(σ, τ) –Lie Ideals with Some New Circulars

Majid Neamah1*, Hala Mehdy2

1University of Baghdad, College of Science, Mathematics Department, Baghdad, Iraq
2University of Mustansirya, Baghdad, Iraq
1mathematic(at)yahoo.com, 2hmprogeram(at)yahoo.com

Abstract: Let R be a ring optional, U be an additive subgroup of R and σ, τ: R → R be two mapping
\[[x, y]_{σ, τ} = xσ(x) − τ(y)x \]
in most of our study we will consider R is prime ring with characteristic not equal 2, and (σ, τ) functions equivalent automorphism. The basic aim of this study is the study of circulating Lieideal (σ,τ) - Lie ideal mainstreaming some results at (σ,τ) - Lie ideal using theorems non-generalized for the purpose of circulating provable and the use of these proofs generalized to help prove theorems other non-generalized. We can prove a lot of non-generalized theorems on the subject Lie ideal by these theorems that have been circulated in this research. We have used in this research

\[\{R \ni x, R; c(y) + τ(x)c\} = C_{σ, τ} \]

\[d(xy) = d(x)σ(y) + τ(x)d(y), \forall x, y \in R \]

Results are as follows

1) **Theorem (2.1)**. Let \(d_1 : R → R \) be a (σ, τ) – derivation and \(d_2 : R → R \) be an (σj, αj) - derivation and \(d_3 : R → R \) be an (β, β) - derivation. Such that \(d_3β = βd_3, d_2β = βd_2, d_β = βd_1 \), where β is automorphism of R. If \(U \neq (0) \) is an ideal of R such that \(d_1(U) \subset U \) and \(d_1d_1(U) = 0 \). Then either \(d_1 = 0 \) or \(d_2 = 0 \) or \(d_3 = 0 \).

2) **Theorem (2.2)** (In general). Let \(d_l : R → R \) be a (σ, τ) – derivation and \(d : R → R \) be an (σj, αj) - derivation such that \(c_1, c_2, ..., c_n \in U \) and \(c_jd_j = c_jd_j, d_jα_j = α_jd_j, j = 2, ..., n \). Where is \(α_j \) an automorphism of R if \(U \neq (0) \) is an ideal of R such that \(d_l(U) \subset U \) and \(d_{i1}d_{i2}...d_{in}(U) = 0 \), \(n \in N \),

Then either \(d_1 = 0 \) or \(d_2 = 0 \) or \(d_n = 0 \)

3) **Theorem (2.3)**. Let \(U \) be nonzero ideal of R and \(a, b, c \in U \).

\[[c, [a, b, x]]_{σ, τ} = 0, \forall x \in U \] for all \(x \in U \), then either

1. \(c, a \in C_{σ, τ} \) or \(b \in Z(R) \).
2. \(c \in C_{σ, τ} \) or \(a, b \in Z(R) \).

4) **Theorem (2.4)** (In general). Let \(U \) be nonzero ideal of R and, if \(a_1, a_2, ..., a_n \in U \), \(\forall x \in U \) then either

1. \(a_1, a_2, ..., a_n \in C_{σ, τ} \) or \(a \in Z(R) \)
2. \(a_n \in C_{σ, τ} \) or \(a_{n-1}, ..., a_1 \in Z(R) \)

Keywords: Lie ideals, ring, semi-ring, characteristic ring, derivation, homomorphic.

1. Introduction

This work is a continuation of a series results that have been obtained by some researchers(K. A. Jassim) and Dr. (A.A. Hameed) see [25-26].

Let R be a ring, U be an additive subgroup of R, U is called a Lie ideal of R if \([U, R] \subset U \).

We generalized this definition that : If we have \(σ, τ: R → R \) be two mapping then

1) U is called a \((σ, τ) \) right Lie ideal of R if \([U, R]_{σ, τ} \subset U \).
2) U is called a \((σ, τ) \) lift Lie ideal of R if \([R, U]_{σ, τ} \subset U \).

