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Abstract: Let G be a (p, q) graph and 𝒇: 𝑽 𝑮 → {𝒌, 𝒌 + 𝟏, 𝒌 + 𝟐,… , 𝒑 + 𝒒 + 𝒌 − 𝟏} be an injection. For each edge e = uv,  

let𝒇∗ 𝒆 =
𝒇 𝒖 +𝒇(𝒗)

𝟐
   if  𝒇 𝒖 + 𝒇(𝒗)  is even  and𝒇∗ 𝒆 =

𝒇 𝒖 +𝒇 𝒗 +𝟏

𝟐
  if 𝒇 𝒖 + 𝒇(𝒗) is odd, then f is called k-Super mean labeling if 

𝒇 𝑽 ∪ {𝒇∗ 𝒆 : 𝒆 ∈ 𝑬(𝑮)} =  𝒌, 𝒌 + 𝟏, 𝒌 + 𝟐,… , 𝒑 + 𝒒 + 𝒌 − 𝟏 . A graph that  admits  k- Super mean labeling is called k-Super mean 

graph. In this paper, we investigate k-super mean labeling of  𝑪𝒏 + 𝒗𝟏𝒗𝟑 ,  𝑺𝑳𝒏 , 𝑪𝒏 ⊙𝑲𝟏 , 𝑨𝒏
𝒎,  𝑷𝒎 𝑨 𝑲𝟏,𝟐 ∪ 𝑷𝒏. 

 

Keywords: 𝑪𝒏 + 𝒗𝟏𝒗𝟑 , , 𝑺𝑳𝒏 , 𝑪𝒏 ⊙𝑲𝟏 , 𝑨𝒏
𝒎,  𝑷𝒎 𝑨 𝑲𝟏,𝟐 ∪ 𝑷𝒏. 

 

1. Introduction 
 

All graphs in this paper are finite, simple and undirected.  

Terms not defined here are used in the sense of  Harary [7].  

The symbols V(G) and E(G) will denote the vertex set and 

edge set of a graph G.  In this paper, we investigate k-super 

mean labeling of  Cn + v1v3 , SLn , Cn ⊙ K1 ,  An
m ,

 Pm  A K1,2 ∪ Pn . 
 

Abbreviation: SML - super mean labeling. 

 

Definition 1.1 

 

Let G  be a (p, q) graph and f: V G → {k, k + 1, k + 2,… ,
p + q + k − 1} be an injection. For each edge e = uv,  

letf ∗ e =
f u +f(v)

2
   if  f u + f(v)  is even  andf ∗ e =

f u +f v +1

2
  if f u + f(v) is odd, then f is called k-Super 

mean labeling if f V ∪ {f ∗ e : e ∈ E(G)} =  k, k +
1,…, p+q+k−1. A graph that admits  k- Super mean labeling 

is called k-Super mean graph. 

 

Definition 1.2 

 

The graph Cn+v1v3 is  obtained  from  the  cycle  Cn : v1v2 …. 

vnv1 by  adding  an  edge  between  the  vertices  v1  and  v3. 

 

Definition 1.3 

 

A  Slanting ladder S(Ln) is  a  graph  obtained  from Ln by  

adding  the  edges  uivi+1 ; 1 ≤ i ≤ n where 1 ≤ i ≤ n are the 

vertices  of  Ln  such that  u1u2u3…un and v1v2v3…vn are two 

parts of length  n  in the graph  Ln. 

 

Definition 1.4 

 

A corona of a cycle Cn  is a cycle with the vertices u1, u2, 

u3,….,un and the edges  e1, e2, e3,…,en  and  v1, v2, v3,….,vn  are  

the corresponding  new  vertices  in  Cn ʘ K1 and ai be the 

edges joining uivi = 1 to n.  

 

Definition 1.5 
 

The graph 𝑃𝑚  𝐴 𝐾1,2 is obtained by attaching 𝐾1,2 to each 

vertex of 𝑃𝑛 .  

