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1. Introduction 
 

Recently Authors in paper [1] have defined generalized 

Lowndes’s operator and Hankel operator involving with ex-

ponential function.  In another paper Authors in paper [2] 

discussed the solution of certain special quadruple integral 

equations associated with multi-dimensional inverse Mellin 

transform of given function by the application of extended 

form of Erdélyi—Kober operators. 

 

In this paper authors have discussed Euler-Darboux equation 

associated with exponential function of convolution type-I by 

following the method due to [6, 7, 8, 9].  In the section 2 de-

finition of the fractional integrals and derivatives are given 

with several properties which have been used frequently in 

this paper. 

 

The Euler Darboux equation 
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implies degenerate exponential equations expressed by the 

characteristic coordinates.  So in section (3), we set a prob-

lem for equation (1) with boundary conditions on two charac-

teristics that contain our fractional integral or derivative of 

order less than some members depending upon  where 

the problem may be regarded as a generalization of the Gour-

sat problem, i.e. initial value problem for equation (1).  Then 

there will be given an expression of a solution for our prob-

lem.  To see this the problem will be reduced to a dominant 

singular integral equation with Cauchy Kernel, where several 

calculations will be carried out in section (4). 

 

2. Generalized Fractional Integral and Deriva-

tive 
 

Let  > 0, and  and t be real numbers.  We shall define 

a fractional integral in paper [5] of real and continuous func-

tion f(x) on (a, ) which may have an infinity at x = a of 

order less than 1 or – +  + 1 if  <  or  > , respective-

ly, by 
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Where   is the gamma function, F means the Gauss hyper-

geometric function and 
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in |z| < 1 and its analytic continuation into | arg z | <  
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The expression (2) is a generalization of the fractional inte-

grals of both Riemann - Liouville, Erdelyi-Kober, Hardy and 

Littlewood i.e. 
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And 





 






x

a

1
ax )texpx(exp

)(

)aexpx(exp
I  

   ,
axEdt)t()aexpt(exp.  

 (4) 

respectively. In paper [5], for  < 0 a generalized fractional 

derivative is defined by 
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If the right hand side has a definite meaning, where it is as-

sumed that 0 <  +  < 1 and n is positive integer.  The re-

lation (5) also valid for  > 0. 
 
A fractional integral whose lower limit is a variable x smaller 

than the constant upper limit b is defined by 
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(6) 
where 
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Here  > 0 and f1 (t) = f (b-t).  If 0 <  + n < 1, we shall 

define a fractional derivative by 
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where n is a positive integer. Let us write 
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As found in paper [5], the following product rules hold: 
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These are still valid for negative non-integer . 

It is easily seen that 
,0,0

axI  is the identity operator for any h, 

then the inverse operator of 


axI  is given by : 
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1
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which follow from formulas (8) or (9) 

 

The formulas (8) to (10) hold true also for the operator J  

defined by equation (6). 
 

3. The Euler-Darboux Equation 
 

Consider the equation (1) in the domain =(0<x<y<1).  It is 

well known in paper [10] and Book [11] that the solution of 

equation (1) under the conditions. 
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Then the values of u on two characteristics x=0 and y=1 can 

be written respectively in terms of the fractional integrals (2) 

and (6) as follows: 
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Now we shall set a problem which is the main subject for the 

rest of this work. 

 

Let Hk (T) be a class of functions which are defined on a real 

interval T and Hölder continuous in T with the Hölder index 

k.  Let us denote the open interval (0, 1) by U and its closure 

by U . 
 

Problem A : To seek for a solution u(x, y) of equation (1) in 

 such that 

(i) )U(H)x( 1k  and )U(H)x( 2k  for some k1, and 

k2 (0 < k1, k2 < 1) 

 where (x) may have infinites of order not greater 

than 1 -  -  at the end point of U. 
(ii) u(1) (y) and u(2) (x) in (13) and (14) satisfy respective-

ly the boundary conditions 
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where a, b, c and d are constants such that max (– ,–1) 

<a<min (,1–), b>––, max (–,a–1) <c< min (,1–) 
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k3<1, 1(0)=0] and 2  )U(H 4k  [max (c–+1, c+, –d –

 –+1) < k4 < 1, 2 (1) = 0] are given functions. 
 
