On k-Super Mean Graphs

Dr. M. Tamilselvi¹, S. Ilakkiya²

¹Associate Professor, PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Tiruchirappalli – 620 002, India madura.try[at]gmail.com

²Research Scholar, PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Tiruchirappalli – 620 002, India Ilakkiyasettum[at]gmail.com

Abstract: Let G be a (p,q) graph and $f: V(G) \rightarrow \{1, 2, 3, \dots, p+q\}$ be an injection. For each edge e = uv, let $f^*(e) = \frac{f(u)+f(v)}{2}$ if f(u) + f(v) is even and $f^*(e) = \frac{f(u)+f(v)+1}{2}$ if f(u) + f(v) is odd, then f is called super mean labeling if $f(V) \cup \{f^*(e): e \in E(G) = \{1, 2, 3, \dots, p+q\}$. A graph that admits a super mean labeling is called super mean graph. Let G be a (p,q) graph and $f: V(G) \rightarrow \{k, k+1, k+2, \dots, p+q+k-1\}$ be an injection. For each edge e = uv, let $f^*(e) = \frac{f(u)+f(v)}{2}$ if f(u) + f(v) is odd, then f is called k - super mean labeling if $f(V) \cup \{f^*(e): e \in E(G)\} = \{k, k+1, k+2, \dots, p+q+k-1\}$. A graph that admits a k - super mean labeling is called k - super mean graph. In this paper, we investigate k-super mean labeling of (nQ_3, v_1, v_2) , TP_n , $S(P_m \times P_n)$, $(P_nA K_1) \cup T_m$, $A(T_n)$, $C_n \ominus 2P_m$, $TL_n \odot K_1$.

Keyword: k - super mean labeling, k - super mean graph, (nQ_3, v_1, v_2), TP_n, S($P_m \times P_n$), ($P_n \land K_1$) \cup T_m, A(T_n), C_n \ominus 2P_m, TL_n \bigcirc K₁

1. Introduction

All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense of Harary [1]. The symbols V(G) and E(G) will denote the vertex set and edge set of a graph G. In this paper, we investigate k-super mean graphs of (nQ_3, v_1, v_2) , TP_n, S(P_m × P_n), (P_n A K₁) \cup T_m, A(T_n), C_n \ominus 2P_m, TL_n \odot K₁.

Definition 1.1

Let G be a (p,q) graph and f: V(G) \rightarrow {1, 2, 3, ..., p + q} be an injection. For each edge e = uv, let $f^*(e) = \frac{f(u)+f(v)}{2}$ if f(u) + f(v) is even and $f^*(e) = \frac{f(u)+f(v)+1}{2}$ if f(u) + f(v) is odd, then f is called **super mean labeling** if $f(V) \cup$ {f*(e): e $\in E(G) = \{1, 2, 3, ..., p + q\}$. A graph that admits a super mean labeling is called **super mean graph.**

Definition 1.2

Let G be a (p, q) graph and $f: V(G) \rightarrow \{k, k+1, k+2, ... p+q+k-1\}$ be an injection. For each edge e = uv, let $f^*(e) = \frac{f(u)+f(v)}{2}$ if f(u) + f(v) is even and $f^*(e) = \frac{f(u)+f(v)+1}{2}$ if f(u) + f(v) is odd, then f is called **k** - super mean labeling if $f(V) \cup \{f^*(e): e \in E(G)\} = \{k, k+1, k+2, ..., p+q+k-1\}$. A graph that admits a k - super mean labeling is called **k** - super mean graph.

Definition 1.3

 (G_1, G_2, v_1, v_2) is the graph obtained from G_1 and G_2 by identifying the vertices v_1 and v_2 . If $G_1 = G_2$, then (G, G, v_1, v_2) is denoted by $(2G, v_1, v_2)$.

The graph $p_2 \times p_2 \times p_2$ is called cube and is denoted by Q_3 . Q_3 is a super mean graph, then $(2Q_3, v_1, v_2)$ is a super mean graph.

Definition 1.4

A triangle C_3 can be partitioned into n number of triangles by joining one vertex C_3 to the midpoint of the opposite edges and continue this process to form n triangles and it is denoted by TP_n .

Definition 1.5

A graph obtained from grid $P_m \times P_n$ by joining opposite corners (i, j) and (i + 1, j + 1) of each cell by an edge is denoted by S($P_m \times P_n$) is called strong grid.

Definition 1.6

A graph obtained a single pendant edge to each vertex of a path is called a comb $(P_n \land K_1)$.

Definition 1.7

A alternate triangular snake $A(T_n)$ is obtained from a path $u_1, u_2, u_3, \dots, u_n$ by joining u_i and u_{i+1} (alternatively) to a new vertex v_i for $1 \le i \le n-1$. That is, every edge of a path is replaced by a triangle C_3 .

