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 Abstract: Mixed quadrature rules of higher precision for approximate evaluation of real definite integrals have been constructed 

using an anti-Gaussian rule. The analytical convergence of the rule has been studied. The error bounds have been determined 

asymptotically. In adaptive quadrature routines not before mixed quadrature rules basing on anti-Gaussian quadrature rule have been 

used for fixing termination criterion. Adaptive quadrature routines being recursive by nature, a termination criterion is formed taking in 

to account a mixed quadrature rule. The algorithm presented in this paper and successfully tested on different integrals by C program. 

The relative efficiency of the mixed quadrature rule is reflected in the table at the end. 
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1. Introduction 
 

The Concept of mixed quadrature was first coined by R.N Das and G.pradhan [15].The method of mixing quadrature rules is 

based on forming a mixed quadrature rule of higher precision by taking linear/convex combination of two quadrature rules of 

lower precision. Though in literature we find precision enhancement through Richardson Extrapolation and Kronrod extension 

[11, 17, 18] taking respectively trapezoidal rule and Gaussian quadrature as base rules, these methods are quite cumbersome. 

On the other hand, the precision enhancement through mixed quadrature method is very simple and easy to handle. Authors 

[14-16] have also developed mixed quadrature rules for approximate evaluation of the integrals of analytic functions following 

F.Lether [10]. 

 

So far in this paper in which an anti-Gaussian quadrature rules has been used to construct a mixed quadrature rule. 

 

Dirk P. Laurie [1-3, 5] is first to coin the idea of anti-Gaussian quadrature formula. An anti-Gaussian quadrature formula is an 

(n+1) point formula of degree (2n-1) which integrates all polynomials of degree up to (2n+1) with an error equal in magnitude 

but opposite in sign to that of n-point Gaussian formula. 

 

If )()1( pH n   

 1

1

n

i i f ( i ) be (n+1) point anti-Gaussian formula and )()( pG n
 be n  point Gaussian formula then 

by hypothesis,  

 

)(pI )()1( pH n
 = - ( )(pI  )()( pG n

), 12  nPp  where p  is a polynomial of degree .12  n .  

 

In this paper we design a four point anti-Gaussian rule following LAURIE. We mix this anti-Gaussian four point rule with 

Fejer’s five point second rule. 

 

The relative efficiency of the mixed rule has been shown by numerically evaluating some test integrals. 

 

2. Construction of Anti-Gaussian Four Point Rule from Gauss-Legendre Three Point Rule 
 

We choose the Gauss-Legendre three point rule,  

 

 

 

and develop a four point anti-Gaussian rule  fRH w
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from three point Gaussian rule  fGw
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Using the principle     fGpIfHpI n

w

n

w   )()( 1
 as adopted in Laurie [1], we get 

        
1

1

34 2 fGdxxffRH ww
.
 ……… (2) 

=>            
1

1

3

44332211 2)( fGdxxfffff w , ……………(3)  

Taking       )4......().........()( 44332211

4  fffffRH w   

 

In order to obtain the unknown weights and nodes, we assume that 

 

(i) The rule is exact for all polynomial of degree  4. 

(ii) The rule integrates all polynomials of degree up to six with an error equal in magnitude and opposite in sign to that of 

Gaussian rule. Thus we obtain a system of eight equations having eight unknowns using 

 

i , i , 4,3,2,1i  

 

For 7,6,5,4,3,2,1,0,)(  ixxf i
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Solving the systems of equation, we get 
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But the anti-Gaussian four point rule computed as 
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Hence, by taylors series expansion, we have 
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By putting the values of 2121 ,,  and  in the above equation, we have 
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We have,  
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The error of the anti-Gaussian four point rule is computed as  
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3. Construction of Mixed Quadrature Rule by Using Anti-Gaussian Four Point Rule with Fejer’s 

Five Point Second Rule 
 

We have the Fejer’s five point second rule, 
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Hence, by taylors series expansion, we have 
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The error associated with Lobatto four point rule is computed as  

  

 

  

 The error associated with the anti-Gaussian four point rule is 
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Eliminating )0(vif  from the equation (9) and (10), we have 
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This is the desired mixed quadrature rule of precision seven. for the approximate evaluation of )( fI . The truncation error 

generated in this approximation is given by 
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The rule )(5

4 fFjRH w  is called a mixed type rule of precision seven as it is constructed from two different types of the rules 

of the same precision (i.e. precision 5). 

