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Abstract:  Let G be a (𝒑,𝒒) graph and 𝒇: 𝑽(𝑮) → {𝟏,𝟐,𝟑,… . .𝒑 + 𝒒} be an injection.  For each edge 𝒆 = 𝒖𝒗, let 𝒇*(e) = 
𝒇 𝒖 + 𝒇(𝒗)

𝟐
  if 

𝒇(𝒖) + 𝒇(𝒗) is even and 𝒇*(e) = 
𝒇 𝒖 + 𝒇 𝒗  + 𝟏

𝟐
  if 𝒇(𝒖)  + 𝒇(𝒗) is odd, then f is called super mean labeling if 𝒇(𝑽) ∪ {𝒇*(𝒆): 𝒆 ∈  𝑬(𝑮) =

{𝟏,𝟐,𝟑,… . .𝒑 + 𝒒}.  A graph that admits a super mean labeling is called super mean graph. Let G be a (𝒑,𝒒) graph and 𝒇: 𝑽 𝑮 →

{𝒌,𝒌 + 𝟏, 𝒌 + 𝟐, . .𝒑 + 𝒒 +  𝒌 −  𝟏} be an injection.  For each edge 𝒆 = 𝒖𝒗, let 𝒇*(𝒆) = 
𝒇 𝒖 + 𝒇(𝒗)

𝟐
  if 𝒇(𝒖) + 𝒇(𝒗) is even and 𝒇*(e) = 

𝒇 𝒖 + 𝒇 𝒗  + 𝟏

𝟐
  if 𝒇(𝒖) + 𝒇(𝒗) is odd, then f is called k - super mean labeling if 𝒇(𝑽) ∪ {𝒇*(𝒆): 𝒆 ∈  𝑬(𝑮)} =  { 𝒌,𝒌 + 𝟏,𝒌 + 𝟐,… . .𝒑 +

𝒒 + 𝒌 − 𝟏}.  A graph that admits a k - super mean labeling is called k - super mean graph.  In this paper, we investigate  

k-super mean labeling of  𝒏𝑸𝟑,𝒗𝟏,𝒗𝟐 , 𝑻𝑷𝒏 ,  𝑺(𝑷𝒎 × 𝑷𝒏), (𝑷𝒏 A 𝑲𝟏) ∪ 𝑻𝒎 , 𝑨 𝑻𝒏 , 𝑪𝒏 ⊝ 𝟐𝑷𝒎 , 𝑻𝑳𝒏 ⊙𝑲𝟏. 

 

Keyword: k - super mean labeling, k - super mean graph,  nQ3 , v1, v2 , TPn ,  S(Pm × Pn), (Pn  A K1) ∪ Tm , A Tn  , Cn   ⊝ 2Pm, TLn ⊙ K1 

 

1. Introduction 
 

All graphs in this paper are finite, simple and undirected. 

Terms not defined here are used in the sense of Harary [1].  

The symbols V(G) and E(G) will denote the vertex set and 

edge set of a graph G.  In this paper, we investigate k-super 

mean graphs of  nQ3, v1, v2 , TPn ,  S(Pm × Pn), 

 (Pn  A K1) ∪ Tm , A Tn , Cn   ⊝ 2Pm , TLn ⊙ K1. 

 

Definition 1.1 

Let G be a (p, q) graph and f: V(G) → {1, 2, 3,… . . p + q} be 

an injection.  For each edge e = uv, let f*(e) = 
f u + f(v)

2
  if 

f(u) + f(v) is even and f*(e) = 
f u + f v  + 1

2
  if f(u) + f(v) is 

odd, then f is called super mean labeling if f(V) ∪
{f*(e): e ∈  E(G) = {1, 2, 3,… . . p + q}.  A graph that admits 

a super mean labeling is called super mean graph. 

 

Definition 1.2 

Let G be a  p, q  graph and  f ∶  V G → { k, k + 1,  
 k + 2, . . p + q + k −  1} be an injection.  For each edge 

e = uv, let f*(e) = 
f u + f(v)

2
  if f(u) + f(v) is even and  

f*(e) = 
f u + f v  + 1

2
  if f(u) + f(v) is odd, then f is called 

k - super mean labeling if f(V) ∪ {f*(e): e ∈  E(G)} = { k,  
k + 1, k + 2,… . . p + q + k − 1}.  A graph that admits a 

 k - super mean labeling is called k - super mean graph. 