Definition 1.8

Bi–armed crown $C_n \ominus 2P_m$ is a graph obtained from a cycle C_n by identifying the pendent vertices of two vertex disjoint paths of same length m – 1at each vertex of the cycle.

Definition 1.9

A triangular ladder TL_n is a graph obtained from L_n by adding the edges $u_i v_{i+1}$, $1 \le i \le n - 1$ where u_i and v_i are the vertices of L_n such that u_1 , u_2 , u_3 u_n and v_1 , v_2 , v_3 v_n are two paths of length n in the graph.

2. Main Results

Theorem 2.1:

The graph (nQ_3, v_1, v_2) is a k-Super mean graph for all n >1.

3

<u>www.ijser.in</u> Licensed Under Creative Commons Attribution CC BY

Volume 5 Issue 8, August 2017

Proof: Let $V(nQ_3, v_1, v_2) = \{v_i ; 1 \le i \le n\} \cup \{v_i ; 1 \le i \le n\} \cup \{v_i : 1 \le i \le n\} \cup$ $\{v_i^{''}; 1 \le i \le n\} \cup \{v_i^{'''}; 1 \le i \le n\} \cup$ $\{u_i : 1 \le i \le n\} \cup \{u'_i : 1 \le i \le n\} \cup$ $\{u_i^{''}; 1 \le i \le n\} \cup \{u_i^{'''}; 1 \le i \le n\}$ and $v_i'' = v_{i+1}$. $E(nQ_3, v_1, v_2) = \{e_i = (v_i, v_i''); 1 \le i \le n\} \cup$ $\{e_{i}^{'} = (v_{i}, v_{i}^{'}); 1 \leq i \leq n \} \cup$ $\{e_{i}^{''} = (v_{i}^{'}, v_{i}^{'''}); 1 \le i \le n\} \cup$ $\{e_i^{'''} = (v_i^{''}, v_i^{'''}); 1 \le i \le n\} \cup$ $\{a_i = (u_i, u_i''); 1 \le i \le n\} \cup$ $\{a_{i}^{'} = (u_{i}, u_{i}^{'}); 1 \leq i \leq n\} \cup$ $\{a_{i}^{''} = (u_{i}^{'}, u_{i}^{'''}); 1 \le i \le n \} \cup$ $\{a_{i}^{'''} = (u_{i}^{''}, u_{i}^{'''}); 1 \le i \le n\} \cup$ $\{b_i = (v_i, u_i); 1 \le i \le n\} \cup$ $\{b_i^{'} = (v_i^{''}, u_i^{''}); 1 \le i \le n\} \cup$ $\{b_{i}^{''} = (v_{i}^{'}, u_{i}^{'}); 1 \le i \le n\} \cup$ $\{b_i^{'''} = (v_i^{'''}, u_i^{'''}); 1 \le i \le n\}$ be the vertices and edges of (nQ_3, v_1, v_2) respectively.

First we label the vertices of (nQ_3, v_1, v_2) as follows: $f(v_i) = 19i + k - 19, \ 1 \le i \le n$ $f(v_i) = 19i + k - 17, \ 1 \le i \le n$ $f(v_i'') = 19i + k - 2, \ 1 \le i \le n$ $f(v_i^{m}) = 19i + k, \ 1 \le i \le n$ $f(u_i) = 19i + k - 9$, $1 \le i \le n$ $f(u_i) = 19i + k - 15, \ 1 \le i \le n$ $f(u_i^{''}) = 19i + k - 4, \ 1 \le i \le n$ $f(u_i^{'''}) = 19i + k - 11, \ 1 \le i \le n$ Now the induced edge labels are $f^{*}(e_{i}) = 19i + k - 10, 1 \le i \le n$ $f^{*}(e_{i}) = 19i + k - 18, 1 \le i \le n$ $f^{*}(e_{i}^{''}) = 19i + k - 8, 1 \le i \le n$ $f^*(e_i^{'''}) = 19i + k - 1, \ 1 \le i \le n$ $f^{*}(a_{i}) = 19i + k - 6, 1 \le i \le n$ $f^{*}(a_{i}) = 19i + k - 12, \ 1 \le i \le n$ $f^{*}(a_{i}^{''}) = 19i + k - 13, \ 1 \le i \le n$ $f^*(a_i^{'''}) = 19i + k - 7, \ 1 \le i \le n$ $f^*(\mathbf{b}_i) = 19i + k - 14, \ 1 \le i \le n$ $f^{*}(b_{i}) = 19i + k - 3, 1 \le i \le n$ $f^{*}(b_{i}^{''}) = 19i + k - 16, 1 \le i \le n$ $f^{*}(b_{i}^{'''}) = 19i + k - 5, 1 \le i \le n$ Here p = 7n + 1, q = 12n, p + q = 19n + 1Clearly, $f(V) \in \{f^*(e): e \in E(nQ_3, v_1, v_2)\} = \{k, k+1, \dots 19n + k\}$ So, $f(V) \cup \{f^*(e) : e \in E(nQ_3, v_1, v_2)\}$ is a k-Super mean labeling.