Note that if a = b = c = d = 0, problem A is reduced to the 

Goursat problem.  If we note (13), (14) and (8), and replace y 

by x, the conditions (15) and (16) may be read as : 
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thus problem (A) is reduced to 

 

Problem (B): To seek for solutions (x) and (x) of (17) 
and (18) satisfying the condition (i) in problem A, 
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A. 
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hold valid for 0 <  < 1, where the integral is taken in 
the sense of the Cauchy principal value.  Then equation 
(21) may be written in the form 
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Now let us solve equation (24) by applying the theory in 

Gakhov [3].  To this end we shall summarize results of the 

theory in an applicable form to our equation (24).  Let L = t0 
t1 be on open non intersecting smooth curve in the complex 

plane.  Functions a(t), b(t) and f(t) are assumed to be Hölder 

continuous on the closure of L with a²(t) - b²(t) = 1.  Then a 

solution of the dominate singular integral equation. 
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 The above results are introduced under such as-
sumptions that the index k of the equation is equal to 

zero and the solution (t) is sought to be Hölder conti-
nuous on L, bounded at t = t0 and unbounded but hav-

ing integrable order at t = t1, where, if we set G(t0) =  

exp (i) and G(t1) = exp (i(+)),  and k are chosen 

such as – 2  <  < 0 and k = [(+)/2] + 1.  Here  is 
the change of arg G(t) on L and [x] denotes the greatest in-

teger not exceeding x. 
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Which is Hölder continuous in U, bounded at x = 0 and un-

bounded but having integrable singularity at x = 1.  Here we 

have taken into consideration that (x) is Hölder continuous 

on U , whose continuity will be proved in the next section. 

 

From above we may easily find (x) satisfying the condition 

(i).  Since it will be seen in the next section that (x) is of 

order greater than  +   – 1 at x = 1.  Then in view of equa-

tions (19) or (20) (x) satisfying (i) is determined. 
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where q = min (0, –  + ).  Let a < x < x + h < b and 
consider the difference 






hx

a

1q )texphexpx(exp)aexpt(exp)x(A)hx(A  

  
x

a

1q dt)]x()t([)texpx(exp.)aexpt(expdt)]hx()t([

=   

])texpx(exp)texphexpx[(exp)aexpt(exp

x

a

11q


 

dt)texphexpx(exp)aexpt(expdt)]x()t([ 1
x

a

q  

321
1

hx

x

IIIdt)]hx()t([)texphexpx(exp  




  (28) 
Changing the variables of integration suitably, we have 
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[Re c > Re a > 0, |arg (1-z)| < , z  1] in paper [4]. 
When equations (28) to (31) are used, equation (27) can 
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Lemma 2: Under the condition of Lemma 1 except (a)  
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Proof : The first results immediate by noting the relation (26) 

and the proof of Lemma 1.  The second is similar.  Now let 

us show that (x) in (25) is Hölder continuous on U .  From 

Lemma 1 we can easily find that 
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sumptions k4 > c + , k4 + d > 0, d +  +  > 0 and 2(1) 
= 0.  Thus from Lemma 2 

)U(HhRx 1dck1
x0

1 4   .  Therefore it has 

been proved that )U(H)x(
)1cK,1aK(min 43 

 . 

 

To see the order of singularity of (x) at x = 1 we operate 
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both sides of equation (18).  Then we have 
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Thus Lemma 1 implies that 
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  where k1 

is the Hölder index of .  Here the condition (1) = 0 has 

been used, which following by virtue of equation (20) and 

Lemma 1.  Hence we have established that  is of order 

greater than  +  - 1 at x = 1. 
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