Volume 5 Issue 8, August 2017

www.ijsr.in

Licensed Under Creative Commons Attribution CC BY
3) σ is called a (σ, τ)- Lie ideal of R if U is both (σ, τ)- right Lie ideal and
(σ, τ)- left Lie ideal of R.
This chapter consists of two sections, in section one we give the basic definitions and study the relations among them, we illustrate some of these results by some examples.In most of our study we will consider R prime ring with characteristic not equal 2, and σ, τ functions equivalent automorphism.In section two, we gave important results when U is a (σ, τ) right Lie ideal of R, such that if $[U, U]_{\sigma, \tau} \subseteq C_{\sigma, \tau}$ then either $U \subseteq Z(R)$ or $U \subseteq C_{\sigma, \tau}$. Also if U is a subring of R with new theorems which represents the generalization to lemma (3.1) when $n=3$ and when n in general, as well as we concluded a new theorem (3.3) we got some relations between the center of the R, denoted by $Z(R)$ and between the centralizer of x in R, denoted by $C_R(x)$.

The aim of the study
1) Study is a generalization of the concept is perfect for Lie ideal to (σ, τ) - Lie ideal and a generalization some of the results of the ideal for ideal to (σ, τ)- Lie ideal as well as provable.
2) To study the relationship between the derivative and the (σ, τ) - Lie ideal and give some important results, we have used in this study
\[\{ R \ni x \forall R; c \sigma(y) + \tau(x)c; R \in c \} = C_{\sigma, \tau} \text{ as well as we used the following formula to complete derivation process} \]
\[d(xy) = d(x)\sigma(y) + \tau(x)d(y), \forall x, y \in R. \]

2. Basic Concepts

Definition (2.1). A ring R is called a prime ring if $a R b = (0), a, b \in R$, implies that $a = 0$ or $b = 0$.

Definition (2.2). A ring R is called a semi prime ring if $a R b = (0), a, b \in R$, implies that $a = 0$.

Definition (3.3). Let R be an arbitrary ring. If there exists a positive integer n such that $na = 0$ for all $a \in R$, then the smallest positive integer with this property is called the characteristic of the ring, by symbols we write $ch R = n$. If no such positive integer exists (that is, $n=0$ is the only integer for which $na = 0$ for all $a \in R$), then R is said to be of characteristic zero.

Remark (2.1). We can show easily that if R is a prime ring with characteristic not equal n is equivalent to n-torsion free.

Definition (2.4). Let R be a ring. Define a Lie product $[,]$ on R as follows
\[[x, y] = xy - yx \forall x, y \in R. \]

Remark (2.2). Let R be a ring, then $\forall x, y \in R$ we have:
\[[x, y z] = y [x, z] + [x, y] z \]
\[[x + y, z] = [x, z] + [y, z] \]
\[[xy, z] = x [y, z] + [x, z] y \]

Definition (2.5). Let A be a Lie subring of a ring R. An additive subgroup $U \subseteq A$ is said to be a Lie ideal of A, if whenever $u \in U$ and $a \in A$, then $[u, a] \in U$.

Definition (2.6). Let R be a ring Define the product $[x, y]_{\sigma, \tau} = x\sigma(y) - \tau(y)x, \forall x, y \in R$.

Remark (2.3). Let R be a ring and let $a, \sigma, \tau : R \to R$ be two mappings. The $\forall x, y, z \in R$, we have:
1) $[x + y, z]_{\sigma, \tau} = [x, z]_{\sigma, \tau} + [y, z]_{\sigma, \tau}$.
2) $[xy, z]_{\sigma, \tau} = x[y, z]_{\sigma, \tau} + [x(z)]_{\sigma, \tau}, y = x[y, \sigma(z)] + [x, z]_{\sigma, \tau}, y$.