Hence the graph (nQ_3, v_1, v_2) is a k-Super mean graph.

Example 2.1:

315 – Super mean labeling of $(2Q_3, v_1, v_2)$ is given in figure 2.1

Theorem 2.2:

The graph TP_n is a super mean graph

Proof:

Let
$$V(TP_n) = \{v_i ; 1 \le i \le n-1\} \cup \{u_i ; 1 \le i \le n\}$$

and
 $E(TP_n) = \{e_i = (v_i, u_i); 1 \le i \le n-1\} \cup \{e'_i = (v_i, u_{i+1}); 1 \le i \le n-1\} \cup \{a_i = (u_i, u_{i+1}); 1 \le i \le n-1\} \cup \{b_i = (v_i, v_{i+1}); 1 \le i \le n-2\}$
be the vertices and edges of TP_n respectively.

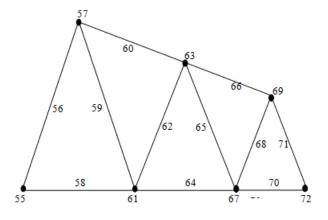
First we label the vertices of TP_n as follows: $f(v_i) = 6i + k - 4, \ 1 \le i \le n - 1$ $f(u_i) = 6i + k - 6, \ 1 \le i \le n - 1$ $f(u_i) = 6i + k - 7, \ i = n$ Now the induced edge labels are $f^*(e_i) = 6i + k - 2, \ 1 \le i \le n - 1$ $f^*(e_i) = 6i + k - 2, \ 1 \le i \le n - 1$ $f^*(a_i) = 6i + k - 3, \ 1 \le i \le n - 1$ $f^*(b_i) = 6i + k - 1, \ 1 \le i \le n - 2$ Here p = 2n - 1, q = 4n - 5, p + q = 6n - 6Clearly, $f(V) \cup \{f^*(e) : e \in E(TP_n)\} = \{k, k + 1, ..., 6n + k - 7\}$

 $f(V) \cup \{f^*(e) : e \in E(TP_n)\} = \{k, k + 1, \dots 6n + k - 7\}$ So, $f(V) \cup \{f^*(e) : e \in E(TP_n)\}$ is a k-Super mean labeling.

Hence the graph TP_n is a k-Super mean graph.

Example 2.2:

55 - Super mean labeling of TP_4 is given in figure 2.2



Theorem 2.3: The graph $S(P_m \times P_n)$ is a super mean graph.

Proof:

Let $V(S(P_m \times P_n)) = \{u_{ij} ; 1 \le i \le m, 1 \le j \le n\}$ and $E(S(P_m \times P_n)) = \{e_{ij} = (u_{ij}, u_{i(j+1)}) ; 1 \le i \le m, 1 \le j \le n-1\} \cup \{a_{ij} = (u_{ij}, u_{(i+1)j}) ; 1 \le i \le m-1, 1 \le j \le n\} \cup \{b_{ij} = (u_{ij}, u_{(i+1)(j+1)}) ; 1 \le i \le m-1, 1 \le j \le n-1\}$ be the vertices and a data of $S(P_n \times P_n)$ representing the

be the vertices and edges of $S(P_m \times P_n)$ respectively.

Volume 5 Issue 8, August 2017

<u>www.ijser.in</u> Licensed Under Creative Commons Attribution CC BY First we label the vertices of $(P_m \times P_n)$ as follows: $f(u_{ij}) = (4n - 2)(i - 1) + 2j + k - 2,$ $1 \le i \le m, 1 \le j \le n$

Now the induced edge labels are $f^*(e_{ij}) = (4n - 2)(i - 1) + 2j + k - 1,$ $1 \le i \le m, \ 1 \le j \le n - 1$ $f^*(a_{ij}) = (4n - 2)(i - 1) + (2n + j) + j + k - 3,$ $1 \le i \le m - 1, \ 1 \le j \le n$ $f^*(b_{ij}) = (4n - 2)(i - 1) + 2n + 2j, + k - 2,$ $1 \le i \le m - 1, \ 1 \le j \le n - 1$

Here p = mn, q = 3mn - 2m - 2n + 1, p + q = 4mn - 2m - 2n + 1Clearly, $f(V) \cup \{f^*(e) : e \in E(S(P_m \times P_n))\}$ $= \{k, k + 1, \dots, 4mn - 2m - 2n + k\}$ So, $f(V) \cup \{f^*(e) : e \in E(S(P_m \times P_n))\}$ is a k-Super mean

Hence the graph $(P_m \times P_n)$ is a k-Super mean graph.

Example 2.3:

labeling.