 

2. Main Results 
 

Theorem 2.1: The graph Cn+v1v3   is  a  k-Super mean graph 

for n ≥ 5. 

 

Proof: 

Let V(Cn+v1v3) = { vi  ; 1 ≤ 𝑖 ≤  𝑛 } and E(Cn+v1v3 ) = { eꞌ 

= v1v3 } ∪ {ei = vi ,vi+1  ; 1 ≤ 𝑖 ≤  𝑛} be the vertices and 

edges of (Cn+v1v3) respectively. 

 

Define f : V(Cn+v1v3) → {1, 2, 3, … , 2𝑛 + 1} as follows: 

 

Case 1: n is odd.  

 

                  𝑘 +  5;  𝑖 = 1, 
                 𝑘 ;  𝑖 =  2, 
                 𝑘 +  2 ;  𝑖 =  3, 
   f(vi) =    𝑘 +  9 ;  𝑖 =  4, 

                 𝑘 +  4𝑖 − 6 ; 5 ≤ 𝑖 ≤  
𝑛+3

2
 , 

                  k + 4 (𝑛 − 𝑖) + 7 ; 
𝑛+3

2
+ 1 ≤ 𝑖 ≤ 𝑛 − 1,                                  

                  𝑘 +  8 ;  𝑖 = 𝑛. 
 

Case 2: n is even. 

 

                           𝑘 +  5 ; 𝑖 = 1, 
                           𝑘  ;  𝑖 = 2, 
        f(vi)  =     𝑘 +  2 ;  𝑖 = 3, 

                           𝑘 +  4𝑖 −  7 ; 4 ≤  𝑖 ≤ 
𝑛+2

2
, 

                           𝑘 +  4(𝑛 − 𝑖)  +  8 ; 
𝑛+4

2
  ≤  𝑖 ≤  𝑛. 

 

It can be verified that f  is a super mean labeling of  Cn+v1v3 . 

Hence Cn+v1v3  is a super mean graph. 
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Example 2.1: 

 

14-super mean labeling of C6+v1v3 is given in figure  2.1: 

 
Theorem 2.2: The  slanting  ladder  SLn  is a  k- super mean 

graph,  for n  ≥ 2 and  n ≠ 3t+1, t ≥ 1. 

 

Proof: 

 

Let V(S(Ln)) = { 𝑢𝑖 ,𝑣𝑖  ; 1 ≤ 𝑖 ≤ 𝑛} and 

E(S(Ln))  = {𝑒𝑖 = (𝑣𝑖 ,𝑣𝑖+1) ; 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ 

                   {𝑒𝑖
′ = (𝑢𝑖 ,𝑣𝑖+1) ; 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ 

                   {𝑒𝑖
′′ = (𝑢𝑖 ,𝑢𝑖+1);1 ≤ 𝑖 ≤ 𝑛 − 1 } 

be the vertices and edges of S(Ln) respectively.              

Define f : V(SLn) → {1, 2, 3, … , 5𝑛 − 3} as follows: 

𝑓 (𝑢3𝑖−2) = 15𝑖 + 𝑘 − 11 ;  1 ≤ 𝑖 ≤ 𝑛 − 2,   
f (𝑢3𝑖−4) = 15𝑖 + 𝑘 − 24  ;  2 ≤ 𝑖 ≤ 𝑛 − 1,   
f (𝑢3𝑖−6) = 15𝑖 + 𝑘 − 35 ;  3 ≤ 𝑖 ≤ 𝑛   
f (𝑣1) = 𝑘,       

f (𝑣3𝑖−4) = 15𝑖 + 𝑘 − 28 ;  2 ≤ 𝑖 ≤ 𝑛 − 1, 
f (𝑣3𝑖−6) = 15𝑖 + 𝑘 − 34 ;  3 ≤ 𝑖 ≤ 𝑛 − 1, 
f (𝑣3𝑖−8) = 15𝑖 + 𝑘 − 46 ;  4 ≤ 𝑖 ≤ 𝑛 − 2. 
Now, the induced edge labels are as follows: 