Remark (2.4). Let R be a ring and let, $\sigma, \tau : R \to R$ be two homomorphism’s. Then $\forall x, y \in R$, we have:
\[[x, yz]_{\sigma, \tau} = \tau(y) [x, z]_{\sigma, \tau} + [x, y]_{\sigma, \tau} \sigma(z) \]
Definition (2.7). Let R be a ring, U be an additive subgroup of R and, $\sigma, \tau : R \to R$ be two mappings. Then

1) U is called a (σ, τ)-right Lie ideal of R if $[U, R]_{\sigma, \tau} \subseteq U$.

2) U is called a (σ, τ)-left Lie ideal of R if $[R, U]_{\sigma, \tau} \subseteq U$.

3) U is called a (σ, τ)-Lie ideal of R if U is both (σ, τ)-right Lie ideal and (σ, τ)-left Lie ideal of R.

Definition (2.8). Let R be a ring, the center of R, denoted by $Z(R)$, is the set

$$\{ a \in R; ar = ra \forall r \in R \}.$$

Definition (2.9). Let X be a nonempty subset of R, the centralizer of X in R, denoted by $C_R(X)$, is the set

$$\{ a \in R; [a, x] = 0 \forall x \in R \}.$$

Definition (2.10). Let R be a ring and let, $\sigma, \tau : R \to R$ be two mappings. (σ, τ)-centralizer of R, denoted by $C_{\sigma, \tau}$ is the set

$$\{ c \in R; c \sigma(x) = \tau(x) c \forall x \in R \}.$$

Definition (2.11). Let R be a ring. An additive mapping $d: R \to R$ is called a derivation on R if

$$d(xy) = d(x)y + xd(y) \forall x, y \in R.$$

We say that d is an inner derivation if there exists an element acR such that

$$d(x) = [a, x]_{\sigma, \tau}, \forall x \in R.$$

Definition (2.12). Let R be a ring. An additive mapping $d : R \to R$ is called a (σ, τ)-derivation where, $\sigma, \tau : R \to R$ be two mappings, if

$$d(xy) = d(x)\sigma(y) + \tau(x)d(y) \forall x, y \in R.$$

It is clear that every derivation is a (σ, τ)-derivation.

Definition (2.13). Let $d : R \to R$ be an additive mapping then we say that d is a (σ, τ)-inner derivation if there exists an element acR such that

$$d(x) = [a, x]_{\sigma, \tau}, \forall x \in R.$$

3 (σ, τ)-Right Lie ideals

The following lemmas help us to prove the main theorems

Lemma (3.1). Let be a (σ, τ)-derivation of R and $a \in R$. U be a nonzero ideal of R. If $(U) = (0)$ or $(d(U)a = (0))$, then either $a = 0$ or $d = 0$.

Lemma (3.2). Let $d_1 = R \to R$ be a (σ, τ)-derivation and $d_2 = R \to R$ be an (α, α)-derivation such that $d_2(\alpha) = \alpha d_2, d_2(\alpha) = \alpha d_1$, where α is an automorphism of R. If $U \neq (0)$ is an ideal of R such that $d_2(U) \subseteq U$ and $d_2(U) = (0)$, then either $d_1 = 0$ or $d_2 = 0$.

Proof. For any $u, v \in U, u, v \in U$. By hypothesis $d, d_1(U) = (0)$, So,

$$0 = d_1(d_2(uv)) = d_1(d_2(u)\alpha(v) + \alpha(u)d_2(v)) = d_1(d_2(u)\alpha(v)) + d_1(\alpha(u)d_2(v)) = d_1(d_2(u))\sigma(\alpha(v)) + \tau(d_2(u))d_1(\alpha(v)) + d_1(\alpha(u))\alpha(d_2(v)) + \tau(\alpha(u))d_1(\alpha(u)) + \tau(\alpha(u))d_1(\alpha(u)),$$

Since $d, d_1(U) = (0)$, also $\tau(d_2(u))d_1(\alpha(v)) = 0$, that is,

$$d_1(\alpha(u))\sigma(d_2(\alpha(v))) + \tau(d_2(u))d_1(\alpha(v)) = 0, \forall u, v \in U \quad \ldots \quad (1)$$

