* Derivations in Nearrings

Dr. D. Bharathi¹, K. Sreenivasulu²

¹Professor, Department of mathematics, S.V.U, Tirupathi, A.P., India ²Research scholar, Department of mathematics, S.V.U, Tirupathi, A.P., India

Abstract: Let N be a non-commutative prime nearing, U be a nonzero semi group ideal of N, and $D\neq 0$, a * derivation associated with D of N such that D [x, y]- [x, y]=0 for all x, y \in U. Then F is trivial and D [x, y]+ [x, y]=0, for all x, y \in U. Then D is trivial.

Keywords: derivations, * derivations, nearrings, associative and prime nearrings

1.Introduction

When Posner [1] proved that the existence of a nonzero centralizing derivation on a prime ring forces the ring. In view of [2], Hvala [3] introduced the concept of * derivation. Familiar examples of * derivations are derivations, * inner derivations and later includes left multipliers, that is an additive mapping d: $R \rightarrow R$ satisfy $d(xy)=d(x)y^*$ for all x, yeR. The sum the two * derivations is a * derivation, every map of the form $D(x)=cx^*+d(x)$; where c is a fixed element of R and D a derivation of R is a * derivation ; and if R has 1.

In this paper, N will denote a zero symmetric right abelian nearring with multiplicative center Z(N), for all x, $y \in N$. [x, y]=xy-yx and x0y=xy+yx, denote the well-known Lie and Jordan products.

A nonempty subset U of N will be called a semi group right ideal (resp. left ideal). If $UN \subset U(NU \subset U)$. Finally, U is called a semi group ideal if it is a right as well as a left semi group ideal. A nearring N is called a prime, if $aNb=\{0\}\Rightarrow a=0$ or b=0, for all a, $b \in N$.

An additive mapping $D:N \rightarrow N$ is said to be a right * derivation associated with D if $D(xy)=D(x)y^*+xD(y)$, for all x, yeN. (1) and is said to be a left * derivation associate with D if $D(xy)=xD(y^*)+D(y)x$, for all x, yeN. (2)

Here D is said to be * derivation associated with D. If it is a right as well as a left * derivation associated with D.

So many authors [4, 2, 3, 5] studied the commutativity in prime and semi prime rings admit with derivations and * derivations. On the other wise, many results assure that prime nearrings with certain constrained derivations have ring.

In this section we investigate some results of nearrings satisfying certain identities involving * derivation.

2. Main Theorems

Lemma 1: Let N be prime nearring and D be a * derivation on N associated with D on N, then

 $a(D(b)c^*+bD(c))=aD(b)c^*+abD(c)$, for all a, b, ceN. (3)

Proof: Clearly, D(a(bc))=D(a)(bc)*+aD(bc)=D(a)(bc)*+a(D(b)c*+bD(c)) =D(a)b*c*+a(D(b)c*+bD(c))On the other hand, D((ab)c)=D(ab)c*+abD(c)=(D(a)b*+aD(b))c*+abD(c)=D(a)b*c*+aD(b)c*+abD(c)

Comparing these two expressions for D(abc) gives the desired conclusion. \Diamond

Lemma 2: Let N be a prime nearring and $U \neq \{0\}$ a semi group ideal of N. If D is a * derivation on N such that D(U)=0 then D=0.

Proof: From the hypothesis, we obtain $0=D(ux)=D(u)x^*+uD(x), \forall u \in U, x \in N.$ (4) $=uD(x), \forall u \in U, x \in N$ =UD(x)That is $UD(x)=0, \forall x \in N.$ (5) $\Rightarrow D(x)=0, \forall x \in N.$ $\Rightarrow D=0. \diamond$

Lemma 3: Let N be a prime nearring and let $U \neq \{0\}$ a semi group ideal of N. If x b an element of N such that xU=0 or Ux=0, then x=0.

Theorem 1: Let N be a non commutative prime nearring, U is a nonzero semi group ideal of N, and $D\neq 0$, a * derivation associated with D of N such that D [x, y]- [x, y]=0 for all x, y \in U. Then D is trivial.

Proof: From the hypothesis, we have D[x, y] = [x, y](6)Substitute y with yx in (6) and using it, we get D[x, yx] = [x, yx]D(xy)-D(yx)=xy-yx $D(x)y^*+xD(y)-D(y)x^*-yD(x)=xy-yx$ Replace y by yx then D(x)y*x*+xD(yx)-D(yx)x*-yxD(x)=xy-yx $D(x)y^{*}x^{*}+xD(y)x^{*}+xyD(x)-D(y)x^{*}x^{*}-yD(x)x^{*}-yxD(x)=xy$ ух $(D(x)y^*+xD(y))x^*-(D(y)x^*-yD(x))x^*=xy-yx$ $(D(xy)-D(yx))x^*=xy-yx$ $D(xy-yx)x^{*}+(xy-yx)D(x)=xy-yx$ $D[x, y]x^{+}(xy-yx)D(x) = [x, y]$ xy D(x)=yxD(x), for all x, y \in U. (7) Again substitute y in nz in (7) and using it, we get $[x, n]z D(x) = \{0\}$, for all x, zeU, neN. (8) x nz D(x) = nz x D(x)

Volume 5 Issue 7, July 2017

<u>www.ijser.in</u>

Licensed Under Creative Commons Attribution CC BY

(xn z-nz x)D(x)=0 (xnz-nxz)D(x)=0 (xn-nx)z D(x)=0 (x, n)z D(x)=0, for all x, zeU, neN. (x, n)U D(x)=0 That is [x, n]U D(x)={0}, for all xeU, neN. (9) Since N is prime either [x, n]=0 or D(x)=0 for all xeU, neN.

