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Abstract: In this work, a family of high order stable methods is derived for the solution of stiff ordinary differential equation. The
derivation is done by pairing Reverse Adams Moulton (RAM) and Adams Moulton (AM) methods and applying shift-operator E on

them. The resultant one-block methods are A-Stable for order ten and A(cx) -stable with & = 74.60° for order eleven. The methods
are tested on some stiff initial value problems to showcase the effectiveness.
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1. Introduction

Many physical phenomena when modeled mathematically result in ordinary differential equations (ode). The solutions of
these equations enable us to find answers to such questions as to how a physical system behaves. Most often, providing
analytical solution to these modeled equations is very difficult, if not impossible and as a result numerical approximations are
often sought. In this work, we consider the problem of providing methods for finding the numerical solution y(t) to the
initial value problems (ivp) in ode

y)=ftyt); yt,)=y,; telab]; o

fRxRT >R, y:R—->R"
Equation (1) occurs in many fields of science and engineering applications and therefore needs extensive study.
2. Linear Multistep Formulas (LMF)

The LMF is generally given by

k k
Zarynﬂ = hZﬂr f (tn+r! yn+r) 2
r=0 r=0

k k
where the step number k >1 and hn =1, — 1, is a variable step length, {ar }r=0 and {ﬂr }r=0 are both not zero.
Formula (2) can be represented by two polynomials

k K
p(2)=> a1, o(z)=) B1"
such that (2r):((:Jan be rewritten as =
P(E)Y, =ho(E)f, @
where E is the shift operator defined by E j Yo = Yoij.

3. Adams Moulton (AM) methods

Ifin (2) o, =land &, ;, =—1, and all other coefficients of y(t) are zeros then the resultant formula is known as AM and is
written as
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k
yn+k - yn+k—1 = hz ﬂr f (tn+r1 yn+r) (5)
r=0

k-1
The first characteristics polynomial of (5) is,O(Z) =17 (Z —1) . By this, the methods are zero-stable. The

k
determination of the coefficients {,Br }r:O is done by imposing the maximum order P = K +1. This leads to
1
k2 —(k-1)°
Y 11 1 1...1 (B
ks—(k—l)3 012 3.k ||A
3 0 1 2% 3%.Kk%| A,
= C e ©)
k' —(k-2)*| (0 1 2° 3% ..k"){B
k+1
If on the other hand, & = 1and a, = -1 and all other coefficients of y(t) are zeros then we have the Reversed Adams

Moulton (RAM) methods which are generally written as
k
Yoa =Y = hn Zﬂr fn+r (7
r=0

Their first characteristics polynomial p(z) are given by p(Z) =z -1 and are therefore are generally zero stable. The

k
coefficients {;Br }r:O are determination by imposing the maximum order K +1 on the method (7). This leads to the matrix
equations

1

1

5 111 1...1 By

1 1 2 3..Kk B,

3 1 2% 3% . k? 5,

S A )

1 0 1 2¢ 3% ..kt By
k+1

which are solved simultaneously for the coefficients [7].

Stiff ode can only be handled effectively with A-stable method but A-stable linear multistep methods (LMM) are difficult to
come by because of Dahlquist order barrier. The order barrier theorem of Dahlquist [9] states that:

Theorem: Dalquist order barrier

Volume 5 Issue 6, June 2017

Www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Paper ID: IJSER151408 103 of 112




International Journal of Scientific Engineering and Research (1JSER)
ISSN (Online): 2347-3878
Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

(i) No explicit LMMocan be A-stable;
(ii) No A-stable LMM can have order greater than two;
(i) The second order A-stable LMM with the smallest error constant is the

. h . 1
trapezoidal rule, y_ =y, +§(fn +f1)iCon = 12 P= 2

where C ., is the error constant and p is the order

Definition 1

A LMM is said to be A-Stable if its region of absolute stability (RAS) contains the entire negative (left) complex half-plane¢,
(see [14]).

In [10], it was noted that the above Dalquist order barrier theorem on A-Stability of LMM forced many researchers to
considered A(a)-Stable methods and also adopt some unconventional numerical integrators. See the following ([1], [2], [3],

[4], [5], [6], [71, [8], [15] and [16]) for some of the authors that considered unconventional numerical integrators in order to
circumvent the order barrier. In order to circumvent the barrier theorem, shift operator is used in this work to transform the

LMM pairs into a family of one-step block integrators that are A(cr) — Stable at high order which are suitable for solving
stiff ode.