Replacing u by $d_2(u)$ in (1). We get

$$d_1(\alpha(u))d_1(\alpha(u))\sigma(d_2(\alpha(v))) + \tau(d_2(u))d_1(\alpha(u))\sigma(d_2(\alpha(v))) = 0$$

Using $d_1 = d_2\alpha$ we have

$$\tau(d_2(u))d_1(\alpha(u))\alpha(d_1(\alpha(v))) = 0, \forall u \in U \quad \ldots \quad (2).$$

Since α is an automorphism, hence α^{-1} exists such that by Lemma (2.1) we get

$$d_2^2(u) = 0 \forall u \in U \quad \text{or} \quad d_1 = 0.$$

Suppose $d_1 \neq 0$, then $d_2^2(U) = (0)$ or $d_1 = 0$. For any $u, v \in U$, since $u, v \in U$, Hence,

$$0 = d_2^2(uv) = d_2(d_2(uv)) = d_2(d_2(u)\alpha(v) + \alpha(u)d_2(v)) = d_2(d_2(u)\alpha(v)) + d_2(\alpha(u)d_2(v)) = d_2(d_2(u))\alpha(\alpha(v)) + \alpha(d_2(u))d_2(\alpha(v)) + d_2(\alpha(u))\alpha(d_2(v)) + \alpha(\alpha(u))d_2(\alpha(u))d_2(\alpha(u)),$$

But $d_2^2(U) = 0$, we get

$$\alpha(d_2(u))d_2(\alpha(\alpha(v))) + d_2(\alpha(u))\alpha(d_2(\alpha(v))) = 0.$$

Volume 5 Issue 8, August 2017

www.ijser.in

Licensed Under Creative Commons Attribution CC BY
Also, \(\alpha d_2 = d_2 \alpha \) we have \(d_2 \alpha(u)d_2(\alpha(v)) + d_2(\alpha(u))d_2(\alpha(v)) = 0. \) So
\[
2d_2(\alpha(u))d_2(\alpha(v)) = 0. \tag{3.2}
\]
Since \(R \) is a prime ring with \(\text{Ch} R \neq 2, \) then \(d_2(\alpha(u))d_2(\alpha(v)) = 0. \) So, \(\alpha d_2(u)d_2(v) = 0 \) and \(d_2(u)d_2(v) = 0, \forall u, v \in U. \) Therefore \(d_2(U)d_2(U) = (0). \)

By Lemma (2.1), we get either \(d_2(U) = (0) \) or \(d_2 = 0. \)

If \(d_2(U) = (0) \), then \(d_2(ru) = 0, u \in U, r \in R. \) This implies
\[
0 = d_2(r\alpha(ru)) = d_2(r)\alpha(r). \tag{3.3}
\]
That is, \(d_2(r)\alpha(u) = 0 \) \(\forall u \in U, r \in R. \)

Now \(0 = d_2(r\alpha(ru)) = d_2(r)\alpha(r)\alpha(u) \) \(\forall u \in U, r \in R. \)
Since \(R \) is a prime ring, then \(d_2(r) = 0 \) \(\forall r \in R. \) That is, \(d_2 = 0. \)

Corollary (3.1). Let \(U \) be a nonzero ideal of \(R \) and \(a, b \in U. \) If \(\left[a, [b, x]\right]_{\sigma, \tau} = 0, \forall x \in U, \) then either \(a \in C_{\sigma, \tau} \) or \(b \in Z(R). \)

Proof. The map \(d_1 : R \to R, \) defined by \(d_1(x) = [a, x], \) is a \((\sigma, \tau) \)-derivation and the map \(d_2 : R \to R, \) defined by \(d_2(x) = [b, x], \) is a derivation.