f *(𝑣1𝑣2) = k + 1,  

f *(𝑣3𝑖−4𝑣3𝑖−3) = 15𝑖 + 𝑘 − 23 ;  2 ≤ 𝑖 ≤ 𝑛 − 1,     
f *(𝑣3𝑖−6𝑣3𝑖−5) = 15𝑖 + 𝑘 − 32 ;  3 ≤ 𝑖 ≤ 𝑛 − 1, 
f *(𝑣3𝑖−8𝑣3𝑖−7) = 15𝑖 + 𝑘 − 49 ;  4 ≤ 𝑖 ≤ 𝑛 − 1, 
 f *(𝑢3𝑖−2𝑢3𝑖−1) = 15𝑖 + 𝑘 − 10 ; 1 ≤ 𝑖 ≤ 𝑛 − 2, 
f *(𝑢3𝑖−4𝑢3𝑖−3) = 15𝑖 + 𝑘 − 22 ; 2 ≤ 𝑖 ≤ 𝑛 − 1, 
f *(𝑢3𝑖−6𝑢3𝑖−5) = 15𝑖 + 𝑘 − 30 ; 3 ≤ 𝑖 ≤ 𝑛 − 3, 
f *(𝑢1𝑣2) =  𝑘 + 3,       
f *(𝑢3𝑖−4𝑣3𝑖−3) = 15𝑖 + 𝑘 − 21 ; 2 ≤ 𝑖 ≤ 𝑛 − 1 , 
f *(𝑢3𝑖−6𝑣3𝑖−5) = 15𝑖 + 𝑘 − 33 ;  3 ≤ 𝑖 ≤ 𝑛 − 3, 
f *(𝑢3𝑖−8𝑣3𝑖−7) = 15𝑖 + 𝑘 − 42 ;  4 ≤ 𝑖 ≤ 𝑛 − 2. 
Here p = 2n and q = 3(n - 1). 

Clearly, f(V) ∪{f*(e) : e ∈ E (S(Ln))} = 

                                              {𝑘, 𝑘 + 1,… . , 5𝑛 + 𝑘 − 4}.                                                                                      

So, f is a k - super mean labeling.                                      

Hence  S(Ln)  is a k - super mean graph. 

 

Example 2.2: 

  

20- super mean labeling of SL5 is given in figure 2.2:  

Theorem 2.3:  
 

Corona of a cycle Cn is a k-super mean graph for n ≥ 3. 

 

Proof: 

Let V(Cn ʘ K1) = { ui , vi  ; 1 ≤ 𝑖 ≤ 𝑛} and  

E(Cn ʘ K1) = {ei = ( ui , ui+1 ) ; 1 ≤ 𝑖 ≤ 𝑛} ∪  

                      {ai = ( ui , vi ) ; 1 ≤ 𝑖 ≤ 𝑛}   

be the vertices and edges of Cn ʘ K1  respectively. 

 

Define f : V(Cn ʘ K1) → { 1, 2, … . ,4𝑛} as follows: 

Case 1: 𝒏 𝒊𝒔 𝒐𝒅𝒅.  𝒏 = 𝟐𝒎 + 𝟏,𝒎 = 𝟏, 𝟐, 𝟑, . . . . . 
f(𝑢1) = 𝑘 + 2, 
f(𝑢𝑖)  =   8 𝑖 − 2 + 𝑘 + 4 ;  2 ≤ 𝑖 ≤ 𝑚 + 1, 
                 8(2𝑚 + 1 − 𝑖) + 𝑘 + 11 ;  𝑚 + 2 ≤ 𝑖 ≤ 2𝑚 + 1, 
f(𝑣1) = 𝑘, 
f(𝑣𝑖)  =   8(𝑖 − 2) + 𝑘 + 6 ; 2 ≤ 𝑖 ≤ 𝑚 + 1, 
              8 2𝑚 + 1 − 𝑖 + 𝑘 + 9 ;𝑚 + 2 ≤ 𝑖 ≤ 2𝑚 + 1, 
 

