056	0.6360	0.6288					
5	2.0947	0.5226	1.8547	1.3321	0.6336	0.6160					
6	2.2108	0.5477	1.7558	1.2082	0.6353	0.6063					
7	2.3186	0.5687	1.6817	1.1130	0.6389	0.5987					
8	2.4206	0.5869	1.6245	1.0376	0.6433	0.5925					
9	2.5182	0.6029	1.5784	0.9755	0.6479	0.5874					
10	2.6103	0.6169	1.5404	0.9235	0.6528	0.5830					
11	2.6987	0.6295	1.5088	0.8793	0.6575	0.5793					
12	2.7842	0.6408	1.4816	0.8408	0.6623	0.5760					
13	2.8660	0.6511	1.4584	0.8073	0.6669	0.5731					
14	2.9449	0.6604	1.4378	0.7773	0.6713	0.5704					
15	3.0211	0.6690	1.4196	0.7506	0.6756	0.5681					
16	3.0954	0.6769	1.4033	0.7264	0.6797	0.5659					
17	3.1675	0.6843	1.3884	0.7041	0.6836	0.5640					
18	3.2386	0.6912	1.3755	0.6843	0.6874	0.5622					
19	3.3066	0.6976	1.3631	0.6655	0.6911	0.5606					
20	3.3738	0.7036	1.3523	0.6487	0.6946	0.5591					
21	3.4392	0.7092	1.3419	0.6326	0.6980	0.5577					
22	3.5026	0.7145	1.3325	0.6180	0.7012	0.5564					
23	3.5648	0.7195	1.3238	0.6044	0.7043	0.5551					
24	3.6265	0.7243	1.3160	0.5917	0.7073	0.5540					
25	3.6862	0.7287	1.3081	0.5793	0.7102	0.5529					
26	3.7453	0.7330	1.3011	0.5681	0.7131	0.5519					
27	3.8028	0.7370	1.2950	0.5579	0.7158	0.5509					
28	3.8599	0.7409	1.2885	0.5475	0.7184	0.5500					
29	3.9157	0.7446	1.2830	0.5384	0.7209	0.5492					
30	3.9704	0.7481	1.2771	0.5289	0.7234	0.5484					
31	4.0249	0.7515	1.2716	0.5201	0.7258	0.5476					
32	4.0775	0.7548	1.2672	0.5125	0.7281	0.5468					
33	4.1302	0.7579	1.2619	0.5040	0.7303	0.5461					
34	4.1820	0.7609	1.2577	0.4969	0.7325	0.5454					
35	4.2327	0.7637	1.2533	0.4896	0.7346	0.5447					
36	4.2827	0.7665	1.2494	0.4829	0.7366	0.5442					
37	4.3326	0.7692	1.2453	0.4761	0.7386	0.5436					
38	4.3814	0.7718	1.2418	0.4700	0.7406	0.5430					
39	4.4298	0.7743	1.2380	0.4638	0.7425	0.5424					
40	4.4773	0.7767	1.2349	0.4582	0.7443	0.5419					

1000 . 11 C

Procedure with example how to use the tables for designing SSP ON SPECIFIED AQL AND SQR 1) Compute $R = \frac{MAPD}{SQR}$, where SQR=MAPD-AQL.

- 2) Compare value of R matching with nearest operating ratio in Table: 1 and locate acceptance number (c)correspondingly. 3) Compute $n = \frac{nMAPD}{MAPD}$ or $n = \frac{nSQR}{SQR}$ from Table 1
- 4) The required sampling plan (n, c) for a specified MAPD and SQR is obtained.

Example 1

For an electronic component MAPD= 6% where SQR = MAPD-AQL=1.5% The quality indices are $p^*=.06$ and $(p^* - p_1) = .032$

Then
$$R = \frac{0.06}{0.032} = 1.875$$

From Table 1 approximate R = 1.875 (exceeding R =1.8360), the corresponding c = 4Then $n = \frac{np^*}{p^*} = \frac{4}{0.06} = 67$

The needed sampling plan to test the quality of the computer component is (67,4)

Using Table 4 Now $\frac{p_1}{p^*} = 0.4925$ so $p_1 = \frac{p_1}{p^*} \times p^* = 0.4925 \times 0.06 = 0.02955$ $-\frac{p_2}{p^*} \times n^* = 1.9981 \times 0.06 = 0.02955$ 0.02955 Now $\frac{p_2}{p^*} = 1.9981$ $p_2 = \frac{p_2}{p^*} \times p^* = 1.9981 \times 0.06 =$ 0.119886 $\begin{array}{l} TQR = p_2 - p_1 = 0.119886 - 0.02955 = 0.09025 \\ \frac{AOQL}{p^*} = \ 0.6360 \ \ \text{so} \ \ AOQL = \frac{AOQL}{p^*} \times p^* = 0.6360 \times 0.06 = \end{array}$ 0.03816

Volume 5 Issue 11, November 2017

www.ijser.in

Licensed Under Creative Commons Attribution CC BY

 $\frac{MAAOQ}{p^*} = 0.6288$ so $MAAOQ = \frac{MAAOQ}{p^*} \times p^* = 0.6288 \times 0.06 = 0.037728$

Example 2

A consumer friendly article is designed with MAPD = 10%defectives and SQR = .5 xMAPD - AQL) = 3.84%defectives where AQL=1.16% The operating ratio $R = \frac{MAPD}{SQR} = 2.604$

Appropriate R from Table: 1 is 2.6103 (exceeding 2.5182), c = 10, then

 $n = \frac{10}{0.1} = 100$. The required sampling plan is (100,10)

Example 3

The electronic device is qualitatively indexed by (MAPD = 8.3% & SQR = 2.5%). What is the sampling plan to set quality inspection?