 

4. Error Analysis 
 

An asymptotic error estimate and an error bound of the rule (13) are given by. 

 

Theorem - 4.1 

 

Let )(xf  be sufficiently differentiable function in the closed interval ]1,1[ .Then the error )(5

4 fFjEH w  associated with the 

rule )(5

4 fFjRH w  is given by 
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Proof: Theorem follows from equation (11) and (13)  

we have )](6720)(1575[
8295
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and the truncation error generated in this approximation is given by 

 

Hence we have,  
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Theorem 4.2 

 

The bound of the truncation error 
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Putting the values of equation (16) and (17) in equation (18), we have, 
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Which gives a theoretical error bound as 21,  are unknown points in 

 

]1,1[ . 

 

From this theorem it is clear that the error in approximation will be less if points are 21, closer to each other. 

Corollary-1: The error bound for the truncation error )(5

4 fFjEH w is given by 

 

8295

2
)(5

4 M
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Proof: The proof follows from theorem (4.2) and .221  . 

 

5. Numerical Verification by Table and Graphs 
 

Table 1 

Sl 

No 
Integrals Exact Value 

 fGw

3
/ 

|E1| 

)(4 fRH w  / 

|E2| 

/)(5 fFj  

|E3| 

/)(5

4 fFjRH w  

| E4 | 

1 




1

1

1 dxeI x
 2.350402387 

2.350333692/ 

0.000068 

2.3504678/ 

0.000065 

 

2.35038694/ 

0.000015 

2.350402308/ 

0.000000079 

2 


1

0

2

2

dxeI x

 0.746825 
0.74681458/ 

0.0000104 

0.74683367/ 

0.0000086 

0.746822002/ 

0.000003 

0.746824218/ 

0.00000078 

3 
1

0

3

2

dxeI x

 1.4627 
1.4624097/ 

0.00029 

1.46289391/ 

0.00019 

1.462593304/ 

0.000106 

1.46265038/ 

0.000049 

4  









3

1

2

4

sin
dx

x

x
I

 0.7948251 
0.79465267/ 

0.000172 

0.79499761/ 

0.000172 

0.79478578/ 

0.000039 

0, 794826004/ 

0.000000904 
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5 
1

0

5 dxxI
 0.666666 

0.669174/ 

0.002508 

0.66429729/ 

0.002369 

0.6679962/ 

0.0013302 

0.6672939/ 

0.000627 

 

Where )()( 3

1 fGfIE w
, 

)()( 4

2 fRHfIE w , )()( 53 fFjfIE  , 

)()( 5

4

4 fFjRHfIE w  are errors of various rules. 

 

The graphical representation of these errors is given below in figures: A, B, C, D. 
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Using the results of the table and the notations for the errors of different methods given above the table, four bar graphs for the 

errors of the mixed quadrature rule and its constituent rules have been constructed in figures A, B, C and D correspond to 






1

1

1 dxeI x
, 



1

0

2

2

dxeI x
, 

1

0

3

2

dxeI x
 and 

3

1

2

4 )
sin

( dx
x

x
I  

respectively. 

 

In the four graphs, the error names of the mixed quadrature rule and its constituent rules have been embedded along X-axis 

and the respective values of the errors depicting heights of the bars are given along Y-axis. The graphical representation of 

these errors is given above in figures: A, B, C, D. From the above four graphs the unit in Y-axis is: 

 
654321 10log6,10log5,10log4,10log3,10log2,10log1  

.
 

 

Thus from the graphs, we conclude that larger the height of the bar the smaller is the error. Here we derived most significant 

result that our mixed rule is more accurate than its constituent rules. 

 

6. Adaptive Quadrature Algorithm 
 

A simple Adaptive Strategy 

 

Given a real integrable function f  an interval ],[ ba  and a prescribed tolerance  , it is desired to compute an approximation 

P  to the integral dxxfI

b

a

 )( , So that  IP .This can be done following adaptive integration schemes developed in 

papers [4-7, 9, 12, 13]. In adaptive integration, the points at which the integrand is evaluated are chosen in a way that depends 

on the nature of the integrand. The basic principle of adaptive quadrature routines is discussed in the following manner. 

 

If c  is any point between a  and b  then 

 

       

b

c

c

a

b

a

dxxfdxxfdxxf  

 

The idea is that if we can approximate each of the two integrals on the right to within a specified tolerance, then the sum gives 

us the desired result. If not we can recursively apply the adaptive property to each of the intervals ],[ ca  and ],[ bc . Adaptive 

subdivision of course has geometrical appeal. It seems intuitive that points should be concentrated in regions where the 

integrand is badly behaved. The whole interval rules can take no direct account of this. 