Now, the  induced edge labels are  as follows: 

f *(𝑒1) = 𝑘 + 3, 
f *(𝑒𝑖)  =    8(𝑖 − 2) + 𝑘 + 8 ; 2 ≤ 𝑖 ≤  𝑚 + 1, 
                  8 2𝑚 + 1 − 𝑖 + 𝑘 + 7 ;  𝑚 + 2 ≤ 𝑖 ≤ 2𝑚 + 1, 
f *(𝑎1) = 𝑘 + 1, 
f *(𝑎𝑖) =    8(𝑖 − 2) + 𝑘 + 5 ;  2 ≤ 𝑖 ≤ 𝑚 + 1, 
                  8 2𝑚 + 1 − 𝑖 + 𝑘 + 10 ;  𝑚 + 2 ≤ 𝑖 ≤ 2𝑚 + 1. 
Case 2 : 𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏.  𝒏 =  𝟐𝒎, 𝒎 =  𝟐, 𝟑, . . . . . 
f(𝑢1) = 𝑘 + 2, 
f(𝑢𝑖) = 8 𝑖 − 2 + 𝑘 + 4 ;  2 ≤ 𝑖 ≤ 𝑚, 
f(𝑢𝑚+1) = 8𝑚 + 𝑘 − 3, 
f(𝑢𝑖) =  8 2𝑚 − 𝑖 + 𝑘 + 11 ;  𝑚 + 2 ≤ 𝑖 ≤ 2𝑚, 
f(𝑣1) = 𝑘, 
f(𝑣𝑖) = 8 𝑖 − 2 + 𝑘 + 6 ; 2 ≤ 𝑖 ≤ 𝑚, 
f(𝑣𝑚+1) = 8𝑚 + 𝑘 − 1, 
f(𝑣𝑚+2) = 8𝑚 + 𝑘 − 8, 
f(𝑣𝑖) = 8 2𝑚 − 𝑖 + 𝑘 + 9 ;  𝑚 + 3 ≤ 𝑖 ≤ 2𝑚. 
Now, the induced edge labels are as follows: 

f *(𝑒1) =  𝑘 + 3, 
f *(𝑒𝑖) =  8(𝑖 − 2) + 𝑘 + 8 ;  2 ≤ 𝑖 ≤ 𝑚 − 1, 

f *(𝑒𝑚 ) =  8𝑚 + 𝑘 − 7, 
f *(𝑒𝑚+1) = 8𝑚 + 𝑘 − 4, 
f *(𝑒𝑖) =  8 2𝑚 − 𝑖 + 𝑘 + 7;  𝑚 + 2 ≤ 𝑖 ≤ 2𝑚, 
f *(a1) =  𝑘 + 1, 
f *(𝑎𝑖) =  8 𝑖 − 2 + 𝑘 + 5 ;  2 ≤ 𝑖 ≤ 𝑚, 
f *(𝑎𝑚+1) = 8𝑚 + 𝑘 − 2, 
f *(𝑎𝑖) = 8 2𝑚 − 𝑖 + 𝑘 + 10 ;  𝑚 + 2 ≤ 𝑖 ≤ 2𝑚. 
Here p = 2n  and  q = 2n 

Clearly, f(V)∪{f
*
(e):e ∈ E(Cn ʘ K1)}= 

                                    {𝑘, 𝑘 + 1,… , 4𝑛 + 𝑘 − 1}. 
So, f is a k - super mean labeling. 

Hence  Cn ʘ K1  is a k - super mean graph.                      

 

Figure 2.2: 220-SML of SL5  
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Fig 2.1: 14-SML of C6+v1v3 
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Example 2.3: 30- mean labeling of C8 ʘ K1 is shown in 

figure 2.3: 

Theorem 2.4: 
 

The generalized Antiprism  𝐴𝑛
𝑚  is a k-super mean graph for 

all m ≥ 2, n is even except for n = 4.  