From Table:3 the approximate combination of (MAPD, SQR) is found by search procedure and it is (0.085, 0.026835) .the corresponding sampling plan is (200,17)

Example 4

Application in A Simulated Data

The life length of a type of bulb in hours follows gamma distribution with parameters ($\alpha = 98$, $\beta = 8.5$ and $\gamma = 1000$), a sample of 25 bulbs show the following number of hours of burning where the bulbs were supplied in a lot size of 3000. As per the Quality Standard prescribed by Quality Control Agency, the life length of bulbs was expected a minimum life length of 1700hrs and *MAPD* = 8% with SQR = 0.85 MAPD - AQL where AQL = 2.4%.

sample number	1	2	3	4	5	6	7	8	9	10
life length(hrs)	1823	1846	1863	1823	1822	1693	1880	1917	1774	1726
sample number	11	12	13	14	15	16	17	18	19	20
life length(hrs)	1876	1905	1923	1850	1824	1789	1766	1866	1759	1792
sample number	21	22	23	24	25	26	27	28	29	30
life length(hrs)	1825	1648	1803	1782	1683	1846	1800	1753	1906	1820
sample number	31	32	33	34	35	36	37			
life length(hrs)	1924	1722	1759	1818	1845	1896	1817			

Therefore

$$R = \frac{MAPD}{SOR} = \frac{8}{4.4} = 1.8181$$

From Table 1, the approximate R = 1.8360 (exceeding R = 1.6920), the corresponding c = 3 and nSQR = 1.634. then sample size

$$n = \frac{nSQR}{SQR} = \frac{1.634}{0.044} \approx 37$$

Therefore the optimum SSP is (37, 3). There are three items defective (sample number 6, 22 and 25) in a random sample of 37 units following Gamma distribution as mentioned above. Hence by using attribute SSP (37, 3) the lot of 3000 bulbs will be accepted for sale.

References

- Cameron, J. M. (1952): Tables for Constructing and for Computing the operating Characteristics of Single Sampling Plan, Industrial Quality Control, Vol.9, No.1, pp 37-39.
- [2] Divya P.R. (2012). A new procedure for designing single sampling plan indexed through trigonometric ratios. International journal of scientific & engineering research, volume 3,
- [3] Dodge, H. F. and Roming, H.G. (1959): Sampling Inspection Tables single & Double Sampling(2nd ed). John Wiley and Sons, New York.
- [4] Guenther, W. C. (1969): Use of Binomial, Hyper Geometric and Poisson Tables to obtain Sampling Plans, Journal of Quality Technology, Vol.No.2, pp.105-109.
- [5] Horsnell.G (1954). The *determination of single sampling schemes for percentage defectives*, Applied statistics.3,150-158.

- [6] Mandelson, J. (1962): *The statistician, the engineer and sampling plans*, Industrial Quality Control, vol.19, pp.12-15.
- [7] Mayer, P.L. (1967): A note on the sum of Poisson probabilities and an application. Annals of institute of statistical mathematics, vol.19, pp.537-542.
- [8] Ramkumar T.B. (2013). Maximum Allowable Proportion Defective (MAPD) -A Quality Measure. Indian Journal of Applied Research, Vol-3.
- [9] Ramkumar,T.B (2011), A sampling plan with producer's allowable risk (PAR) at Maximum Allowable proportional Defective(MAPD). African journal of mathematics and computer science research vol5(2),pp.34-38.
- [10] Ramkumar. T.B. (2010). Designing Quality Interval Single Sampling plan .International Journal of Operating Resaerch and Optimization, Vol 1, No: 1. Pp.15-22.
- [11] Ramkumar T.B. & Eric Nganzi (2017) .MinimumATI single sampling plan with MAPD, International Journal of Scientific & Engineering Research, Vol.8, Issue8.1175-1185.
- [12] Soundararajan, V.(1975).Maximum allowable percent defective (MAPD) single sampling inspection by attribute plan. Journal of Quality Technology, Vol.7, No.4, pp.173-182.
- [13] Vedaldi R.(1986). A new criterion for construction of single sampling inspection plans by attributes. Rivista de Statistic applica, vol.No:235-244.
- [14] Wazir E.I.& Braimah O.J (2016). Design of single acceptance sampling plan using maximum allowable proportional defect (MAPD). Mathematical theory and modeling, IISTE, Vol 6, NO 3, 119-124.