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Abstract: The method Dynamic Programming (DP) can be applied on linear models which are not of full rank. The use of DP for a 

matrix enables to solve systems of linear equations that are unbalance and linearly dependent. This technique can be used to compute 

the various statistical measures such as coefficient of determination R2, the t-statistic and F-statistic. These measures are very much 

important to check how well a model fits the data. DP technique can be used to compute the coefficients even when multicollinearity is 

present among the explanatory variables under the investigation. 
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1. Introduction   
 

Richard Bellman was the first man who coined the term 

„Dynamic Programming‟ in 1950s to describe multistage 

decision processes. He introduced the principle of optimality 

and the functional equations of DP. Bellman‟s statement of 

the „Principle of Optimality‟ is that “an optimal policy has 

the property that whatever the initial state and initial 

decision are, the remaining decisions must constitute an 

optimal policy with regard to the state resulting from the 

first decision” (Bellman, 1957). Dynamic programming 

(DP) is a technique for computing recurrence relation 

efficiently by sorting partial results. Data fitting (or 

parameter estimation) is an important technique used for 

modeling in many areas of disciplines. Numerical analysts, 

statisticians and engineers have developed techniques and 

nomenclature for the least squares problems of their own 

discipline. Bellman and Kalaba (1965) used DP to the 

problem of obtaining a numerical solution to an ill 

conditioned system of linear equations. Kalaba and 

Natsuyama introduced two cost functions in the literature of 

DP. The first cost function is the square of the length of the 

current discrepancy vector and the second is the square of 

the length of the current solution vector. The two cost 

function is minimized simultaneously by optimally selecting 

the minimum length vector solution. This algorithm 

introduced in DP has been tested in a number of ways by 

Kalaba, Natsuyama and Uneo (1999) and Itiki, Kalaba and 

Natsuyama (1999). The principle of optimality in DP allows 

converting the least square problem into a sequential 

decision problem. Kalaba and Natsuyama made the most of 

this further by showing how the least squares problem can 

be solved for both the case introducing two constraints into 

DP framework, where the columns of the matrix A are 

independent and the case where they are dependent vectors. 

Kalaba, Natsuyama and Uneo (1999) treat the inverse 

problem of estimating transport parameter on the basis 

external observation of radiant intensity. These problems are 

approached using associative memory neural networks 

whose associated least square problems is solved by using a 

new DP algorithm. Kalaba, Johnson and Natsuyama (2005) 

introduced a new algorithm, which can be used to calculate 

various statistical quantities needed for evaluation of the 

linear model. They even showed that optimal control law 

can be used to deal with the least square problem in the case 

of collinearity. This paper will show how the DP algorithm 

introduced by Johnson and Kalaba can be used to produce 

the coefficients of the least square problems. 

 

2. Methodology 
 

A problem of obtaining the shortest length solution of 

consistent set of linear algebraic equations is defined as  

X = Y                           (1) 

where  X = 
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For the estimation of parameter vector , 
2

YX  should 

be minimized keeping  as small as possible. Here, DP is 

allowing solving the problem sequentially. Let h r (Y) be the 

smallest square of the length of the vector 
r

with subject to 

restriction  

 YX r
r  = minimum  for  r = 1, 

2, …, p.  

The r
th

 column of the matrix X is denoted x r . The matrix 

X r is the first r columns of X and 
r

be a r-dimensional 

vector. Here, it illustrates about the linearly dependent case, 

i.e., the case when x r is linearly dependent on x 1 , x 2 , …, 
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x 1r . Thus, the Bellman principle of optimality gives the 

following recurrence relation as   

h r (Y) = min
r

[ )(1
2

rrrr xYh    ]  for r = p+1, 

p+2, …, n.       (2) 

Here, only one set of scalars are like  1 ,  2 , …,  r  which 

satisfies the following relation  

x 1 1  + x 2  2  + … + x p  p = Y r   

Finally, set Y n  = Y   (3) 

Y r = Y 1r - x 1r  1r    

for r = n-1, n-2, …, p.    (4) 

Expressing (3) in vector form as  


)( p
= ( pp XX  )

1
pX  Y p       (5) 

Defining h p (Y) as  

h p (Y) = x
2

1  + x
2

2  + … + x
2
p  = 

)()( )( pp xx    

 = YXY p p
1-

pp
1-

pp X)XX(] )XX([    

= YXY p p
1-

pp
1-

pp X)XX( )XX(    (6)    

Subsequently,  

h p  (Y) = YRY p
  

(7) 

where R p = p
1-

pp
1-

pp X)XX( )XX( pX
 
 (8) 

and also R p is a n x n symmetric matrix. 