Moreover \(d_2(U) = [b, U] \subset U, \) that is \(d_2(U) \subset U \) and
\[
d_1d_2(U) = d_2(d_2(U)) = [a, [b, U]]_{\sigma, \tau} = (0) \text{ by assumption.}
\]

Hence, in view of Lemma (3.2), we obtain \(d_1 = 0 \) or \(d_2 = 0. \) This implies that \(a \in C_{\sigma, \tau} \) or \(b \in Z(R). \)

Theorem (3.1). Let \(d_1 : R \to R \) be a \((\sigma, \tau)\)-derivation and \(d_2 : R \to R \) be an \((\alpha, \alpha)\)-derivation and \(d_3 : R \to R \) be an \((\beta, \beta)\)-derivation. Such that \(d_3 = d_\beta \) \(\forall u \in U, \) then either \(d_1 = 0 \) or \(d_2 = 0 \) or \(d_3 = 0. \)

Proof: Let \(u, v \in U, uv \in U. \) By hypothesis
\[
d_2d_3(U) = 0, \text{ so}
\]
\[
0 = d_2d_3(U) = d_2d_3d_3(uv) = d_2d_3d_3(u) + d_2d_3d_3(v) = \ldots
\]

\[
= d_2d_3(\alpha(u))d_3(\alpha(v)) + d_2(\alpha(u))d_3(\alpha(v)) = 0.
\]

Therefore, \(d_2d_3(U) = 0. \) If \(d_2d_3(U) = 0, \) then either \(d_1 = 0 \) or \(d_2 = 0 \) or \(d_3 = 0. \)

\[
\tau d_2d_3(uv)d_3(u) = \tau d_2d_3(uv)d_3(u) + \tau d_2d_3(uv)d_3(u) = 0.
\]

Therefore, \(d_2d_3(U) = 0. \) If \(d_2d_3(U) = 0, \) then either \(d_1 = 0 \) or \(d_2 = 0 \) or \(d_3 = 0. \)

Volume 5 Issue 8, August 2017

www.ijser.in

Licensed Under Creative Commons Attribution CC BY
Suppose if \(d_1(d_2(v)) \neq 0 \), then \(d_2^2(U) = 0 \).

For any \(u, v \in \mathbb{U} \), so \(u v \in \mathbb{U} \). Hence

\[
0 = d_2^2(U) = d_2^2(uv) = d_3(d_2(u) \beta(v) + \beta(u)d_2(v) = \\
= d_3(d_3(u) \beta(v)) + d_2(\beta(u)d_3(v)) \beta(d_3(v)) + d_3(\beta(u)) \beta(d_3(v)) + \beta(v)d_3(d_3(v))
\]

but \(d_1^2(U) = 0 \) we get \(\beta(d_4(u))d_3(\beta(v)) + d_3(\beta(u))d_3(v) = 0 \). Also \(\beta d_3 = d_3 \beta \), we have \(d_3(\beta(u))d_3(\beta(v)) = 0 \), \(\beta d_3 \beta = d_3 \beta \), since \(R \) is a prime with \(\text{char} R \neq 2 \) then

\[
d_3(\beta(u))d_3(\beta(v)) = 0, \text{ so } \beta(d_4(u))d_3(v) = 0 \text{ and } (d_4(u)d_3(v)) = 0 \forall u, v \in \mathbb{U}
\]

There fore \(d_3(U)d_4(U) = 0 \), by Lemma (3.1) we get either \(d_3(U) = 0 \) or \(d_3 = 0 \).

If \(d_3(U) = 0 \), then \(d_3(ru) = 0, u \in \mathbb{U}, r \in \mathbb{R} \) this is implies

\[
0 = d_1(3\beta(u) + \beta(r)d_3(u) = d_3(r) \beta(u) \]

that is

\[
d_3(r) \beta(u) = 0, \forall u \in \mathbb{U}, r \in \mathbb{R} \).
\]

Now \(0 = d_1(3\beta(u))ru = d_3(r) \beta(r) \beta(u) \forall u \in \mathbb{U}, r \in \mathbb{R} \) (since \(R \) is a prime ring) then \(d_1(r) = 0 \forall r \in \mathbb{R} \) that is \(d_1 = 0 \).

