
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 4, April 2017

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Clustered Look Ahead Prefetching Mechanism In

Near Memory Processor

1
R. Meera,

 2
T. Perarasi,

3
R. Ezhilarasi

1,3PG Student, Dept of ECE, Karpaga Vinayaga College of Engineering and Technology, Tamil Nadu, India

2Associate professor, Dept of ECE, Karpaga Vinayaga College of Engineering and Technology, Tamil Nadu, India

Abstract: Near memory processing is a recent solution to overcome the challenges imposed by memory wall. The solution can bridge

the performance gaps between processing and memory speeds. Thus a light weight practical memory side prefecther is proposed to

improve the performance of near memory processor. The proposed prefetcher exploits the system performance by bringing data from

lower level memory before they are needed. The proposed clustered look ahead prefetching is used to predict the future data reference

and determine which data are to be prefetched earlier based on the prediction. The proposed CLAP mechanism is fixed in a near

memory processor which makes the system performance efficient and reduces the energy consumption to prolong the lifetime of the

battery. Therefore the near memory processor reduces the delay and increase the speed of the DRAM system.

Keywords: DRAM, CLAP, energy efficiency, memory side prefetcher, Near memory processor

1. Introduction

Energy efficiency is more critical in battery operated

mobile systems. This become more apparent in high

performance mobile system such as smart phone and tablet

PCs. DRAM with a capacity of several gigabytes [1], [2].

DRAM is most popularly used as main memory because of

high density and low cost. Multi core processors are

popular in computer system owing to poor scalability of

single core-processors. Programs are getting bigger and

trending to larger DRAM accommodation for larger

programs in main memory. However larger DRAM

capacity is accommodate with higher amounts power and

energy, thus increasing cooling cost and reducing the

lifetime of the battery. By increasing power and energy

consumption of DRAM it is focused on over fetching

problem and static power consumption. A memory

clustering traffic is proposed which focuses on the energy

conservation of RAM, called Clustered Look Ahead

Prefetching (CLAP) to reduce the activate / precharge and

idle energy consumption of the system. The system

memory is predicted using look-ahead prefetching (LAP).

In CLAP, prefetching accesses are postponed until normal

memory accesses are generated at data path. In this way

they can increase the probability of row buffer hits and

idle periods with first-ready, first-come, first serve (FR-

FCFS). By using this memory scheduling technique it can

reduce the number of row activation and idle power

consumption. High Latency of off-chip memory accesses

has been critical in thread performance. Inter thread

memory contention, If not properly managed can have

individual thread performance as well as overall system

throughput which leads to system underutilization and

thread starvation [11]. Previously proposed memory

scheduling algorithms are biased in system performance.

By using this approaches cannot provide the high fairness

and system throughput at same time. Cache performance is

discussed for system performance and energy

consumption. Cache is a hardware or software components

that stores data so that future request for that data can be

served faster, the data stored in a cache might be the result

of an earlier computation. DRAM has some problem is

that the switch is not a perfect valve, so electrons often

―leak‖ away which can cause the device to lose

information. Near memory processing has been a topic of

great interest among researchers [12], touted a solutions

that can bridge the performance gaps between processing

and memory speeds by bringing computation closer to

where data resides. The challenges involved in integrating

memory and logic had prevented them from becoming the

mainstream processing paradigm. More recently, NMP

systems are regaining a lot of interest [8,7,11], which

enable the cost-effective integration of logic processors

and memory. Therefore, several recent research studies

[11], have proposed NPM systems incorporating simpler

processors in logic layer of the memory stacks.

The proposed light weight, memory side prefetching

techniques to improve the performance and energy

efficient of CLAP based NPM systems that leverage their

knowledge of the current state of the memory Systems to

prefetch data from row buffers, thereby improving row

buffer locality by over 40%. Over experimental results

demonstrate that proposed prefetcher improve the

performance by over 60%. In CLAP, prefetching accesses

are postponed until normal memory accesses are generated

at data path. In this way they can increase the probability

of row buffer hits and idle periods with first-ready, first-

come, first serve (FR-FCFS). By using this memory

scheduling technique it can reduce the number of row

activation and idle power consumption.