Considering that, h 1r (Y) = YRY r 1  (9) 

where R 1r is n x n symmetric matrix. Now, it will be 

shown that h r (Y) has the form     h r (Y) = YRY r in which 

R r is n x n symmetric matrix with r = p+1, p+2, …,n. From 

(2), for r = p+1, p+2, …,n. 

h r (Y) = min
r

[ )(1
2

rrrr xYR    ] 

= min
r

[ )()( 1
2

rrrrrr xYRxY    ] 

]2[ 2
111

2
min rrrrrrrrr xRxxRYYRY

r




   

h r (Y) = min
r

[(1+ rx R 1r x r )
2

r + 

rrrr xRYYRY 11 2   ]      

 (10) 

Differentiating within bracket expression of RHS in (10) 

with respect to  r provides 

r

(.)
= 2 (1 + x rrr xRx 1 ) r + 2 rr xRY 1 = 0   (11) 

Hence, 
OPT
r = 

rrr

rr

xRx

xRY

1

1

1 






  (12) 

or, 
OPT
r = 

rrr

rr

xRx

YRx

1

1

1 






  (13) 

Using (12) or (13) in (10) yields  

h r (Y) = (1 + 
rrr xRx 1 )(

OPT
r )

2
- 2 YRx rr 1

OPT
r + 

YRY r 1  

= (1 + rx R 1r x r )[
2

1

11

)1( rrr

rrrr

xRx

YRxxRY








]  

-2 ]
1

[
1

11
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rrrr
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RxxR
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 Y + YRY r 1  = YRY r 1  - 

 Y  [
rrr

rrrr

xRx

RxxR

1

11

1 






]Y  

 h r (Y) = Y  [
rrr

rrrrr

xRx

RxxRR

1

111

1 






]Y = Y R r Y (14) 

where, R r = 
rrr

rrrrr

xRx

RxxRR

1

111

1 







 

 provided rrr xRx 11   0. (15) 

 Let  

 r  = 1rR x r  for r = p+1, p+2, …, n. (16) 

Therefore, the relation becomes 

 R r = 

rr

rrr

x

R









1

1
 for r = p+1, p+2, …, n. (17)  

 Hence, if rx is linearly independent of the vectors x 1 , x 2 , 

…, x 1r  then the algorithm gives the general form by 

substituting (16) in (11) or (12),  

 
OPT
r = 

rr

rr

x

Y









1
             

(18) 

or,  

 
OPT
r = 

rr

rr

x

Y









1
            

(19) 

where,  

Y r  = Y - 
rrxxx  12211(  )     (20) 

The algorithm illustrated is extended as follows:  

  r is already defined, the component of the r
th

 column of 

the matrix  X p , which is perpendicular to all its preceding 

column vectors  1 ,  2 , …,  1r with        r = 1, 2, …, p. 

The component of Y, which is perpendicular to all the 

vectors x 1 , x 2 , …, x p may be obtained as 

 1p = M p Y       

       (21)   

In summary, the optimal set of scalars β 1 , β 2 ,…, β
r
 can be 

calculated as:  

 Y r = Y - α 1r                                
(22)

 

 
OPT
r = 

rr

rr

x

Y









1
         

(23)
 

 Y r = Y - x r

OPT
r           

(24) 
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OPT

r 1  = 

11

11

1 







rr

rr

x

Y





                         

(25)

 

2.1 Determining the Regression Coefficient: 

 

The precision of estimated regression equation has to be 

checked in predicting the values of the dependent variable Y. 

The measure, called the coefficient of determination R
2

, is 

a scale-free summary of degree to which the variables x 1 , 

x 2 , …,x p predict the dependent variable Y (Lawson and 

Hanson, 1974).  