 

In this paper we design an algorithm for numerical computation of integrals in the Adaptive quadrature routines involving 

mixed rules. The literature of the mixed quadrature rule [9, 14-16] involves construction of a symmetric quadrature rule of 

higher precision as a linear/convex combination of two other rules of equal lower precision. 

 

Algorithm for Adaptive quadrature routines:  

The input to this schemes is ,,,,, fnba   the output 
b

a

dxxfI )(  with the error hopefully less than  , n  is the number 

of intervals initially chosen. A Simple adaptive strategy is out lined in the following step algorithm. 

Step - 1 : An approximation 1I  to 
b

a

dxxfI )(  is computed.  

Step - 2 : The interval is divided into pieces ],[ ca  and ],[ bc .  

Where 
2

ba
c


  and then 

c

a

dxxfI )(2  and  


b

c

dxxfI )(3  are computed. 
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Step - 3 : 32 II   is computed with to 1I  estimate the error in 32 II 
. 

Step - 4 : If | estimated error |
2

  (termination-criterion), then 32 II   is accepted as an approximation to 
b

a

dxxfI )( . 

Otherwise the same procedure is applied to ],[ ca  and ],[ bc  allowing each piece a tolerance of 
2

 . 

 

Table 2 

Sl No Integrals Exact Value 

 fGw

3

 
No. of. step 

|Error| 

)(4 fRH w  

No. of. step 
|Error| 

)(5 fFj  

No.of. step 
|Error| 

)(5

4 fFjRH w    No.of. step 

|Error| 

Prescribed 

tolerance 

1 




1

1

1 dxeI x
 2.350402387 

2.350402369 

03 

0.00000001 

2.350402405 

03 

0.000000025 

 

2.350402383 

03 

0.000000003 

2.350402386 

01 

0.0000000069 

0.00001 

2 


1

0

2

2

dxeI x

 0.746825 

0.74682413 

03 

0.0000008 

0.74682413321 

03 

0.0000008 

0.746824124 

01 

0.0000008 

0.746824132 

01 

0.00000086 

0.00001 

3 
1

0

3

2

dxeI x

 1.4627 

1.46265164 

03 

0.000048 

1.46265184 

03 

0.000048 

1.46265172 

03 

0.000048 

1.46265173 

01 

0.000048 

0.00001 

4  









3

1

2

4

sin
dx

x

x
I

 0.7948251 

0.79482515 

03 

0.00000005 

0.794825203 

03 

0.0000001 

0.794825175 

03 

0.00000007 

0.794825182 

01 

0.000000082 

0.00001 

5 dxxI 
1

0

5

 

0.666666 

0.666666 

13 

0.0000024 

0.666665 

13 

0.00000098 

0.6666692 

11 

0.0000032 

0.6666678 

10 

0.0000018 

0.00001 

 

Adaptive quadrature routines essentially consist of 

applying the mixed rule )(5

4 fFjRH w  and its 

constituents rules )(3 fGw , )(4 fRH w  and )(5 fFj  are 

to each of the sub intervals covering until the termination 

criterion is satisfied. If the termination criterion is not 

satisfied on one or more the sub intervals, then those 

subintervals must be further sub divided and the entire 

process repeated. The result obtained by a shorter program 

in standard CPP which should be more transportable and 

efficient. 

 

7. Observation 
 

In whole interval routine from the table-1 as well as from 

the bar graph it is observed that the absolute error 

corresponding to the mixed rule )(5

4 fFjRH w  is lesser 

than those corresponding to its constituent rules 

)(),(),( 5

43 fFjfRHfG ww  are compared and mixed 

rule is better than its constituent’s rules, when the test 

integrals are evaluated. However when these rules are used 

in adaptive mode, table-2 depict that the mixed quadrature 

rule using anti-Gaussian rule give very good result and less 

number of steps than its constituent rules when tested on a 

number of integrals. 

 

8. Conclusion 
 

After observation one can smartly draw conclusion over 

the efficiency of the rule formed in this paper as follows: 

 

1) The mixed )(5

4 fFjRH w  rule is more efficient than its 

constituent rules )(),(),( 5

43 fFjfRHfG ww  and 

previously developed mixed rules. 