2. Survey

1. Moving computation Near memory has become more

practical because of 3D stacking technology. This article

discusses in memory map reduce in the context of near

memory processor (NMP). The author considers two NMP

architecture: one that exploits Hybrid memory cube

devices and one that does not. They examine the benefits

of different NMP approaches and quantify the potential for

improvement for an important emerging big data

workload. Ware house scale computing is dominated by

systems using commodity hardware to execute workloads,

processing large amounts of data distributed among many

disles. Several frame works, such as Map Reduce have

Paper ID: IJSER151314 31 of 34

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 4, April 2017

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

emerged in recent years to facilitate the management and

development of big data workloads. These systems rely on

disles for most data accesses, but placing a large fraction

of the data in memory is a growing trend. Spark is a new

Map Reduce framework the help programmers tag objects

and cache them in DRAM main memory, A primary

reason for the resurgence of interest in near data

computing (NDC) is the recent emergence of 3D stacked

memory and logic products such as Microns Hybrid

Memory cache (HMC). Such devices enable collocation of

processing and memory in a single package, without

impacting the manufacturing process for individual

DRAM dies and logic dies. The high bandwidth between

the logic and memory dies with through silicon vias can

enable significant speedups for memory bound

applications.

2. Traditionally, an open-page policy has been used for

uni-processor systems and it has worked well because of

spatial and temporal locality in the access stream. In future

multi-core processors, the possibly independent access

streams of each core are interleaved, thus destroying the

available locality and significantly under-utilizing the

contents of the row buffer. In this work, they attempt to

improve row-buffer utilization for future multi-core

systems. Main memory has always been a major

performance and power bottleneck for compute systems.

The problem is exacerbated by a recent combination of

several factors - growing core counts for CMPs , slow

increase in pin count and pin bandwidth of DRAM devices

and microprocessor and increasing clock frequencies of

cores and DRAM devices. Power consumption and

DRAM latencies are serious concerns in modern chip-

multiprocessor (CMP or multi-core) based computer

systems. The management of the DRAM row buffer can

significantly impact both power consumption and latency.

Modern DRAM systems read data from cell arrays and

populate a row buffer as large as 8 KB on a memory

request. But only a small fraction of these bits are ever

returned back to the CPU. This ends up wasting energy

and time to read (and subsequently write back) bits which

are used rarely. Power consumed by memory has increased

substantially and datacenters now spend up to 30% of the

total power consumption of a blade (motherboard) in

DRAM memory alone. Given the memory industry’s focus

on costper bit and device density, power density in DRAM

devices is also problematic. Further, modern and future

DRAM systems will see a much smaller degree of locality

in the access stream because requests from many cores

will be interleaved at a few memory controllers. In

systems that create memory pools shared by many

processors locality in the access stream is all but

destroyed. Main memory has always been a major

performance and power bottleneck for compute systems.

The problem is exacerbated by a recent combination of

several factors - growing core counts for CMPs slow

increase in pin count and pin bandwidth of DRAM devices

and microprocessor and increasing clock frequencies of

cores and DRAM devices. Power consumed by memory

has increased substantially and datacenters now spend up

to 30% of the total power consumption of a blade

(motherboard) in DRAM memory alone. Given the

memory industry’s focus on costper- bit and device

density, power density in DRAM devices is also

problematic. Further, modern and future DRAM systems

will see a much smaller degree of locality in the access

stream because requests from many cores will be

interleaved at a few memory controllers. In systems that

create memory pools shared by many processors locality

in the access stream is all but destroyed.

3.Cluster-based network servers in which a front-end

directs incoming requests to one of a number of back-ends.

Consider content-based request distribution: the front-end

uses the content requested, in addition to information

about the load on the back-end nodes, to choose which

back-end will handle this request. Content-based request

distribution can improve locality in the back-ends’ main

memory caches, increase secondary storage scalability by

partitioning the server’s database, and provide the ability

to employ back-end nodes that are specialized for certain

types of requests. Network servers based on clusters of

commodity workstations or PCs connected by high-speed

LANs combine cutting-edge performance and low cost.

Figure 1: Cluster simulation model

In most current cluster servers the frontend distributes

requests to back-end nodes without regard to the type of

service or the content requested. That is, all back-end

nodes are considered equally capable of serving a given

request and the only factor guiding the request distribution

is the current load of the backend nodes. With content-

based request distribution, the frontend takes into account

both the service/content requested and the current load on

the back-end nodes when deciding which back-end node

should serve a given request. The potential advantages of

content-based request distribution are: (1) increased

performance due to improved hit rates in the back-end’s

main memory caches, (2) increased secondary storage

scalability due to the ability to partition the server’s

database over the different back-end nodes, and (3) the

ability to employ back-end nodes that are specialized for

certain types of requests (e.g., audio and video).