545 – Super mean labeling of $(P_4 \times P_4)$ is given in figure 2.3

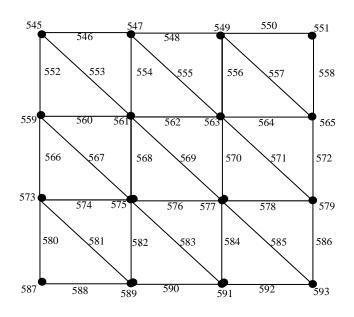


Figure 2.3: 545-Super mean labeling of $S(P_4 \times P_4)$

Theorem 2.4:

The graph $(P_n \land K_1) \cup T_m$ is a k-Super mean graph. **Proof:**

Let $V((P_n \land K_1) \cup T_m) = \{v_i ; 1 \le i \le n\} \cup \{u_i ; 1 \le i \le n\} \cup \{w_i ; 1 \le i \le n\} \cup \{w_i ; 1 \le i \le m - 1\} \cup \{w'_i ; 1 \le i \le m\}$

and

$$\begin{split} E((P_n \land K_1) \cup T_m) &= \{e_i = (v_i, u_i); 1 \le i \le n\} \cup \\ \{e_i^{'} = (u_i, u_{i+1}); 1 \le i \le n-1\} \cup \\ \{a_i = (w_i, w_i^{'}); 1 \le i \le m-1\} \cup \\ \{b_i = (w_i, w_{i+1}^{'}); 1 \le i \le m-1\} \cup \end{split}$$

 $\{c_i = (w'_i, w'_{i+1}); 1 \le i \le m - 1\}$ be the vertices and edges of $(P_n \land K_1) \cup T_m$ respectively.

First we label the vertices of $(P_n \land K_1) \cup T_m$ as follows: $f(v_i) = 4i + k - 4, \ 1 \le i \le n, \ i \ is \ odd$ $f(v_i) = 4i + k - 2, \ 2 \le i \le n, \ i \ is \ even$ $f(u_i) = 4i + k - 2, \ 1 \le i \le n, i \text{ is odd}$ $f(u_i) = 4i + k - 4, \ 2 \le i \le n, i \text{ is even}$ $f(w_1) = 4n + k - 1$ $f(w_i) = 4n + 5i + k - 4, \ 2 \le i \le m - 1$ $f(w_1) = 4n + k + 1$ $f(w_i) = 4n + 5i + k - 6, \ 2 \le i \le m$ Now the induced edge labels are $f^{*}(e_{i}) = 4i + k - 3$, $1 \le i \le n$ $f^{*}(e_{i}^{'}) = 4i + k - 1$, $1 \le i \le n - 1$ $f^{*}(a_{i}) = 4n + 5i + k - 5$, $1 \le i \le m - 1$ $f^{*}(b_{1}) = 4n + k + 2$ $f^{\ast}(b_i)=4n$ + 5i + k - 2 , 2 \leq i \leq m - 1 $f^*(c_1) = 4n + k + 3$ $f^{*}(c_{i}) = 4n + 5i + k - 3$, $2 \le i \le m - 1$ Here p = 2n + 2m - 1, q = 2n + 3m - 4, p + q = 4n + 5m - 5Clearly,

 $f(V) \cup \{f^*(e) : e \in E((P_n \land K_1) \cup T_m)\} = \{k, k+1, \dots, 4n+5m+k-6\}$ So, $f(V) \cup \{f^*(e) : e \in E((P_n \land K_1) \cup T_m)\}$ is a k-Super mean labeling.

Hence the graph $(P_n \land K_1) \cup T_m$ is a k-Super mean graph.

Example 2.4:

101 – Super mean labeling of $(P_4 \land K_1) \cup T_3$ is given in figure 2.4

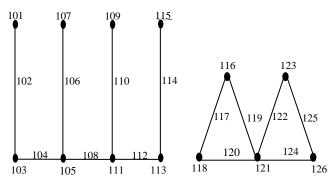


Figure 2.4: 101-Super mean labeling of $(P_4 \land K_1) \cup T_3$

Theorem 2.5:

Alternate triangular snakes $A(T_n)$ is a k-Super mean graphs. **Proof:**

We consider two different cases.

If the alternate triangular snake $A(T_n)$ starts from u_1 , then we need to consider two subcases.

Subcase (i) (a): n is even

Let
$$V(A(T_n)) = \{u_i ; 1 \le i \le n\} \cup \{v_i ; 1 \le i \le \frac{n}{2}\}$$