Therefore by the Lemma 3, in view of hypothesis, if N be a prime nearring and let $U \neq \{0\}$ be a semi group ideal of N. If $U \subset Z(N)$, then N is commutative, contradiction D(U)=0 and so D=0 by Lemma 2, Hence, our hypothesis D(xy)-D(yx)=xy-yx $(D(x)y^*+xD(y)-D(y)x^*-yD(x)=(xy-yx)$ $(D(x)y^*-xy)=(D(y)x^*-yx)$ (10) Replace y^* by y and x^* by x let B(x)=D(x)-x for all $x \in U$, and so B(xy)=B(x)y, for all x, yeU. Then the last equality can be written as, B(x)y=B(y)x, for all x, yeU. (11) Taking zn^{\dagger} instead of x in (11) and using Lemma 1. we find B(z) [y, n¹]=0, for all y, zeU, n¹eN. (12) Substitute z with yn in the last equality, we obtain B(y)N[y, n]=0, for all y, $z \in U$, n, $n^{1} \in N$. (13) It follows that $B(y)N[y, N^1]=0$, for all y \in U, n¹ \in N. (14) Then we conclude that, by primeness of N, that either B(y)=0 or y, n = 0 for all yeU, neN, that is U \subseteq Z(N). If $B(y)\neq 0$, then $U\subseteq Z(z)$ implies N is commutative. If B(y)=0, then which is contradiction. Which complete the proof. \Diamond

Theorem 2: Let N be a non-commutative prime nearring, U a nonzero semigroup ideal of N and N admits a * derivation D associated with D such that D [x, y]+[x, y]=0 for all x, y \in U. Then D is trivial.

Proof: If D=0, then we have the desired conclusion. Now we consider $D\neq 0$,

We reach [x, y] D(x)=0 for all x, $y \in U$ (by above Theorem) Take yn in y in the last relation, we get [x, y]ND(x)=0 for all x, $y \in N$, $n \in N$

Since N is prime, we get the required result by hypothesis. The similar argument can be adapted in the D [x, y]+[x, y]=0 for all x, yeN. \Diamond

Theorem 3: Let N be a non commutative prime nearring, U a nonzero semi group ideal of N, and N admits a * derivation D associated with D such that D(x0y)-(x0y)=0 for all x, yeU. Then D is trivial.

Proof: From hypothesis, we have $d(x)y^*+xd(y)+d(y)x^*+yd(x)-x0y=0$, for all x, y \in U. (15) Substitute y by yx in (15), we get that $d(x)(yx)^*+xd(yx)+d(yx)x^*+yxd(x)-x0yx=0$ $d(x)y^*x^*+xd(y)x^*+xyd(x)+d(y)x^*x^*+yd(x)x^*+yxd(x)-x(yx)-(yx)x=0$ x [d(yx)-yx]=0xy d(y)=-yxd(x), for all x, y \in U. (16) Substitute y by nz in (16) and using it, we reach [x, n]zD(x)=0 for all x, $z\in U$, $n\in N$

That is $[x, n]UD(x) = \{0\}$, for all $x \in U$, $n \in \mathbb{N}$. (17)

Since N is prime nearring either [x, n]=0 or D(x)=0, for all x, εU , $n\varepsilon N$.

If [x, n]=0, then N is commutative, which is contradiction to hypothesis.

Therefore D(x)=0 that implies D=0.

Theorem: let N be a non-commutative prime nearing, U a nonzero semi group ideal of N, and admit a * derivation D associated with D such that D(x0y)+x0y=0 for all x, $y \in U$. Then D is trivial.

Proof: For any x, $y \in N$, We have D(x0y)-xoy=0 The same technique as follow in proof of Theorem 3, We reach (x0y) D(x)=0, for all x, $y \in N$. Take yz in y use in last relation, we get $[x, y] \ge D(x)=0$, for all x, $y \in N$. This similar results holds in case D(x0y)+x0y=0, for all x, $y \in N$. \Diamond

References

- [1] E.C.Posner, a Derivation in prime rings, Proceedings of the American Mathematical Society, vol.8, pp.1093e 1100, 1957.
- [2] M.Bresar, On the distance of composition two derivation to the generalized derivation, Glasgow Mathematical Journal, vol.33, pp.89e93, 1991.
- [3] B.Hvala, a Generalized derivations in rings, Communication in Algebra, vol.26, no.4, pp.1147e 1166, 1998.View at Scopus.
- [4] M.N.Daif and H.E.Bell, a Remarkson derivation on semi-prime rings, International Journal of Mathematics and Mathematical Sciences, vol.15, no.1, pp.205e 206, 1992.
- [5] M.A.Quadri, M.Shadab Khan and N.Rehman, a Generalized derivations and commutativity of prime rings, Indian Journal of Pure and Applied Mathematics, vol.34, no.9, pp1393e 1396, 2003.View at Scopus