 

Proof: 

           Let V(𝐴𝑛
𝑚 ) = { 𝑣𝑖

𝑗
 ; 1 ≤  𝑖 ≤  𝑛 , 1 ≤ 𝑖 ≤  𝑚 } and 

E(𝐴𝑛
𝑚 ) ={𝑒𝑖

𝑗
 = (𝑣𝑖

𝑗
𝑣𝑖+1
𝑗

 , 𝑣𝑛
𝑗
𝑣1
𝑗
) ;1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑚} ∪ 

              {𝑎𝑖
𝑗
 = (𝑣𝑖

𝑗
𝑣𝑖
𝑗 +1

 ; 1 ≤ 𝑖 ≤  𝑛 , 1 ≤ 𝑗 ≤ 𝑚 − 1} ∪ 

         {𝑏𝑖
𝑗
 = (𝑣𝑖

𝑗
𝑣𝑖−1
𝑗+1

 , 𝑣1
𝑗
𝑣𝑛
𝑗+1

) ; 2 ≤ 𝑖 ≤  𝑛 , 1 ≤ 𝑗 ≤ 𝑚 − 1}  

be the vertices and edges of  𝐴𝑛
𝑚   respectively. 

Define f : V(𝐴𝑛
𝑚 ) → { 1, 2, 3, . . . .4𝑚𝑛 − 2𝑛} as follows: 

f(𝑣1
𝑗
) =  4 𝑗 − 1 𝑛 + 𝑘  ; 1 ≤ 𝑗 ≤  𝑚, 

f(𝑣2
𝑗
) =  4 𝑗 − 1 𝑛 + 𝑘 + 2 ;  1 ≤ 𝑗 ≤  𝑚, 

f(𝑣3
𝑗
) =  4 𝑗 − 1 𝑛 + 𝑘 + 6 ;  1 ≤ 𝑗 ≤ 𝑚, 

f(𝑣4
𝑗
) =  4 𝑗 − 1 𝑛 + 𝑘 + 11 ;  1 ≤ 𝑗 ≤ 𝑚, 

f(𝑣𝑖
𝑗
) =  4 𝑗 − 1 𝑛 + 4𝑖 + 2𝑛 + 𝑘 − 6 ;  5 ≤ 𝑖 ≤ 

𝑛+2

2
 ,  

                                                                           1 ≤ 𝑗 ≤ 𝑚, 

f(𝑣𝑛+2+2𝑖 

2

𝑗
) = 4(𝑗 − 1)𝑛 + 2𝑛 − 4𝑖 + 𝑘 ;  1 ≤ 𝑖 ≤ 

𝑛−6

2
 ,  

                                                                          1 ≤ 𝑗 ≤ 𝑚, 

f(𝑣𝑛−1
𝑗

) =  4(𝑗 − 1)𝑛 + 𝑘 + 8 ; 1 ≤ 𝑗 ≤ 𝑚, 

f(𝑣𝑛
𝑗
) = 4 𝑗 − 1 𝑛 + 𝑘 + 5; 1 ≤ 𝑗 ≤ 𝑚. 

 

It can be verified that f  is a super mean labeling of 𝐴𝑛
𝑚  . 

Hence 𝐴𝑛
𝑚  is a super mean graph. 

 

Example 2.4:  

74 – super mean labeling of  𝐴6
2 is shown in figure 2.4: 

 
Theorem 2.5: 

 

The generalized Antiprism  𝐴𝑛
𝑚  is a k-super mean graph for 

all m ≥ 2, 

n is odd. 
 