Theorem (3.2) (In general). Let \(d_1 : \mathbb{R} \to \mathbb{R} \) be \((\sigma, \tau)\) derivation and \(d_1 : \mathbb{R} \to \mathbb{R} \) be an \((\alpha, \beta)\) derivation such that

\[
d_1(\alpha_i) = \alpha_i d_1, d_\alpha_j = \alpha_i d_1, i = 2, \ldots, n, j = n - 1, n \geq 1, \text{ where } \alpha_i \text{ is an automorphism of } \mathbb{R} \text{ if } U \neq 0 \text{ is an ideal of } \mathbb{R} \text{ such that } d_1(U) \subset \mathbb{U}.
\]

and \(d_1, \ldots, d_n(U) = 0, n \in \mathbb{N} \) Then either \(d_1 = 0 \) or \(d_2 = 0 \) or \(d_n = 0 \).

Proof. Let \(u, v \in \mathbb{U}, u v \in \mathbb{U} \), \(d_1d_2 \ldots d_n(U) = 0 \), so

\[
0 = d_1d_2 \ldots d_n(uv) = d_1d_2 \ldots d_n(\alpha(u)\alpha(v) + \\
\ldots d_{n-2}(\alpha(u)d_n(v)) + d_2 \ldots d_{n-2}(\alpha(u)d_n(v)) = \\
= d_1(d_2 \ldots \ldots d_{n-2}(u + \alpha(u)v)) + d_1d_2 \ldots d_{n-2}(\alpha(u)) + \\
\ldots d_{n-2}(\alpha(u)) + d_2 \ldots d_{n-2}(u + \alpha(u)v) + d_1 \ldots d_{n-2}(\alpha(u)) + \\
\ldots d_{n-2}(u + \alpha(u)v)
\]

in the same way

\[
\tau(d_2 \ldots d_{n-1}(d_n(u)) = 0 \text{ since } d_1d_2 \ldots d_n = 0
\]

\[
\tau(d_2 \ldots d_{n-1}(d_n(u))d_1(\alpha_2 - \alpha_1(v)) + d_1(\alpha_2 - \alpha_1(v))d_1(\alpha_2 - \alpha_1(v)) + \\
\ldots + \tau d_{n-1}(\alpha_2 - \alpha_1(v))d_1(\alpha_2 - \alpha_1(v))d_1(\alpha_2 - \alpha_1(v)) = 0
\]

as \(\tau d_{n-1}(u)d_1(\alpha_2 - \alpha_1(v)) + d_1(\alpha_2 - \alpha_1(v))d_1(\alpha_2 - \alpha_1(v)) + \\
\ldots + \tau d_{n-1}(\alpha_2 - \alpha_1(v))d_1(\alpha_2 - \alpha_1(v))d_1(\alpha_2 - \alpha_1(v)) = 0
\]

where as \(\alpha_1 - 1 \) is automorphism hence \(\alpha_1 - 1 \) exist.
$$\tau d_n^2(u)(d_n(d_1,...d_{n-1}(v))) = 0,$$
by Lemma (3.1) we get $$d_n^2(u) = 0$$ for all $$u \in U$$ or $$d_1(d_2,...d_{n-1}(v)) = 0,$$ that is
$$d_n^2(U) = 0 \text{ or } (d_1(d_2,...d_{n-1}(v))) = 0(n \in N)$$

1. Suppose $$d_n^2(U) \neq 0 \implies$$ then $$d_1(d_2,...d_{n-1}(v)) = 0(n \in N)$$

by Lemma (3.2) we get $$d_1 = 0$$ or $$d_2 = 0$$ or $$d_{n-1}(v) = 0$$

Suppose $$d_1 \neq 0 \implies$$ then $$d_2,...d_{n-1}(v) = 0,$$ by Lemma (2.2)

$$d_1 = 0 \text{ or } (d_2,...d_{n-1}(v)) = 0$$

Thus, is the same way, we get $$d_1 = 0$$ or $$d_2 = 0 \text{ or } d_{n-1}(v) = 0$$

