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1. Introduction

Recently Authors in paper [1] have defined generalized
Lowndes’s operator and Hankel operator involving with ex-
ponential function. In another paper Authors in paper [2]
discussed the solution of certain special quadruple integral
equations associated with multi-dimensional inverse Mellin
transform of given function by the application of extended
form of Erdélyi—Kober operators.

In this paper authors have discussed Euler-Darboux equation
associated with exponential function of convolution type-I by
following the method due to [6, 7, 8, 9]. In the section 2 de-
finition of the fractional integrals and derivatives are given
with several properties which have been used frequently in
this paper.

The Euler Darboux equation
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implies degenerate exponential equations expressed by the
characteristic coordinates. So in section (3), we set a prob-
lem for equation (1) with boundary conditions on two charac-
teristics that contain our fractional integral or derivative of
order less than some members depending upon o, 3, where
the problem may be regarded as a generalization of the Gour-
sat problem, i.e. initial value problem for equation (1). Then
there will be given an expression of a solution for our prob-
lem. To see this the problem will be reduced to a dominant
singular integral equation with Cauchy Kernel, where several
calculations will be carried out in section (4).

2. Generalized Fractional Integral and Deriva-
tive

Let o >0, and B, n & and t be real numbers. We shall define
a fractional integral in paper [5] of real and continuous func-
tion f(x) on (a, ) which may have an infinity at x = a of
order less than 1 or -3 + n + 1 if B <m or B > 1, respective-
ly, by
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Where T is the gamma function, F means the Gauss hyper-
geometric function and
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in |z| <1 and its analytic continuation into | argz | <=
and
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The expression (2) is a generalization of the fractional inte-
grals of both Riemann - Liouville, Erdelyi-Kober, Hardy and
Littlewood i.e.
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respectively. In paper [5], for o < 0 a generalized fractional
derivative is defined by
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If the right hand side has a definite meaning, where it is as-
sumed that 0 < o + 1 <1 and n is positive integer. The re-
lation (5) also valid for a > 0.

A fractional integral whose lower limit is a variable x smaller
than the constant upper limit b is defined by

TR =158 N

_ (expb-exp x) %P
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where
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Here o > 0 and f1 (t) = f(b-t). If 0 < a + n <1, we shall
define a fractional derivative by
dn

IEN =)t — g PR g,

)
where n is a positive integer. Let us write

I =L f-
As found in paper [5], the following product rules hold:
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These are still valid for negative non-integer o.
It is easily seen that 12;(07” is the identity operator for any h,

then the inverse operator of Ig;f’” is given by :

which follow from formulas (8) or (9)

(10)

The formulas (8) to (10) hold true also for the operator J
defined by equation (6).

3. The Euler-Darboux Equation

Consider the equation (1) in the domain Q=(0<x<y<1). Itis
well known in paper [10] and Book [11] that the solution of
equation (1) under the conditions.
ou odu
oy =r(x),(expy—expx)“+ﬁ(g - &] ly—x =V ()
(11)
is expressed as :
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Then the values of u on two characteristics x=0 and y=1 can
be written respectively in terms of the fractional integrals (2)
and (6) as follows:
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Now we shall set a problem which is the main subject for the
rest of this work.

Let Hk (T) be a class of functions which are defined on a real
interval T and Holder continuous in T with the Holder index
k. Let us denote the open interval (0, 1) by U and its closure

byU.

Problem A : To seek for a solution u(x, y) of equation (1) in

Q such that

i) rt(x)e H1 (U) and v(x)er2 (U) for some ki, and
ko (0 <k, ko< 1)
where v(x) may have infinites of order not greater
than1 - o - B at the end point of U.

(if) u® (y) and u® (x) in (13) and (14) satisfy respective-
ly the boundary conditions

Ia,b,—a+B—l
Oy

u® = ¢ (y),yeu and (15)

d,-c+a-1
JC’ >
x1

u? = ¢, (x),xeU, (16

)
where a, b, ¢ and d are constants such that max (- a,pf-1)
<a<min (B,1-a), b>-a-p, max (-B,a-1) <c< min (a,1-P)
and d>-a-B, and ¢1 € HK3 (U) [max (a-B+1, ata, -b) <
ks<1, ¢1(0)=0] and ¢ € Hk4 (U) [max (c-a+1, c+B, -d -
o -B+1) <ks <1, 2 (1) = 0] are given functions.