Definition 2:
T
A LMM when applied to a linear test equation y' = Ay is said to be A(cx) — Stable, with & € (O, E) if its region of

absolute stability (RAS) contains the infinite wadge Wa ,
W, = {th:-a <|z-arg(Ah)| <& }
T
The LMM becomes A-Stable when & = E , (see [20]).
4. Derivation of the block methods
The methodology for the construction is captured in the following proposition:
Proposition

[i] [ (ryI™K
Let the multi-family of LMM {,Ok (R), Oy (R)}j—l,k—l be given, that is,

pHE)y, =halUNE) T, ; j=11)m, k=1D)K (o

with {pﬁ”,cf&”

system of composite LMM

} for a fixed j forming a family of variable order pk, j of variable step number k. Then the resultant

E'pUNE)Yy, =hE'cI(E)f, ; i=0@Qk-1; j=12,...m
arising from the E-operator transformation of (10) can be composed as the block method
AY.a +AY, =h(BF,; +B,F,); det(A) #0 2

if k is chosen such that | is an integer given as

_m+k(m-2)
m-1 ’

M,k >2and k—12>0.(13)
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where Yoy Yoo Foyg and F.n=0,1,2,... are as defined below and Al; Ao, 811 Bo are square

matrices also defined below for a fixed m.

(1] 1]
Qy B

[2] 2]
Qg By

[m] B, = m]

% o A (14)

0 O )

0 (2k—1)x(2k-1)

0 (2k—1)x(2k-1)

al® 0 0 0
: al™ 0
aB g
0
0
al™ al™ 0
a([)l] a:[l] aIEl]
0
a([]m] al[m] aiEm]
ol
0 0 al
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[ [1]
m ..M 0 0 0 . .. 0
0
[m] IEm] 0
h . . .
m m [1]
0 1 ' ' ' k
0 0
0
A P Mo
[1] 11 1 [
0 0 1 ﬂk—l k
B.=| |, :
[m] mp ' [m] [m] 0
0 1 k-1 k
. 0
[ 1]
0 k
[m] [m]
0 . . . 0 B N K/ (2k-1)x(2k-1)

T.

Yn+1 - (yn+1’ yn+2 1t yn+2k—| )T : Yn = (yn—2k+l+1’ yn—2k+|+2 1t yn—l' yn ) ’ (15)

I:n+1 = (fn+1’ fn+2""l fn+2k—| )T ; I:n :(fn—2k+l+1’ 1:n—2k+l+2""’ fn—l! fn )T

n=0,12,...

Proof:

Notice that the E-operator is effectively applied k-1 times on the system of LMF {P;Ej], U|Ej] }k,j . Thus there are 2k-I
unknown solution points captured in the block of solution Y, = (yn+1, Yioior o Ynioka )T . By this the block
definition in (12) is realized if the coefficient matrices Ay, A,, B;, Byare square matrices of dimension
(2k —1)x (2k —1). This simply imply that m+m(k —1) = 2k —1I so that I is as in (13) and for a fixed m the k is then
chosen such that K —1 >0 =

In particular:

aym=2;1=2k=2,34,...
@Hn:3J=E%§;k:&51"

@)m:4ﬂz4g%;k=41miam

When K —1 =0, the method is a minimal block method. This is so if M= K. However, the case of interest in this paper is
whenm = 2.
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Consider the k-step LMF pair defined by [,01, O'l] and [p2 ) 02] . Shifting this (k-1) time, where | is as defined in (13), we

have a set of 2(k-1) equations in 2(k-1) unknowns which can be written in the block form (12). Note thatYn ﬂYn+1 = ¢

-1

(empty) and Fn ﬂ Fn+1 = ¢ Equation (12) can also be multiplied by Ai and written in the form
-1 -1 -1

Yn+1 = Al AOYn + h(Al Ban+1 + Al BO Fn) (16)

where

A'A=|0| |=(0 e) A'B,=|O0 | |or A'B,=0

Al_l Bl =

DG X

-1 -1
The structure of A1 AO and Al Bo makes the need to carry along the past solution

Y = ] yrrry ] T ;
n (y”‘2k+'+1 Yn-aksie2 Yoar ¥n ) unnecessary. Only the initial solution Ya provided by the ODE (1) is
needed to implement the block method (12). Therefore (12) is self-starting block methods.