2. Suppose if $$d_1(d_2,...d_{n-1}(v)) \neq 0,$$ then $$d_n^2(U) = 0$$ for any $$u, v \in U,$$ so $$u \in U,$$ hence

$$0 = d_n^2(U) = d_n^2(u \cup v) = d_n(d_n(u \cup v)) = d_n(d_n(u)\alpha_{n-1}(v) + \alpha_{n-1}(u)d_n(v)) =$$

$$= d_n(d_n(u)\alpha_{n-1}(v) + \alpha_{n-1}(u)d_n(v)) = d_n(\alpha_{n-1}(v) + \alpha_{n-1}(u)d_n(v)) +$$

$$+ d_n(\alpha_{n-1}(v) + \alpha_{n-1}(u)d_n(v)) + (\alpha_{n-1}(v) + \alpha_{n-1}(u)d_n(v)) = \alpha_{n-1}(d_n(u)) +\alpha_{n-1}(d_n(v)) = 0.$$ But $$d_n^2(U) = 0$$ we get $$\alpha_{n-1}(d_n(u)) +\alpha_{n-1}(d_n(v)) = 0.$$

Also $$\alpha_{n-1}(d_n) = d_n \alpha_{n-1},$$ we have $$d_n(\alpha_{n-1}(u))d_n(\alpha_{n-1}(v)) + \alpha_{n-1}(d_n(u))d_n(\alpha_{n-1}(v)) = 0,$$

so $$2d_n(\alpha_{n-1}(u))d_n(\alpha_{n-1}(v)) = 0,$$ since $$R$$ is aprim with $$chR \neq 2$$ then $$d_n(\alpha_{n-1}(u))d_n(\alpha_{n-1}(v)) = 0$$ and $$d_n(\alpha_{n-1}(u))d_n(\alpha_{n-1}(v)) = 0.$$

There fore $$d_n(U)d_n(U) = 0$$ by Lemma(3.1), we get either $$d_n(U) = 0$$ or $$d_n = 0$$

if $$d_n(U) = 0,$$ then $$d_n(u) = 0, u \in U, r \in R$$

This implies $$0 = d_n(r)\alpha_{n-1}(u) + \alpha_{n-1}(r)d_n(u) = d_n(r)\alpha_{n-1}(u)$$ that is $$d_n(r)\alpha_{n-1}(u) = 0 \forall u \in U, r \in R,$$ now.

$$0 = d_n(v)\alpha_{n-1}(ru) = d_n(r)v\alpha_{n-1}(u) \forall u \in U, r \in R.$$ (Since R is prime ring), then $$d_n(r) = 0 \forall r \in R,$$ that is $$d_n = 0.$$

Theorem (3.3) Let $$U$$ be nonzero ideal of $$R$$ and $$a, b, c \in U,$$ if $$[c, [a, [b, x]]]_{\sigma, \tau} = 0, \forall x \in U,$$ then either

1. $$c, a \in C_{\sigma, \tau} \text{ or } b \in Z(R).$$
2. $$c \in C_{\sigma, \tau} \text{ or } a, b \in Z(R).$$

Proof. The map $$d_1 : R \rightarrow R$$ define by $$d_1(x) = [c, x]_{\sigma, \tau}$$ is a $$(\sigma, \tau)$$- derivation and the map $$d_2 : R \rightarrow R$$ defined by

$$d_2(x) = [a, x],$$ is derivation and the map $$d_3 : R \rightarrow R$$ defined by $$d_3(x) = [b, x]$$ is a derivation moreover

$$d_1(u) = [b, U] \subseteq U$$ this is $$d_3(u) \subseteq U$$ and $$d_1d_2d_3(u) = d_1(d_2(d_3(u))) = [c, [a, [b, u]]]_{\sigma, \tau} = 0,$$ by assumption.