Note that if a=b =c =d = 0, problem A is reduced to the

Goursat problem. If we note (13), (14) and (8), and replace y
by x, the conditions (15) and (16) may be read as :

(o +B) Ia+oc,b,—a+[3—1 T4 I'l-a-pB)
re = or(l - a)
F(OL+B) |a+a,b,—a+B—l +F(1_Q_B)
re > 2I(l—o)
IS;BH, b+a+p-1,—a+p-1 v= (Pl(x) (17)
and
(o +B) Ic+[3,d,—c+cx—1 + I(l—o-p)
T * 2r(1-p)
J§Ia+1,d+a+B—1,—c+a—l V:(p2(X) onU (18)

thus problem (A) is reduced to

Problem (B): To seek for solutions t(x) and v(x) of (17)
and (18) satisfying the condition (i) in problem A,
where ¢1 (x), ¢2 (x), a, b, c and d are as given in problem
A.
1

Operating (I%;“’b’_aJrB_lT = 15274501 o poth
sides of equation (17), we have

Irgrd-o- o r
00+ LOTA—0B) oy T

2[M(a+B)I(1-0a) I'(a+P)

|—a—a,—b,a+[3—1
ox

P (19)

-1
Similarly, by using (Jg;&d’—m—l) = JoShdatp-l
we have
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The subtraction of equation (20) from equation (19) and

the operation of RO‘JrB Lon both sides given the rela-

tion,
V() - Tl — o) Rg;B 1L1 By =@y (x)
2rera-p)
(21)
where,
Do (x) = 2rl-a) a+p-1 I a—a,—b,o+p— l(Pl

M(l-a-p) %
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(22)
It is well known in paper [10] and Book [11], the rela-
tion

o
expu
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hold valid for 0 < a < 1, where the integral is taken in
the sense of the Cauchy principal value. Then equation
(21) may be written in the form

1-a-f

1
v(x)- tannch I(expuj 1

olexpx expu-—expx

v(u)du
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Here we have used the relation T'(z)['(1-2z)= T

sinnz ’
due to Book [4].

If we wuse a new unknown function

Wx) = v(x) xl_o‘_B, then we have from equation (23)

the dominant singular integral equation for p(x).

1
wx) — tannaj- u(w) du=d(x)onuy,
T expu-expx
(24)
where
_ _2Mo+P) 1-a—p go-+p-1
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(25)
Now let us solve equation (24) by applying the theory in
Gakhov [3]. To this end we shall summarize results of the
theory in an applicable form to our equation (24). Let L = to
t1 be on open non intersecting smooth curve in the complex
plane. Functions a(t), b(t) and £{t) are assumed to be Holder

continuous on the closure of L with a?(t) - b?(t) = 1. Thena

solution of the dominate singular integral equation.

a(t)oft) + 2 j t=f(t)onL

ext

is given by

) _bMzZ(t) (f(x) _ dr
o) = a(t) /() - 22 ]{ Z(0) (- expD)

where
Z(t) = exp {L J‘; Log G(t)dt
2mi ; T-€Xp t

Gl - 20~ bl
a(t) + b(t)

The above results are introduced under such as-
sumptions that the index k of the equation is equal to
zero and the solution ¢(t) is sought to be Holder conti-
nuous on L, bounded at t = to and unbounded but hav-
ing integrable order at t = t;, where, if we set G(to) = p
exp (i0) and G(t1) = p'exp (i(6+A)), 6 and k are chosen
suchas-2n<0<0andk=[(0+A)/2n] + 1. Here A is
the change of arg G(t) on L and [x] denotes the greatest in-
teger not exceeding x.

and

Returning to our equation (24), we have
Glx) = 1+ 1 tannf _ e 2mi(B-1)
1-itannf
Then 6 = 2n (B-1), A = 0 and k = 0 are obtained. There-
fore the solution of equation (24) is written in the form

1-p
() = 1 1 : [d)(x)+ tannf [ expx
+ tan?nf T 1-expx

1-p

1
j (r— expuJ 1 (D(u)du}
5\ expu expu — expx

Which is Holder continuous in U, bounded at x = 0 and un-
bounded but having integrable singularity at x = 1. Here we
have taken into consideration that ®(x) is Holder continuous

on U, whose continuity will be proved in the next section.

From above we may easily find v(x) satisfying the condition
(i). Since it will be seen in the next section that v(x) is of
order greater than oo + B -1 at x = 1. Then in view of equa-
tions (19) or (20) t(x) satisfying (i) is determined.

4. Regularity of ®(x) and singularity of v(x)
We need the following Lemmas.

Lemma 1: Leta<band 0 <k <1. If ¢, y € Hk [a, b]
with ¢(a) =y(b) =0, 0>a>-k, B<k and n>B-1, then
IGPM o, 04PNy e HRY [a,b].