 

Now, the total variation is defined as the total sum of the 

squared deviations (TSS) of the vector Y about its mean to 

obtain. (Greene, 2002) discussed that a linear relationship 

X = Y is assumed and TSS is factored into two parts in 

which the first part is the sum of squares explained by the 

regression (SSR) and the second part is the sum of squares 

that could not be explained by the regression equation 

known as the residual sum of squares (RSS). Hence, it is 

defined as   

TSS = SSR + RSS                   (26)  

Now, R
2

is defined as  

R
2

 = 
TSS

SSR
 = 

TSS

RSSTSS 
 = 1 – 

TSS

RSS

 

 (27) 

The RSS is computed as 

RSS = 1p  1p         (28) 

Where the last residual vector  1p  is defined as  

 1p  = Y – (x11 + x 2  2 + … + x p  p )    (29) 

This yields  

R
2

 = 
YY

YfYY p



 )(
 = 1 – 

YY

pp



  11

    

(30) 

2.2 Examining the Model Fit 

 

To measure the reliability for the model, the goodness of fit 

between the data and the model has to be measured. The F-

test is applied to check whether the regression coefficients 

1 ,  2 , …,  p considered together vary significantly from 

0. The hypotheses are set up for testing as follows.  

H 0 :  = 0 versus H1 :   0 

Column 1 in Table 1 demonstrates the sources of variations 

as regression and the residual and column 2 shows 

respective degrees of freedom. The SS, MSS and F-ratio are 

given in columns 2, 3 and 4 of this table respectively. Now, 

the computed value of F-ratio is compared to the theoretical 

value taken from the F-table for any chosen level of 

significance and a decision rule is applied to reject or accept 

the hypothesis that the model fits the data.   

 

 

 

 

 

 

Table 1: ANOVA for the F-test 
Source Df SS MSS F-ratio 

Regression p – 1 YY   - 1p  1p  

1

11



 

p

pYY p 
 

)/()(

)1/()1(

11

1

pm

ppYY

pp

p












 

Error m – p 
1p  1p  

pm

pp



  1      1
 

 

Total m – 1    

 

 The F-statistic can be computed to test the hypothesis as  

F Cal (p-1, m-p) = 

)/()1(

)1/(
2

2

pmR

pR



 = 
)/()(

)1/()1(

11

1

pm

ppYY

pp

p













 
(31) 

where m = No. of observations p-1 and m-p = degrees of 

freedom 

2.3 Examining the Significance of the Explanatory 

Variables  

 

Now, it will be examined about the contribution of each 

individual coefficient  i  significantly to the regression 

equation or not. Therefore, for testing the hypothesis for 

given coefficient, hypothesis is to be set up as 

H 0 :  i = 0 versus H 1 :  i  0 

The usual statistical test for this is the t-statistic. Thus 

t cal  = 
)( i

i

SE 


   (32) 

In order to construct the test, SE of the estimator should be 

known. So, the t-statistic is derived indirectly by utilizing 

the fact that the exact distribution of t
2
p -statistic with p-df is 

F-distribution with (1, m) df, viz., F(1, p).  The SSE for the 

full model together with p-predictor is subtracted from the 

RSS of a subset model with p-1 predictors which give 

the reduction in RSS by including predictor I = RSS 1p  - 

RSS p   

Hence, F(1, m-p) = 
)/(

1

pmRSS

RSSRSS

p

pp




  (33) 

where  
pm

RSS p


is the variance of the full model.  
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t i = 
)/(

1

pmRSS

RSSRSS

p

pp




   (34) 

Substituting (188) in (194) gives 

t i  = 

pm

pp

pppp





 



 11

  

(35) 

where t i  = calculated t-value for the coefficient of  i , 

 1p = residual vector from the model without predictor i, 

 p  = residual vector from the model with all the predictors.  

 Table 2 provides the steps demonstrated above by 

partitioning the variance and constructing the ANOVA table.  