and $E(A(T_n)) = \{e_i = (u_{2i-1}, u_{2i}); 1 \le i \le \frac{n}{2}\} \cup$

Volume 5 Issue 8, August 2017

www.ijser.in

Licensed Under Creative Commons Attribution CC BY

$$\{a_i = (v_i, u_{2i-1}); 1 \le i \le \frac{n}{2}\} \cup \{b_i = (v_i, u_{2i}); 1 \le i \le \frac{n}{2}\} \cup \{c_i = (u_{2i}, u_{2i+1}); 1 \le i \le (\frac{n-2}{2})\}$$
 be the vertices and edges of $A(T_n)$ respectively.
First we label the vertices of $A(T_n)$ as follows:
 $f(u_{2i-1}) = 7i + k - 7, 1 \le i \le \frac{n}{2}$
 $f(u_{2i}) = 7i + k - 2, 1 \le i \le \frac{n}{2}$
 $f(v_i) = 7i + k - 5, 1 \le i \le \frac{n}{2}$
Now the induced edge labels are
 $f^*(e_i) = 7i + k - 6, 1 \le i \le \frac{n}{2}$
 $f^*(a_i) = 7i + k - 6, 1 \le i \le \frac{n}{2}$
 $f^*(c_i) = 7i + k - 1, 1 \le i \le \frac{n}{2}$
 $f^*(c_i) = 7i + k - 1, 1 \le i \le (\frac{n-2}{2})$
Here $p = (\frac{3n}{2}), q = (\frac{4n-2}{2}), p + q = (\frac{7n-2}{2})$
Clearly,
 $f(V) \cup \{f^*(e) : e \in E(A(T_n))\} = \{k, k + 1, \dots, (\frac{7n-2}{2}) + k - 1\}$

So, $f(V) \cup \{f^*(e) : e \in E(A(T_n))\}$ is a k-Super mean labeling.

Hence the graph $A(T_n)$ is a k-Super mean graph.

Example 2.5:

21 – Super mean labeling of $A(T_6)$ is given in figure 2.5

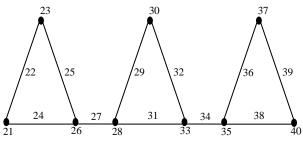


Figure 2.5: 21-Super mean labeling of $A(T_6)$

Subcase (i) (b): n is odd

Let $V(A(T_n)) = \{u_i; 1 \le i \le n\} \cup \{v_i; 1 \le i \le (\frac{n-1}{2})\}$ and $E(A(T_n)) = \{e_i = (u_{2i-1}, u_{2i}); 1 \le i \le (\frac{n-1}{2})\} \cup \{a_i = (v_i, u_{2i-1}); 1 \le i \le (\frac{n-1}{2})\} \cup \{b_i = (v_i, u_{2i}); 1 \le i \le (\frac{n-1}{2})\} \cup \{c_i = (u_{2i}, u_{2i+1}); 1 \le i \le (\frac{n-1}{2})\}$ be the vertices and edges of $A(T_n)$ respectively. First we label the vertices of $A(T_n)$ as follows:

$$\begin{split} f(u_{2i-1}) &= 7i + k - 7, \ 1 \leq i \leq \left(\frac{n-1}{2}\right) + \\ f(u_{2i}) &= 7i + k - 2, \ 1 \leq i \leq \left(\frac{n-1}{2}\right) \\ f(v_i) &= 7i + k - 5, \ 1 \leq i \leq \left(\frac{n-1}{2}\right) \\ \text{Now the induced edge labels are} \\ f^*(e_i) &= 7i + k - 4 \ , \ 1 \leq i \leq \left(\frac{n-1}{2}\right) \\ f^*(a_i) &= 7i + k - 6 \ , \ 1 \leq i \leq \left(\frac{n-1}{2}\right) \\ f^*(b_i) &= 7i + k - 3 \ , \ 1 \leq i \leq \left(\frac{n-1}{2}\right) \\ f^*(c_i) &= 7i + k - 1 \ , \ 1 \leq i \leq \left(\frac{n-1}{2}\right) \end{split}$$

Here
$$p = \left(\frac{3n-1}{2}\right), q = 4\left(\frac{n-1}{2}\right), p + q = \left(\frac{7n-5}{2}\right)$$

Clearly,
 $f(V) \cup \{f^*(e) : e \in E(A(T_n))\} =$
 $\{k, k + 1, \dots, \left(\frac{7n-5}{2}\right) + k - 1\}$

So, $f(V) \cup \{f^*(e) : e \in E(A(T_n))\}$ is a k-Super mean labeling.

Hence the graph $A(T_n)$ is a k-Super mean graph.

Example 2.6:

75 – Super mean labeling of $A(T_7)$ is given in figure 2.6

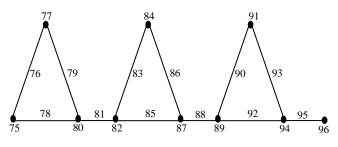


Figure 2.6: 75-Super mean labeling of $A(T_7)$

Subcase (ii) (a): n is even

Let $V(A(T_n)) = \{u_i ; 1 \le i \le n\} \cup \{v_i ; 1 \le i \le (\frac{n-2}{2})\}$ and $E(A(T_n)) = \{e_i = (u_{2i}, u_{2i+1}); 1 \le i \le (\frac{n-2}{2})\} \cup \{a_i = (v_i, u_{2i}); 1 \le i \le (\frac{n-2}{2})\} \cup \{b_i = (v_i, u_{2i+1}); 1 \le i \le (\frac{n-2}{2})\} \cup \{c_i = (u_{2i}, u_{2i-1}); 1 \le i \le \frac{n-2}{2}\}$ be the vertices and edges of $A(T_n)$ respectively.