The coefficients of the order nine of the methods are given here below:

g 0 0 0 0 0 0 0O 0 0 0 0 0O 0 O g
0 0 0 0 0 11 0 0 0 O O 0 O
0 0 0 0 0 0 0O 0 0 0 0 0 0 O
0 0 0 0 0 0 1 1 0 0 0 0 0 O
1 1. 0 0 0 0 0 O O O O O O 0 O
0 0 0 0 0 0 0 1 1 0 0 O 0 O
=— (1 1 0 0 0 0O O 0 0O O 0 0 0 O 1
N == 0 0 0 0 0 0 0 0 11 0 0 0 O e 0 —_ =
== o0 11 1 0 0 0 0 0 0 0 0 0 o0 0 4 ) 0uins =
=—% 0 0 0 0 0 O 0 0 O U1 1 0 0 O 014015
=—% O0 0 11 1 0 0 0 0 0 0 0 0 0 O
=—=% 0 0 0O 0 0 O 0 0 O O0 (1 1 0 O
EB= o 0o o 11 0 0 0 0 0 0 0 0 0B
F——=9 0 0 0 0 0 0 0 0 O0 O0 0 01 1 0 F
—=% 0 0 0 O (1 1 0 0 0 0 0 0 0 O°
n n n n n n n n n n n n n 1 1
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5. Stability of the Implicit Block Methods

When (12) is applied to the test equation

y'=1y Re(l) <0 @7

it yields the characteristics equation.

(w,z) =det(Aw+ A, —z(Bw+B,)), z=1h g

The region of absolute stability R A associated with (12) is the set

R, ={z:|w;(2)| <1, j =10k} qg)

IfweletZ —> 0 in (18), the difference system becomes

7(w,0) =det(Aw+ A,)

(20)

All the proposed block methods can be cast in the form

+bf,) ey

AY,.,+ay, =h(BF

Where

Q>
Il

Paper ID: IJSER151408
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2(k-1)x1

n+1

[l
0

[2]
0
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2(k-1)x1
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1A T
Notice that for all the block methods, A1 a= (1 1 1...1) =€

1
1

A'A=|0 " |=(0 ¢ |

implying that

1

To see this, assume order [P > 1for all the LMF that constitute the block, then by consistency,
Aie +a=0 (23)

T
where € = (111...2)"  From (21) it follows that

A d=-e

The above ensures zero-stability of the implicit block methods (12).Method (12) can also be written as

Yoa =M(2)Y, )
where

M(2)=(1-2A"B,) "(zA "B, - A"'A) @s)
is the amplification matrix. The stability function P (W, Z) is

p(w, ) = Det [I,w—M(2)]= W (w—D(2)) (27)
The stability domain S of this family is

S ={zeC:|\w(z)|<1} @28
P9
Q(z)

The D(Z) (the only non-zero value of R(z)) for this family of methods are given as a rational function D(Z) =

where P(z) and Q(z) are polynomials.

Definition1: A block method is said to be pre-stable if the roots of Q(Z) are contained in (ON (see [7])-

The one step block method is A-stable if and only if it is stable on the imaginary axis (I-stable): D(1y) <1 forall y € R,

and D(2) is analytic for D(z) <O (i.e., Q(2) does not have roots with negative or zero real parts), I-stability is equivalent
to the fact that the Norsett polynomial defined by

E(y) =[QGy)|” —|P(y)|" = Q(iy)Q(-iy) — P(iy)P(-iy) @9)
satisfies E(Y) >0 foran Y € R [13].