4. The long latency and serialization caused by atomic

operations have a significant impact on performance. The

data communication is not overlapped with the main

computation, which reduces execution efficiency. The

inefficiency comes from the data movement between

where they are stored and where they are processed.

Machine learning (ML) workloads have become an

important class of applications these days. ML provides an

effective way to model relationships in physical,

biological, and social systems, and thus is actively used in

a variety of application domains such as molecular models,

disease propagation, and social network analysis. Parallel

machine learning workloads have become prevalent in

numerous application domains. Many of these workloads

Paper ID: IJSER151314 32 of 34

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 4, April 2017

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

are iterative convergent, allowing different threads to

compute in an asynchronous manner, relaxing certain read

after- write data dependencies to use stale values. While

considerable effort has been devoted to reducing the

communication latency between nodes by utilizing

asynchronous parallelism, inefficient utilization of relaxed

consistency models within a single node have caused

parallel implementations to have low execution efficiency.

As more data becomes available for many tasks, ML is

expected to be applied to more domains, thereby making

efficient execution of ML workloads on architectures

increasingly important. In ML, the key phase is learning;

ML inductively learns a model by examining the patterns

in massive amounts of data. This requires significant

amounts of computation and thus easily takes several days

or even months with sequential execution on a single node.

As such, most of ML work loads are parallelized to be

executed on large-scale nodes, and prior work has mainly

focused on reducing the synchronization cost among

multiple nodes by utilizing asynchronous parallelism.

While a considerable amount of efforts has been focused

on inter-node synchronization in large-scale nodes, there

has been little focus on the performance of ML workloads

on a single node.

3. Clap Mechanism

Look Ahead Prefetching technique is proposed to track the

future instructions which are known as program counter

and prefetching technique is called as Look Ahead

program counter. To generate a prefetching addressed

from a previous memory reference address with a stride

limits the prefetching to a single loop forward iteration.

While in LAPC prefetching the prefetch address is created

using previous memory reference and time valve. The

prefetchimg data are useless when branch is incorrectly

predicted which causes unnecessary memory traffic and

cache pollution. In this existing work larger and faster

DRAM systems were demanded due to increase in

program sizes and popular thread level parallelism. This

trend however increases the power and energy

consumption of DRAM. In this paper it is based on data

prefetching scheme for memory traffic clustering which

can achieve a large improvement in the row buffers and

power down mode utilization for system performance.

Stride prefetching is implemented normally by comparing

addresses used by memory instruction. The stride

prefetching requires the address of previous memory

access to be recorded with the last detected stride called

reference prediction table (RPT). This is used to maintain

the information regarding to the recently used load

instructions. Prefetching request queue (PRQ) is

responsible for clustering prefetching requests generated

by RPT. A prefetching request is filtered out to avoid

duplicate prefetching for same data.

Figure 2: CLAP overall architecture

4. Near Memory Processor

The NMP has a large, high-bandwidth, multi-bank local

memory area that it directly manages. they call it as

Scratchpad. The NMP has support for vector load and

store operations that move data between memory and

scratchpad. Data can be moved from the scratchpad to the

vector unit in the NMP using multiple concurrent lanes,

thus providing high bandwidth access to vector operands.

Vector gathers and scatter instructions are also available.

To support streaming efficiently, the NMP supports very

low overhead producer-consumer synchronization between

concurrent threads. Specifically, each addressable unit in

the scratchpad (byte) has a full/empty bit, with logic that

can block a thread that attempts to read an empty word or

write a full word. Since the scratchpad is large, it is

impractical to save and restore it upon context switch.

Thus, the scratchpad is not part of a thread context — the

thread context includes only a small number of scalar and

control registers. The scratchpad is accessed with virtual

addresses and is shared by all the threads running on the

NMP. Although using virtual addresses slightly increases

scratchpad access time, the overhead is modest if data is

processed using long vectors, as address translation is

performed only once per vector operand access in the

scratchpad. Such virtualization has the added benefit that

scratchpad storage associated with threads that are inactive

for a long period of time can be lazily paged out (into main

memory) and brought back on demand when accessed.

The NMP also includes instructions for bit processing like

those of the Cray machines. In particular, it has a bit

matrix register that is used for data permuting instructions

such as bit matrix multiply. The bit matrix register is also

virtualized, so that it does not have to be saved and

restored on context switch.