First we label the vertices of
$$A(T_n)$$
 as follows:
 $f(u_{2i-1}) = 7i + k - 7, \ 1 \le i \le \frac{n}{2}$
 $f(u_{2i}) = 7i + k - 5, \ 1 \le i \le \frac{n}{2}$
 $f(v_i) = 7i + k - 3, \ 1 \le i \le (\frac{n-2}{2})$
Now the induced edge labels are
 $f^*(e_i) = 7i + k - 2, \ 1 \le i \le (\frac{n-2}{2})$

$$f^{*}(a_{i}) = 7i + k - 4 , \ 1 \le i \le \left(\frac{n-2}{2}\right)$$

$$f^{*}(b_{i}) = 7i + k - 1 , \ 1 \le i \le \left(\frac{n-2}{2}\right)$$

$$f^{*}(c_{i}) = 7i + k - 6 , \ 1 \le i \le \frac{n}{2}$$
Here $p = \left(\frac{3n-2}{2}\right), \ q = \left(\frac{4n-6}{2}\right), \ p + q = \left(\frac{7n-8}{2}\right)$
Clearly,
$$f(V) \cup \{f^{*}(e) : \ e \in E(A(T_{n}))\} = \{k, k + 1, \dots, \left(\frac{7n-8}{2}\right) + k - 1\}$$

So, $f(V) \cup \{f^*(e) : e \in E(A(T_n))\}$ is a k-Super mean labeling.

Hence the graph $A(T_n)$ is a k-Super mean graph.

Example 2.7:

56–Super mean labeling of $A(T_8)$ is given in figure 2.7

Volume 5 Issue 8, August 2017 www.ijser.in

1

Licensed Under Creative Commons Attribution CC BY

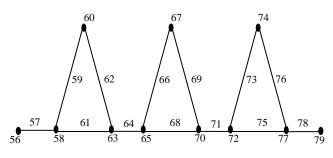


Figure 2.7: 56-Super mean labeling of $A(T_8)$

Subcase (ii) (b): n is odd

Let $V(A(T_n)) = \{u_i; 1 \le i \le n\} \cup \{v_i; 1 \le i \le (\frac{n-1}{2})\}$ and $E(A(T_n)) = \{e_i = (u_{2i}, u_{2i+1}); 1 \le i \le (\frac{n-1}{2})\} \cup \{a_i = (v_i, u_{2i}); 1 \le i \le (\frac{n-1}{2})\} \cup \{b_i = (v_i, u_{2i+1}); 1 \le i \le (\frac{n-1}{2})\} \cup \{c_i = (u_{2i}, u_{2i-1}); 1 \le i \le (\frac{n-1}{2})\}$ be the vertices and edges of $A(T_n)$ respectively. First we label the vertices of $A(T_n)$ as follows:

First we label the vertices of
$$A(T_n)$$
 as follows:
 $f(u_{2i-1}) = 7i + k - 7, \quad 1 \le i \le \left(\frac{n-1}{2}\right) + 1$
 $f(u_{2i}) = 7i + k - 5, \quad 1 \le i \le \left(\frac{n-1}{2}\right)$
 $f(v_i) = 7i + k - 3, \quad 1 \le i \le \left(\frac{n-1}{2}\right)$
Now the induced edge labels are
 $f^*(e_i) = 7i + k - 2, \quad 1 \le i \le \left(\frac{n-1}{2}\right)$
 $f^*(a_i) = 7i + k - 4, \quad 1 \le i \le \left(\frac{n-1}{2}\right)$
 $f^*(b_i) = 7i + k - 1, \quad 1 \le i \le \left(\frac{n-1}{2}\right)$
 $f^*(c_i) = 7i + k - 6, \quad 1 \le i \le \left(\frac{n-1}{2}\right)$
Here $p = \left(\frac{3n-1}{2}\right), \quad q = 4\left(\frac{n-1}{2}\right), \quad p + q = \left(\frac{7n-5}{2}\right)$
Clearly,
 $f(V) \cup \{f^*(e) : e \in E(A(T_n))\} = \{k, k + 1, \dots, \left(\frac{7n-5}{2}\right) + k - 1\}$

So, $f(V) \cup \{f^*(e) : e \in E(A(T_n))\}$ is a k-Super mean labeling.

Hence the graph $A(T_n)$ is a k-Super mean graph.

Example 2.8:

98 – Super mean labeling of $A(T_7)$ is given in figure 2.8

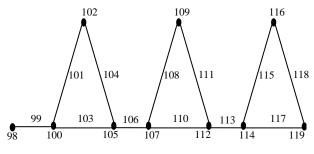


Figure 2.8: 98-Super mean labeling of $A(T_7)$

Theorem 2.6:

The bi–armed crown $C_n \ominus 2P_m$ is a k-Super mean graph for all odd $n \ge 3$ and $m \ge 2$.