For this particular case oforder10, the characteristics equation 7z(W, Z) in (18) is given by
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7

8

120443%11004Q00AN7700Q02/MKANNNNNNNNNNNNNN

The roots of this characteristic equation is

(P P W
10 00 00 10 10 10 10
129443311994996077992345600000000000000 [ 1035546495959968623938764800000000000000 z

6024048758556388956230784122880000000000 z* (1 2610073148797178100581929058304000000000¢
79906269742356191792932634525319168000000 z* [1176692296138830016967164668671033344000(
292072493893544206535710083648456917222400 z° 1137556749425598068194801427651076266577¢
380008358066428495850072782831891646592000 z° 1130709437592189067876393641007218423664¢
199026272702679394972115970899395556794560 z'° 110316168360231914082744285744223399700
42337897624658859108240854410326680227200 z 2 1134529769473328551243477322427210458675
3149476816109685526874945463690134251008 z'|' [11463047088792937170747062645021467086848 :
70863186166110466493906263391230353953 z'° 294413311994996077992345600000000000000
1035546495959968623938764800000000000000 z (1 6024048758556388956230784122880000000000 z°
26100731487971781005819290583040000000000 z> 1 79906269742356191792932634525319168000000 z
176692296138830016967164668671033344000000 z° [129297249389354420653571008364845691722240(
375567494255980681948014276510762665779200 z' [138000835806642849585007278283189164659200(
307094375921890678763936410072184236646400 z° [119902627270267939497211597089939555679456(
103161683602319140827442857442233997002240 z'' [1423378976246588591082408544103266802272
13452976947332855124347732242721045867520 z*> [13149476816109685526874945463690134251008
4A30470RRTA203T1TNTATOA2AABN2TARTORARAR »1° 11 7TNRARTRATAATT1NAARAGRANA2AIRATI2INIKRARR =16

For this particular case, the only none zero solution D(z), has no pole on C_, all the roots of Q(Z) which is the

. . . . . +
denominator of the rational function D(z) are contained in C ™ as shown below

z =9.3622e-12-0.2518i, z = 9.3622e-12+0.2518i, z = 0.0991 -1.8292i, z = 0.0991 +1.8292i,

z = 0.1453 -4.3834i, z = 0.1453 +4.3834i, z = 0.3053 -1.1253i, z = 0.3053 +1.1253i, z = 0.5462 - 0.843i, z = 0.5462+0.8433i,
z = 0.6585 -0.6008i, z = 0.6585 + 0.6008i, z = 0.7343 - 0.3490i, z = 0.7343 + 0.3490i, z = 0.7786 -0.1134i,z = 0.7786 +
0.1134i

E(y) >0 in(29) forall Y € R the method is therefore A-Stable

6. Numerical Experiments
In this section, we considered two problems to test the effectiveness of the method

Problem 1: Singularly Perturbed Problem (cf: [12])
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y, (1) =-(2+ &)y, (1) + e y2(1); y,(0) =1

Y, () =y, (1) =y, () — Y2(1); v,(0) =1
te[01]; £=10",102,10°,10*

—2t. -t
The theoretical solutions are yl(t) =€ Y, (t) =€ . The errors when our method of order 9 is implemented on
problem 1 are given in table 1. Even when the value of & is tending to zero, the errors are consistent.

Table 1: errors on different vales of & on problem 2 using RAM/AM k=9

h=0.0001 Errors

e=10" 3.58¢-08
e=10"° 6.29e-07
=107 4.05e-07
e=10" 5.01e-08

Problem 2:

Consider the following linear constant coefficient initial value problem taken from [7],

-21 19 -20 1
y =119 -21 20 |y; y@©0)=|0
40 —-40 -40 -1

The theoretical solution is given by

. e ?' + e "' (cos(40t) + sin(40t))
y(t) = > e * —e " (cos(40t) + sin(40t))
2e "% (sin(40t) — cos(40t))
The errors and computational rate of convergence computed with our method of order 10 at different values of h are given in
table 2

Table 2: errors and convergence rate of RAM/AM k=9 on problem 2

h Errors Convergence rate
0.032 1.70e-02
0.016 2.06e-04 6.3650
0.008 1.02e-06 7.6567
0.004 3.61e-09 8.1409
0.002 4.55e-12 9.6330
0.001 7.35e-15 9.2754

7. Conclusion

The work in [1] has been extended to higher order methods. The order ten of the family is A— Stable while the order
eleven is A(a) — Stablewith a = 74.5934° . The errors from the implementation of the method of order ten on some stiff
initial value problems shows that they are effective.
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