 

Table 2: ANOVA for the t-test 
Source Df SS MSS t-ratio 

Full model P 
RSS p  

  

Model without 

predictor  i  

p - 1 

RSS
1p

 

  

Predictor 1 

RSS
1p

- RSS
p

 RSS
1p

- RSS
p

 

)/(

1

pmRSS

RSSRSS

p

pp





 
Error (Full Model) m - p 

RSS p  

pm

RSSp


 

 

 

3. Illustrative Example  
 

To estimate the effect of type of plant on the weight of the 

maize fruit, four types of maize plants given the same 

condition has been recorded the following weight of its fruit 

at harvest as 

 
Wt. of the Plants Type1 Type 2 Type 3 Type 4 

 62 

71 

83 

90 

80 

75 

45 

62 

75 

60 

Total 306 200 137 60 

 

In order to estimate the effect of the type of plant on the 

weight of plant it is assumed that the observation ijY is the 

sum of four parts as shown below: 

jiIji evY ,,    

where, 

 ν is the population mean of the weight of plant  

I  is the effect of the type I on weight  

jie , is the random error term peculiar to the observation. 

The observations are written down in terms of the equation 

as follows: 

62 = 1111 evY I    

71 = 1212 evY I    

83 = 1313 evY I    

90 = 1414 evY I    

80 = 2121 evY I    

75 = 2222 evY I    

45 = 2323 evY I    

62 = 3131 evY I    

75 = 3232 evY I    

60 = 4141 evY I    

In matrix form, they are represented as: 

 
Y   = X β + e 

Y is the vector of observations, X is the incidence matrix and 

β is the vector of parameters to be considered here. 

 

The normal equations corresponding to the model, Y = X β + 

e can be derived by LS to give, 

YXXX    
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XX  = 
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YX  = 
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Matrix XX   has determinant equal to zero and hence not of 

full rank. Therefore, matrix  
1)( XX  does not exist. Hence 

the equation cannot be express as  

β = YXXX  1)(  

 

This implies that the normal equation has no unique 

solution. To get one of the solutions, the procedure will be 

done as follows:
 

oM = 







































1000000000

0100000000

0010000000

0001000000

0000100000

0000010000

0000001000

0000000100

0000000010

0000000001

 

1 , 1M
, 2 , 2M

, 3 and 3M  are calculated below. 

oM is updated to 1M as shown below,  

 11111111111   

1M = I - 

11

11

xx

xx




= 



























































9.01.01.01.01.01.01.01.01.01.0

1.09.01.01.01.01.01.01.01.01.0

1.01.09.01.01.01.01.01.01.01.0

1.01.01.09.01.01.01.01.01.01.0

1.01.01.01.09.01.01.01.01.01.0

1.01.01.01.01.09.01.01.01.01.0

1.01.01.01.01.01.09.01.01.01.0

1.01.01.01.01.01.01.09.01.01.0

1.01.01.01.01.01.01.01.09.01.0

1.01.01.01.01.01.01.01.01.09.0

 
 4.04.04.04.04.04.06.06.06.06.02 

 





























































83.017.017.017.017.017.00000

17.083.017.017.017.017.00000

17.017.083.017.017.017.00000

17.017.017.083.017.017.00000

17.017.017.017.083.017.00000

17.017.017.017.017.083.00000

00000075.025.025.025.0

00000025.075.025.025.0

00000025.025.075.025.0

00000025.025.025.075.0

2M

 

 5.05.05.05.05.05.000003 

3M
 = 



























































67.033.033.00000000

33.067.033.00000000

33.033.067.00000000

00067.033.033.00000

00033.067.033.00000

00033.033.067.00000

00000075.025.025.025.0

00000025.075.025.025.0

00000025.025.075.025.0

00000025.025.025.075.0

0

 

 67.533.966.367.213.833.135.135.65.55.144 
 

 7.657.657.657.667.667.665.765.765.765.765 Y

 

1R is computed as shown, 


































111

1

11

1
111 )(

xx

x

xx

x
xxR
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Therefore, 1R = 







































01.001.001.001.001.001.001.001.001.001.0

01.001.001.001.001.001.001.001.001.001.0

01.001.001.001.001.001.001.001.001.001.0

01.001.001.001.001.001.001.001.001.001.0

01.001.001.001.001.001.001.001.001.001.0

01.001.001.001.001.001.001.001.001.001.0

01.001.001.001.001.001.001.001.001.001.0

01.001.001.001.001.001.001.001.001.001.0

01.001.001.001.001.001.001.001.001.001.0

01.001.001.001.001.001.001.001.001.001.0

 

2R is calculated, 

212 xR = 







































04.0

04.0

04.0

04.0

04.0

04.0

04.0

04.0

04.0

04.0

  

2R    

33

331

1 



x

R




 