Proof:
As in easily calculated, we have
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It is well known in Book [4] that the hypergeometric function 1 q expx —expa -l
F(abc;z) has orders such that 0(1), (z—0); _[U 1- expX —expa + exph v| do

0

0[(1-z)min O c-a-b)], (z—1), then the kernel of integral in eg-

uation (26) has the properties : -
(26) Prop eXD X —exD = 0{(exph)kF(q+l,1—oc;q+2; CXpX ~ cxpa hﬂ
(expx—exp t)o‘_l F(a +B,m; o Mj EXpX —expa + exp
exXpx—expa -0 (exph)k+a (30)
= O[(expx—expt)*'](t > X) x+h
and = I3=0 { _[ (expt —expa)d (expx + exph — exp t)k+°‘_1dt]
O[(expt—expa)™PO P+ (t —5 a) X
Then in order to prove the Holder continuity of 1%P1 ¢ )
it is enough to show that =0 [(exp h)h“l (expx —expa + exph)d Jukw—l
X
0
A(x) = f (expt—expa)? (expx—expt)* ! q
a (1— exph Uj dv
{olt) ~olx)} dteH"* [a,b] (27) expx —expa+exph
where q =min (0, - B +m). Leta<x<x+h<band o exph
consider the difference = O{(CXP h)<* F[k +a-~qk+a+l; eXpX —expa + exphj:|
x+h
Ax+h)-A(x) = J. (expt—expa)d (expx+exph—expt)°‘_1 (31)
. a — O [(eXph)k-Hx]
[o(t)—(x + h)]dt—_[ (expt—expa)?.(expx—expt)* ! [p(t)-o(x)ldt Since k +a >0,q>-1and
a 1
= I(exp )21 (1 - expt)®"* 1 {1 - (expz)(expt)} Pdt
f(expt—exp a)d [(expx+exph—expt)® ! —(expx —expt)* '] Ic-a)
a =I'(a) I'(a,b;c;expz)
x I'(c)
[(p(t)—(p(x)]dt+j (expt —expa)? (expx + exph—expt)* 1 dt [Rec>Rea>0, |arg (1-z) | <m, z #1] in paper [4].
N a When equations (28) to (31) are used, equation (27) can
X+ . B, k
4 J’ (expx +exph —expt)® 1 [o(t)—p(x + h)]dt =1, +1, +1 be reading proved, proof of ngﬁ Y eH“"*[a,b] are pa-
x rallel.
(28)
Changing the variables of integration suitably, we have Lemma 2: Under the condition of Lemma 1 except ¢(a) =
as h—0 W(b) =0and B <k, (x- )’ 1% and (b-x)® J%PMy

X
k+a
;=0 I (expt —expa)d (expx —expt)< belong to H¥*= [a, b].
a Proof : The first results immediate by noting the relation (26)
and the proof of Lemma 1. The second is similar. Now let
{(expx +exph—expt)* ! —(expx —expt)* ! }dt] us show that ®(x) in (25) is Holder continuous on U. From
Lemma 1 we can easily find that
g(x)=[2~%Patb1 o (K3 8-%([)  since ks > a + o,

=0|exp h)k+0t (expx —expa +exph)d
[ ka+b>0,b+a+f>0and ¢; (0) =0. Then Lemma 2

x-a
Y ’ . ) implies x'"*PRYP1g cHk3 2P ([ Similarly
J(U “D "= (v-)" 7} Lemma 1 guarantees that h(x)
1 = J;_B’_d’aJrB_l(pQ eHX4~°"P(U) by virtue of the as-
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sumptions ks >c+ B, ka+d >0,d + o+ B >0and @y(1) [11]M.M. Smirnov, Degenerate Hyperbolic equations, Izdat,
= 0. Thus from Lemma 2 Vyseisaja Skola, Minslc. 1977.

x!" PRI eH¥4+*d"1 (@) Therefore it has

been proved that ®(x)e H™PKs-a+p-1Kq-cto-1) )

To see the order of singularity of v(x) at x = 1 we operate

(J§Ia+1,d+a+ﬁ—1,—c+a—l)—1 _ (J}—j—a—l,—d—a—BH,O) on

both sides of equation (18). Then we have
_ 20+ BT B) parpei

Y= T ora—o—p) T
2A(1-PB) —cra-1 —d-a—-B+1,0
] ’ ’ 32
T(—o—p) x1 P2 ( )
Thus Lemma 1 implies that

v(x)=0[(1 - x)Pinkitotp-Lks—cro-ly 5 1) where ki

is the Holder index of t. Here the condition t(1) = 0 has
been used, which following by virtue of equation (20) and
Lemma 1. Hence we have established that v is of order
greaterthana + B -1 atx=1.
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