Proof: Let $V(\mathcal{C}_n \ominus 2P_m) = \{u_i ; 1 \le i \le n\} \cup$ $\begin{array}{l} \{v_{i1}^w \; ; \; 1 \leq i \; \leq \; n \; , 1 \leq w \; \leq \; m\} \cup \\ \{v_{i2}^w \; ; \; 1 \leq \; i \; \leq \; n \; , 1 \leq w \leq m \, \} \end{array}$ and $v_{i1}^{m} = v_{i2}^{m} = u_{i}$ $\operatorname{E}(\mathcal{C}_n \ominus 2P_m) = \{e_i = (u_i, u_{i+1}) \ ; \ 1 \leq i \leq n-1\} \ \cup$ $\{e_{i1}^{w} = (v_{i1}^{w}, v_{i1}^{w+1}); 1 \le i \le n, 1 \le w \le m-1\} \cup$ $\{e_{i2}^{w} = (v_{i2}^{w}, v_{i2}^{w+1}); 1 \le i \le n, 1 \le w \le m-1\}$ and $e_n = (u_n, u_1)$ be the vertices and edges of $C_n \ominus 2P_m$ respectively. First we label the vertices of $C_n \ominus 2P_m$ as follows: Let n = 2t + 1 for some t. $f(v_{i1}^{i}) = 4(j-1)m - 2j + 2i + k$ $1 \leq j \leq t + 1, 1 \leq i \leq m$ $f(v_{i2}^{m+1-i}) = 2(2j-1)m - 2j + 2i + k - 2 ,$ $1 \leq j \leq t$, $2 \leq i \leq m$ $f(v_{(t+1)2}^{m-1}) = 2(2t + 1)m - (2t + 2) + k + 3$ $f(v_{(t+1)2}^{m-1-i}) = 2(2t + 1)m - 2t + 2i + k + 1,$ $1 \leq i \leq m - 2$ $f(v_{(t+1+i)1}^{i}) = 4(j+t)m - 2(t+j) + 2i + k - 1$, $1 \leq j \leq t$, $1 \leq i \leq m$ $f(v_{(t+1+i)2}^{m+1-i}) = (4j + 4t + 2)m - (t + 2j + 2i) +$ 4i-2t + k, $1 \le j \le t$, $2 \le i \le m$ Now the induced edge labels are $f^{*}(e_{i1}^{i}) = 4(j-1)m - 2j + 2i + k + 1,$ $1 \le i \le t + 1$, $1 \le i \le m - 1$ $f^*(e_{j2}^{m-i}) = 2(2j-1)m - 2j + 2i + k - 1$, $1 \leq j \leq t$, $1 \leq i \leq m-1$ $f^{*}(e^{m-1}_{(t+1)2}) = 2 (2t + 1) m + k - 6$ $f^*(e^{m-1-i}_{(t+1)2}) = 2 (2t + 1)m - 2t + 2i + k,$ 1 < i < m - 2 $f^*(e^i_{(t+1+i)1}) = 4(j+t)m - 2(t+j) + 2i + k$, $1 \le j \le t$, $1 \le i \le m-1$ $2t + k - 1, \ 1 \le j \le t, \ 2 \le i \le m$ $f^{*}(e_{i}) = f(v_{i2}^{1}) - [f(v_{11}^{'}) - 1] + k, \ 1 \le i \le \frac{n + (n-2)}{2}$ $f^{*}(e_{i}) = f(v_{n1}^{m}) - [f(v_{11}^{'}) - 1] - (\frac{i-1}{2})[f^{*}(e_{1}) - k + 1] +$ k-1, i = mHere p = 2mn - n, q = 2mn - n, p + q = 4mn - 2nClearly, $f(V) \cup \{ f^*(e) : e \in E(C_n \ominus 2P_m) \} =$ $\{k, k + 1, \dots, 4mn - 2n + k - 1\}$

So, $f(V) \cup \{ f^*(e) : e \in E(C_n \ominus 2P_m) \}$ is a k-Super mean labeling.