Proof: 

Let V(𝐴𝑛
𝑚 ) = { 𝑣𝑖

𝑗
 ; 1 ≤ 𝑖 ≤ 𝑛 , 1 ≤ 𝑖 ≤ 𝑚} and 

E(𝐴𝑛
𝑚 ) = {𝑒𝑖

𝑗
 = (𝑣𝑖

𝑗
𝑣𝑖+1
𝑗

 , 𝑣𝑛
𝑗
𝑣1
𝑗
) ;1 ≤ 𝑖 ≤ 𝑛 − 1,1 ≤ 𝑗 ≤ 𝑚} ∪ 

              { 𝑎𝑖
𝑗
 = ( 𝑣𝑖

𝑗
𝑣𝑖
𝑗+1

 ; 1 ≤ 𝑖 ≤ 𝑛 , 1 ≤ 𝑗 ≤ 𝑚 − 1} ∪ 

          {𝑏𝑖
𝑗
 = (𝑣𝑖

𝑗
𝑣𝑖−1
𝑗+1

 , 𝑣1
𝑗
𝑣𝑛
𝑗+1

) ; 2 ≤ 𝑖 ≤ 𝑛 , 1 ≤ 𝑗 ≤ 𝑚 − 1}  
be the vertices and edges of  𝐴𝑛

𝑚   respectively. 

Define f : V(𝐴𝑛
𝑚 ) → { 1, 2, 3, . . . .4𝑚𝑛 − 2𝑛} as follows: 

𝑓(𝑣1
𝑗
) = 4 𝑗 − 1 𝑛 + 2𝑖 + 𝑘 − 2 ;  1 ≤ 𝑖 ≤

𝑛+1

2
, 1 ≤ 𝑗 ≤ 𝑚, 

𝑓 (𝑣𝑛+3

2

𝑗
) = 4 𝑗 − 1 𝑛 + 𝑛 + 𝑘 + 2 ;  1 ≤ 𝑗 ≤ 𝑚, 

 

𝑓 (𝑣𝑛+3+2𝑖

2

𝑗
) = 4 𝑗 − 1 𝑛 + 𝑛 + 𝑘 + 2𝑖 + 2 ; 

                                      1 ≤ 𝑖 ≤
𝑛 − 3

2
,   1 ≤ 𝑗 ≤ 𝑚. 

Now, the induced edge labels are  as follows: 

𝑓∗  𝑒𝑖
𝑗
  =  4 𝑗 − 1 𝑛 + 2𝑖 + 𝑘 − 1 ; 

                                 1 ≤ 𝑖 ≤
𝑛 − 1

2
, 1 ≤ 𝑗 ≤ 𝑚,  

𝑓∗ (𝑒𝑛−1+2𝑖

2

𝑗
) = 4 𝑗 − 1 𝑛 + 𝑛 + 𝑘 + 2𝑖 − 1; 

                           1 ≤ 𝑖 ≤
𝑛 − 1

2
, 1 ≤ 𝑗 ≤ 𝑚, 

𝑓∗  𝑒𝑛
𝑗
  =  4 𝑗 − 1 𝑛 + 𝑛 + 𝑘 ; 1 ≤ 𝑗 ≤ 𝑚,  

𝑓∗  𝑎𝑖
𝑗
  = 4 𝑗 − 1 𝑛 + 2𝑛 + 𝑘 + 2𝑖 − 2 ; 

                                             1 ≤ 𝑖 ≤
𝑛 + 1

2
, 1 ≤ 𝑗 ≤ 𝑚, 

𝑓∗ (𝑎𝑛+1+2𝑖

2

𝑗
) = 4 𝑗 − 1 𝑛 + 3𝑛 + 𝑘 + 2𝑖 ; 

                         1 ≤ 𝑖 ≤
𝑛 + 1

2
, 1 ≤ 𝑗 ≤ 𝑚, 

𝑓∗  𝑏𝑖
𝑗
  =  4 𝑗 − 1 𝑛 + 2𝑛 + 2𝑖 + 𝑘 − 1 ;  

                                            1 ≤ 𝑖 ≤
𝑛 − 1

2
, 1 ≤ 𝑗 ≤ 𝑚, 

Figure 2.4: 74 - SML of  𝑨𝟔
𝟐 
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Figure 2.3: 30 - SML of C8 ʘ K1 
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𝑓∗ (𝑏𝑛−1+2𝑖

2

𝑗
) = 4 𝑗 − 1 𝑛 + 3𝑛 + 𝑘 + 2𝑖 − 1 ; 

                   1 ≤ 𝑖 ≤
𝑛 − 1

2
, 1 ≤ 𝑗 ≤ 𝑚, 

𝑓∗  𝑏𝑛
𝑗
  =  4 𝑗 − 1 𝑛 + 3𝑛 + 𝑘 ;   1 ≤ 𝑗 ≤ 𝑚. 