2) In this paper we have concentrated mainly on 

computation of definite integrals in the adaptive 

quadrature routines involving mixed quadrature rule. We 

observed that mixed quadrature rule so formed can be 

very well used for evaluating real definite integrals than 

its constituent rules in the adaptive quadrature routines. 

 

Acknowledgement 
 

The research work has been supported by the Department 

of Science and Technology, Govt. of India under INSPIRE 

Fellowship and my code no is IF10203. I also thankful to 

Director and Professor of Institute of Mathematics and 

Application, BBSR, Odisha, India (my place of research), 

who guide me and provide good research facilities. 

 

References 
 

[1] Dirk P. Laurie, Anti-Gaussian quadrature formulas, 

mathematics of computation, 65(1996)pp. 739-749. 

[2] Dirk P. Laurie, Computation of Gauss-type quadrature 

formulas, Journal of Computational and Applied 

mathematics of computation, 127(2001)pp. 201-217. 

[3] Dirk P. Laurie, Stopping functionals for Gaussian 

quadrature formulas, Journal of Computational and 

Applied mathematics, 127(2001)pp. 153-171. 

Paper ID: IJSER171708 44 of 45 

www.ijser.in
http://creativecommons.org/licenses/by/4.0/


International Journal of Scientific Engineering and Research (IJSER) 
ISSN (Online): 2347-3878 

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791 

Volume 5 Issue 8, August 2017 

www.ijser.in 
Licensed Under Creative Commons Attribution CC BY 

[4] Dirk P. Laurie, Sharper error estimates in adaptive 

quadrature, BIT, (1983)CMP, 23:258-261, 

MR84e:65027. 

[5] Dirk P. Laurie, Practical error estimation in numerical 

integration, Journal of Computational and Applied 

mathematics, (1985) CMP, 17:14, 12 and 13:258-261. 

[6] J. Berntsen, Practical error estimation in adaptive 

multidimensional quadrature routines, Journal of 

Computational and Applied mathematics, 25(1989), 

327-340, North-Holland. 

[7] J. Berntsen, T.O. Espelid and T.Sorevik., On the 

subdivision strategy in adaptive quadrature 

algorithms, Journal of Computational and Applied 

mathematics, 35(1991), 119-132. 

[8] S. Conte. and C.D. Boor., Elementary numerical 

analysis, Mc-Graw Hill, (1980). 

[9] C.W.Clenshaw and A.R.Curties, A method 700 

numerical integration on an automatic computer, 

Numer. Math, 2, (1960), MR22:8659, 197-205. 

[10] F. Lether., On Birkhoff-Young quadrature of analytic 

function, J. Comp. Applied Math.2, 2(1976), pp.81-

84. 

[11] Atkinson Kendall E., An introduction to numerical 

analysis, 2
nd

 edition, John Wiley and Sons, Inc, 

(1989). 

[12] A.C.Genz and A.A.Malik(*)., Remark on algorithm 

006: An adaptive algorithm numerical integration over 

an N-dimensional rectangular region, Journal of 

Computational and Applied mathematics, (1980), 

volume 6, No 4. 

[13] P.V. Dooren and L.de. Ridder., An adaptive algorithm 

numerical integration over an n-dimensional cube, 

Journal of Computational and Applied mathematics, 

(1976), volume 2, No 3. 

[14] B.P. Acharya and R.N. Das., Compound Birkhoff –

Young rule for numerical integration of analytic 

functions.Int.J.math.Educ.Sci.Technol 14(1983), 

pp.91-101. 

[15] R.N. Das and G. Pradhan., A mixed quadrature rule 

for approximate value of real definite Integrals, Int. J. 

Edu. Sci. Technol, 27 (1996), pp. 279 - 283. 

[16] R.N. Das and G. Pradhan., A mixed quadrature Rule 

for Numerical integration of analytic functions, Bull. 

Cal. Math. Soc., 89(1997), pp.37 - 42. 

[17] A. Begumisa and I. Robinson., Suboptional Kronrod 

extension formulas for Numerical quadrature, math, 

MR92a (1991), pp.808-818. 

[18] Walter. Gautschi., Gauss-Kronrod quadrature –a 

survey, In G.V. Milovanovic. Editor, Numerical 

Methods and Approximation Theory III, University of 

Nis (1988). MR89k:41035, pp.39-66 

Paper ID: IJSER171708 45 of 45 

www.ijser.in
http://creativecommons.org/licenses/by/4.0/