Hence, in view of Lemma (3.2) use obtain

1. if $$d_1 = 0 \text{ or } d_2 = 0$$ this implies that if $$d_1 = 0$$ this implies $$c \in C_{\sigma, \tau}.$$

if $$d_2d_3 = 0 \implies$$ by Lemma (2.2) either $$d_2 = 0$$ or $$d_3 = 0.$$

This implies $$a \in C_{\sigma, \tau} \text{ or } b \in Z(R) \implies c, a \in C_{\sigma, \tau} \text{ or } b \in Z(R).$$

2. if $$d_1d_2d_3 = 0,$$ then $$d_1d_2 = 0 \text{ or } d_3 = 0$$ if $$d_1d_2 = 0$$ (by Lemma (2.2)) either

$$d_1 = 0 \text{ or } d_2 = 0 \text{ Hence } d_1 = 0.$$

This implies $$c \in C_{\sigma, \tau} \text{ or } a \in Z(R).$$

If $$d_3 = 0$$ this implies $$b \in Z(R) \text{ So } c \in C_{\sigma, \tau} \text{ or } a, b \in Z(R).$$

Theorem (3.4) (In general), Let $$U$$ be nonzero ideal of $$R$$ and $$a_1, a_2, \ldots a_n \in U,$$ if

$$[a_n[a_{n-1}, \ldots, [a_1, x]]]_{\sigma, \tau} = 0 \forall x \in U,$$ then either
1. \(a_n, a_{n-1}, \ldots, a_2 \in C_{\sigma, \tau}\) or \(a_1 \in Z(R)\).
2. \(a_n \in C_{\sigma, \tau}\) or \(a_{n-1}, \ldots, a_1 \in Z(R)\).

Proof. The map \(d_1 : R \to R\) define by \(d_1(x) = [a_n, x]_{\sigma, \tau}\) is a \((\sigma, \tau)\)-derivation and the map \(d_2 : R \to R\) defined by \(d_2(x) = [a_1, x]\) is a derivation moreover \(d_n(U) = [a_n, U] \subset U\) this is \(d_n(U) \subset U\) and

\[
d_1(d_2(\ldots d_n(U))) = [a_n, [a_{n-1}, \ldots, [a_2, [a_1, x]]]\ldots],
\]

is \(0\) \(\forall x \in U\) by assumption. Hence, in view of Lemma (3.2) we use obtain

1. If \(d_1(d_2(\ldots d_n)) = 0\), then \(d_1 = 0\) implies \(a_n \in C_{\sigma, \tau}\) (1)

2. If \(d_1(d_2(\ldots d_n)) = 0\), then \((d_1d_2(\ldots d_n))d_n = 0\) (by Theorem (3.2))

Then either \(a_2 \in C_{\sigma, \tau}\) or \(a_1 \in Z(R)\) (3). From (1), (2) and (3) we get \(a_n, a_{n-1}, \ldots, a_2 \in C_{\sigma, \tau}\) or \(a_1 \in Z(R)\).

References

Volume 5 Issue 8, August 2017

www.ijser.in

Licensed Under Creative Commons Attribution CC BY
[25] K. A. Jassim and Dr. A.A. Hameed, \((\sigma, \tau)\)-Lie Ideals With Derivations In Prime Rings. Department of Mathematics, College of Science, University of Baghdad, Iraq.

Author Profile

Neamah Majid Kahmmac, I have a bachelor's degree in mathematics, a college of science, the University of Baghdad. Iraq - Baghdad - Jadriyah complex - near the Ministry of Science and Technology, Currently I am Master student of the Institute of Mathematics and Computer Science of Southern Federal University, 344090, Rostov-on-Don, st. zorge 28, dormitories\(N_6\) 6B, к. 213, mmathemtic@yahoo.com, 8-938-155-22-96.

Mehdy Hala Shaker, I have a bachelor's degree in computer science, University of Anbar - Computer College - Iraq-Anbar, Currently I am Master student of the Institute of Mathematics and Computer Science of Southern Federal University, 344090, Rostov-on-Don, st. zorge 28, dormitories\(N_6\) 6B, к. 213, hmprogeram@yahoo.com, 8-938-162-36-94.