Clearly, f(V) ∪ { f *(e): e ∈ E(𝐴𝑛
𝑚 )  =  

                       { 𝑘, 𝑘 + 1, . . . , 4𝑚𝑛 − 2𝑛 + 𝑘 − 1}. 
So, f is a k - super mean labeling.    

Hence   𝐴𝑛
𝑚    is a k - super mean graph.  

 

Example 2.5:  

100 – super mean labeling of  𝐴5
3 is shown in figure 2.5: 

 
Theorem 2.6 

 

The graph (𝑃𝑚  𝐴 𝐾1,2)  ∪ 𝑃𝑛  is a k- super mean graph for 

every m, and  n ≥ 2. 

 

Proof: 

Let  V  𝑃𝑚  𝐴 𝐾1,2 ∪ 𝑃𝑛  = {𝑢𝑖  ; 1 ≤ 𝑖 ≤ 𝑚} ∪  

                                                        {𝑧𝑖  ; 1 ≤ 𝑖 ≤ 𝑛}  ∪ 

                                                        {𝑣𝑖 , 𝑤𝑖  ; 1 ≤ 𝑖 ≤ 𝑚}  

E  𝑃𝑚  𝐴 𝐾1,2 ∪ 𝑃𝑛  = {𝑒𝑖 =  𝑢𝑖 ,𝑢𝑖+1  ; 1 ≤ 𝑖 ≤ 𝑚 − 1}∪ 

                                     {𝑎𝑖 =  𝑢𝑖 ,𝑣𝑖  ; 1 ≤ 𝑖 ≤ 𝑚} ∪  

                                     {𝑏𝑖 =  𝑢𝑖 ,𝑤𝑖  ; 1 ≤ 𝑖 ≤ 𝑚} ∪ 

                                     {𝑐𝑖 =  𝑧𝑖 ,𝑧𝑖+1  ; 1 ≤ 𝑖 ≤ 𝑛 − 1} 

be the vertices and edges of   𝑃𝑚  𝐴 𝐾1,2 ∪ 𝑃𝑛  respectively. 

Define f : V  𝑃𝑚  𝐴 𝐾1,2 ∪ 𝑃𝑛  →  1, 2, … . , 6𝑚 + 2𝑛 − 2  

as follows:  

𝑓 𝑢𝑖 = 6𝑖 + 𝑘 − 4 ; 1 ≤ 𝑖 ≤ 𝑚,          
𝑓 𝑣𝑖 = 6𝑖 + 𝑘 − 6 ; 1 ≤ 𝑖 ≤ 𝑚,                                   
𝑓 𝑤𝑖 = 6𝑖 + 𝑘 − 2 ; 1 ≤ 𝑖 ≤ 𝑚,                                  
𝑓 𝑧𝑖 = 6𝑚 + 2𝑖 + 𝑘 − 3 ; 1 ≤ 𝑖 ≤ 𝑛.                       
It can be verified that f is a k-super mean labeling.  Hence 

 𝑃𝑚  𝐴 𝐾1,2 ∪ 𝑃𝑛  is a k-super mean graph. 

 

 

 

Example 2.6:  

126 – super mean labeling of  𝑃4 𝐴 𝐾1,2 ∪ 𝑃5  is shown in 

figure 2.6: 
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Figure 2.6: 126 – SML of  𝑷𝟒 𝑨 𝑲𝟏,𝟐 ∪ 𝑷𝟓 

Figure 2.4: 74 - SML of  𝑨𝟔
𝟐 
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