5. Simulation Results

The simulation result is shown in Modelsim 6.2c and

synthesized using ISE design suite 14.5 is shown below.

Paper ID: IJSER151314 33 of 34

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 4, April 2017

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Figure 3: Simulation results for memory processor

Figure 4: RTL schematic viewer

Figure 5: Technology schematic viewer

Modelsim is offered in multiple editions such as Modelsim

PE, ModelSim SE, and Modelsim Xe. Modelsim SE offers

high-performance and advanced debugging capabilities,

while Modelsim PE is the entry-level simulator for

hobbyists and students. Xilinx ISE is a design environment

for FPGA products from Xilinx, and is tightly-coupled to

the architecture of such chips, and cannot be used with

FPGA products from other vendors. The Xilinx ISE is

primarily used for circuit synthesis and design, while ISIM

or the ModelSim logic simulator is used for system-level

testing.

6. Conclusion

In this paper, the proposed light-weight, practical memory-

side prefetcher designs, which improve the performance

and energy efficiency of PIM systems. The near memory

processing is used as a recent solution to overcome the

challenges imposed by memory wall. The solution can

bridge the performance gaps between processing and

memory speeds. Thus proposed prefetcher exploit the

system performance by bringing data from lower level

memory before they are needed. Thus the proposed

clustered look ahead prefetching is used for predicting the

future data reference and determine which data are to be

prefetched earlier based on the prediction. Therefore the

proposed CLAP mechanism is fixed in near memory

processors which makes the system performance efficient

and reduce the energy consumption to prolong the lifetime

of the battery. Therefore the near memory processor

reduces the delay and increase the speed of the DRAM

system. Thus the power consumption and DRAM latencies

are serious concerns in modern chip multiprocessor (CMP

or multicore) based computer systems. Thus the

Prefetching techniques are applied to the memory

processor to improve the memory system performance.

Reference

[1] Jedec standard jesd235a. High Bandwidth Memory(HBM) 2

DRAM, 2016

[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A scalable

processing-in-memory accelerator for parallel graph

processing. In Proceedings of the 42Nd Annual International

Symposium on Computer Architecture, ISCA ’15, pages

105–117, New York, NY, USA, 2015.ACM

[3] S. S. Baghsorkhi, I. Gelado, M. Delahaye, and W.-m. W.

Hwu. Efficient performance evaluation of memory

hierarchy for highly multithreaded graphics processors. In

PPoPP, pages 23–34, New York, NY, USA, 2012. ACM

[4] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T.

M. Aamodt. Analyzing CUDA workloads using a detailed

GPU simulator. In ISPASS, pages 163–174. IEEE Computer

Society, 2009

[5] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and K.

Goossens. System and circuit level power modeling of

energy-efficient 3d stacked wide i/o drams. In Proceedings

of the Conference on Design, Automation and Test in

Europe, pages 236–241, San Jose, CA, USA, 2013. EDA

Consortium

[6] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O.

Naji, B. Akesson, N. Wehn, and K. Goossens. Drampower:

Open-source dram power and energy estimation tool

[7] D. Chang, G. Byun, H. Kim, M. Ahn, S. Ryu, N. Kim, and

M. Schulte. Reevaluating the latency claims of 3d stacked

memories. In Design Automation Conference (ASP-DAC),

2013 18th Asia and South Pacific, pages 657 662, Jan 2013

[8] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron.

Pannotia: Understanding irregular GPGPU graph

applications. In IISWC, pages 185–195. IEEE Computer

Society, 2013

[9] S. M. Khan, Y. Tian, and D. A. Jimenez. Sampling dead

block prediction for last-level caches. In MICRO, pages

175–186, Washington, DC, USA, 2010. IEEE Computer

Society

[10] J. Lee, N. B. Lakshminarayana, H. Kim, and R. W.Vuduc.

Many-thread aware prefetching mechanisms for GPGPU

applications. In MICRO, pages 213–224. IEEE Computer

Society, 2010

[11] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D.

Burger, D. S. Fussell, and S. W. Redder. Priority-based

cache allocation in throughput processors. In HPCA, pages

89–100. IEEE, 2015

[12] X. Zhuang and H.-H. Lee. Reducing cache pollution via

dynamic data prefetch filtering. In IEEE Trans. Comput.,

volume 56, January 2007

[13] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and

A. Moshovos. Demystifying GPU micro architecture

through micro benchmarking. In ISPASS, pages 235–246.

IEEE Computer Society, 2010

Paper ID: IJSER151314 34 of 34