Hence the graph $C_n \ominus 2P_m$ is a k-Super mean graph.

mple 2.9:

 $_{34}$ − Super mean labeling of $C_7 \ominus 2P_3$ is given in figure 2.9

Volume 5 Issue 8, August 2017 <u>www.ijser.in</u> Licensed Under Creative Commons Attribution CC BY

}

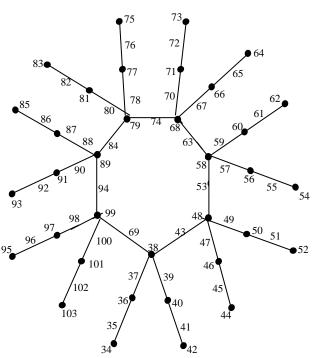


Figure 2.9: 34-Super mean labeling of $C_7 \ominus 2P_3$

Theorem 2.7:

A graph $TL_n \odot K_1$ is a super mean graph, for every *n*. **Proof:**

Let $V(TL_n \odot K_1) = \{u_i; 1 \le i \le n\} \cup \{v_i; 1 \le i \le n\} \cup \{w_i; 1 \le i \le n\} \cup \{w_i; 1 \le i \le n\} \cup \{z_i; 1 \le i \le n\}$

and

$$\begin{split} E(TL_n \odot K_1) = & \{ e_i = (u_i, u_{i+1}) ; 1 \le i \le n-1 \} \cup \\ & \{ e_i^{'} = (u_i, v_i) ; 1 \le i \le n \} \cup \\ & \{ e_i^{''} = (v_i, v_{i+1}) ; 1 \le i \le n-1 \} \cup \\ & \{ e_i^{'''} = (u_i, v_{i+1}) ; 1 \le i \le n-1 \} \cup \end{split}$$

 $\{a_i = (v_i, z_i); 1 \le i \le n\} \cup \\ \{a_i' = (w_i, u_i); 1 \le i \le n\}$ be the vertices and edges of $TL_n \odot K_1$ respectively.

First we label the vertices of $TL_n \odot K_1$ as follows: $f(u_i) = 10i + k - 8, \ 1 \le i \le n$ $f(v_i) = 10i + k - 6, \ 1 \le i \le n$ $f(w_i) = 10i + k - 10, \ 1 \le i \le n$ $f(z_i) = 10i + k - 4, \ 1 \le i \le n$ Now the induced edge labels are $f^{*}(e_{i}) = 10i + k - 3, \ 1 \le i \le n - 1$ $f^{*}(e_{i}^{'}) = 10i + k - 7, \ 1 \le i \le n$ $f^*(e_i^{''}) = 10i$, $1 \le i \le n - 1$ $f^{*}(e_{i}^{'''}) = 10i + k - 2, \ 1 \le i \le n - 1$ $f^*(a_i) = 10i + k - 5, \ 1 \le i \le n$ $f^{*}(a_{i}^{'}) = 10i + k - 9, \ 1 \le i \le n$ Here p = 4n, q = 3n + 3(n - 1), p + q = 10n - 3Clearly. $f(V) \cup \{ f^*(e) : e \in E(TL_n \odot K_1) \} =$ $\{k, k + 1, \dots 10n + k - 4\}$ So, $f(V) \cup \{ f^*(e) : e \in E(TL_n \odot K_1) \}$ is a k-Super mean labeling.

Hence the graph $TL_n \odot K_1$ is a k-Super mean graph.

Example 2.10:

2000 – Super mean labeling of $TL_4 \odot K_1$ is given in figure 2.10

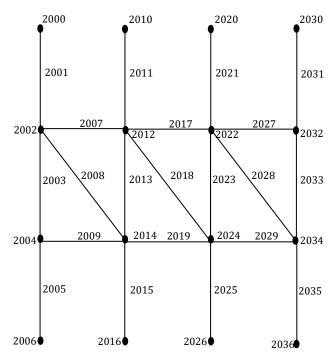


Figure 2.10: 2000-Super mean labeling of $TL_4 \odot K_1$

References

- [1] F. Harary, *Graph Theory*, Addison Wesley, Massachusetts (1972).
- [2] P. Jeyanthi, D. Ramya, P. Thangavelu, On Super Mean Graphs, AKCE J.Graphs. Combin, 6, No.1 (2009), pp.103-112.
- [3] M. Kannan, R. Vikrama Prasad and R. Gopi, Super Root Square Mean Labeling of Disconnected Graphs, International Journal of Mathematics And its Applications, Volume 4, Issue 1 – c (2016), 93-98.
- [4] A.Nellai Murugan, Super Meanness of Independent and Special class of Graph, A multi-Disciplinary Refereed Journal, OUTREACH Volume VIII 2015 120-124.
- [5] S.S. Sandhya, E. Ebin Raja Merly, G.D. Jemi, Some Results on Super Heronian Mean Labeling of Graphs, International Journal of Contemporary Mathematical Sciences, Vol.11, 2016, no.10, 485-495.
- [6] S.S. Sandhya, E. Ebin Raja Merly, G.D. Jemi, On Super Heronian Mean Labeling of Graphs, Asia Pacific Journal of Research, Vol : I. Issue L, April 2017.
- [7] Dr. A. Selvam Avadayappan, R. Sinthu, New families of Super Mean Graphs, International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016.
- [8] M. Tamilselvi, A study in Graph Theory-Generalization of super mean labeling, Ph.D. Thesis, Vinayaka Mission University, Salem, August (2011).

Volume 5 Issue 8, August 2017

www.ijser.in

Licensed Under Creative Commons Attribution CC BY