2R
=







































0072.00072.00072.00072.00072.00072.00072.00072.00072.00072.0

0072.00072.00072.00072.00072.00072.00072.00072.00072.00072.0

0072.00072.00072.00072.00072.00072.00072.00072.00072.00072.0

0072.00072.00072.00072.000872.00072.00072.00072.00072.00072.0

0072.00072.00072.00072.00072.00072.00072.00072.00072.00072.0

0072.00072.00072.00072.00072.00072.00072.00072.00072.00072.0

0072.00072.00072.00072.00072.00072.00072.00072.00072.00072.0

0072.00072.00072.00072.00072.00072.00072.00072.00072.00072.0

0072.00072.00072.00072.00072.00072.00072.00072.00072.00072.0

0072.00072.00072.00072.00072.00072.00072.00072.00072.00072.0

 

Similarly, 3 , 
3R , 4 , 4R

 and
  5  are calculated. Thus 

3  = 







































0217.0

0217.0

0217.0

0217.0

0217.0

0217.0

0217.0

0217.0

0217.0

0217.0

, 4 =







































0217.0

0217.0

0217.0

0217.0

0217.0

0217.0

0217.0

0217.0

0217.0

0217.0

 and 5







































2436.0

2436.0

2436.0

2436.0

2436.0

2436.0

2436.0

2436.0

2436.0

2436.0

 

3R
= 







































0063.00063.00063.00063.00063.00063.00063.00063.00063.00063.0

0063.00063.00063.00063.00063.00063.00063.00063.00063.00063.0

0063.00063.00063.00063.00063.00063.00063.00063.00063.00063.0

0063.00063.00063.00063.00063.00063.00063.00063.00063.00063.0

0063.00063.00063.00063.00063.00063.00063.00063.00063.00063.0

0063.00063.00063.00063.00063.00063.00063.00063.00063.00063.0

0063.00063.00063.00063.00063.00063.00063.00063.00063.00063.0

0063.00063.00063.00063.00063.00063.00063.00063.00063.00063.0

0063.00063.00063.00063.00063.00063.00063.00063.00063.00063.0

0063.00063.00063.00063.00063.00063.00063.00063.00063.00063.0

 

4R
=







































2436.02436.02436.02436.02436.02436.02436.02436.02436.02436.0

2436.02436.02436.02436.02436.02436.02436.02436.02436.02436.0

2436.02436.02436.02436.02436.02436.02436.02436.02436.02436.0

2436.02436.02436.02436.02436.02436.02436.02436.02436.02436.0

2436.02436.02436.02436.02436.02436.02436.02436.02436.02436.0

2436.02436.02436.02436.02436.02436.02436.02436.02436.02436.0

2436.02436.02436.02436.02436.02436.02436.02436.02436.02436.0

2436.02436.02436.02436.02436.02436.02436.02436.02436.02436.0

2436.02436.02436.02436.02436.02436.02436.02436.02436.02436.0

2436.02436.02436.02436.02436.02436.02436.02436.02436.02436.0

 

Now, 12345 ,,,  and will be calculated as: 

45 YY
 =







































67.66

67.66

67.66

67.66

67.66

67.66

50.76

50.76

50.76

50.76

 

55

55
5

1 




x

YOPT






= 171.2823 

5554 xYY OPT
 

4Y







































 06.72

66.65

66.65

66.66

66.66

66.66

50.76

50.76

50.76

50.76
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006.7

29.11

84.17

61.44

̂

 
 

Table 3: ANOVA

 

Source DF SS MS F 

Regression 

Residual 

Total 

3 

6 

9 

312.6 

1259.5 

1572.1 

104.2 

209.9 

0.496 

2R  = 312.6/1572.1 = 0.199 

 

The total variation explained by the model is 19.9%, the 

overall model is not significant, meaning that the weight of 

the maize fruit does not depend on the type of maize plant. 

 

4. Conclusion    
 

In this paper, an application of dynamic programming has 

been considered as an alternative approach for the solution 

of least squares regression problems. The output of the 

algorithm based on dynamic programming can be used to 

find out the shortest length solutions of least squares 

problems in which the matrix may be less than of full rank. 

DP technique can be used to compute the coefficients even 

when multicollinearity is present among the explanatory 

variables under the investigation.   
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