 

Definition 1.3 

(𝐺1, 𝐺2  , 𝑣1, 𝑣2  ) is the graph obtained from 𝐺1 and 𝐺2  by 

identifying the vertices v1 and v2.  If  𝐺1 = 𝐺2  , then  

(𝐺,𝐺, 𝑣1, 𝑣2  ) is denoted by (2𝐺, 𝑣1 , 𝑣2). 

The graph 𝑝2 ×  𝑝2 ×  𝑝2   is called cube and is denoted by 

𝑄3. 𝑄3  is a super mean graph, then (2𝑄3 , 𝑣1 , 𝑣2)  is a super 

mean graph.  

 

 

Definition 1.4 

A triangle C3 can be partitioned into n number of triangles by 

joining one vertex C3 to the midpoint of the opposite edges 

and continue this process to form n triangles and it is denoted 

by 𝑇𝑃𝑛 . 

 

Definition 1.5 

A graph obtained from grid 𝑃𝑚 × 𝑃𝑛  by joining opposite 

corners (𝑖, 𝑗) and (𝑖 + 1, 𝑗 + 1) of each cell by an edge is 

denoted by S( Pm × Pn ) is called strong grid. 

 

Definition 1.6 
A graph obtained a single pendant edge to each vertex of a 

path is called a comb (𝑃𝑛  A 𝐾1). 

 

Definition 1.7 

A alternate triangular snake 𝐴(𝑇𝑛)is obtained from a path               

𝑢1, 𝑢2, 𝑢3..... 𝑢𝑛  by joining 𝑢𝑖  and 𝑢𝑖+1(alternatively) to a 

new vertex 𝑣𝑖for 1 ≤  𝑖 ≤  𝑛 –  1.  That is, every edge of a 

path is replaced by a triangle 𝐶3. 

 

Definition 1.8 

Bi–armed crown 𝐶𝑛   ⊝ 2𝑃𝑚  is a graph obtained from a cycle 

𝐶𝑛by identifying the pendent vertices of two vertex disjoint 

paths of same length m – 1at each vertex of the cycle. 

 

Definition 1.9 

A triangular ladder 𝑇𝐿𝑛  is a graph obtained from 𝐿𝑛  by 

adding the edges 𝑢𝑖𝑣𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 –  1 where  𝑢𝑖  and 𝑣𝑖  are 

the vertices of 𝐿𝑛 such that 𝑢1, 𝑢2, 𝑢3..... 𝑢𝑛  and 𝑣1, 𝑣2 ,
𝑣3 . . . . 𝑣𝑛  are two paths of length 𝑛 in the graph.      

 

2. Main Results 
 

Theorem 2.1: 

The graph (𝑛𝑄3 , 𝑣1 , 𝑣2) is a k-Super mean graph for all n >1. 
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Proof: 

Let 𝑉(𝑛𝑄3 , 𝑣1 , 𝑣2) = {𝑣i  ; 1 ≤  𝑖 ≤ 𝑛 } ∪{𝑣𝑖
′
 ; 1 ≤  𝑖 ≤ 𝑛 } ∪ 

                                  {𝑣𝑖
′′

 ; 1 ≤ 𝑖 ≤ 𝑛 } ∪{𝑣𝑖
′′′ ; 1 ≤ 𝑖 ≤ 𝑛} ∪ 

                                  {𝑢 i  ; 1 ≤  𝑖 ≤ 𝑛} ∪{𝑢𝑖
′
 ; 1 ≤ 𝑖 ≤ 𝑛 } ∪ 

                                   {𝑢𝑖
′′; 1 ≤ 𝑖 ≤ 𝑛 } ∪{𝑢𝑖

′′′
 ; 1 ≤ 𝑖 ≤ 𝑛 }    

and 𝑣𝑖
′′′= 𝑣 i + 1 .  

       𝐸(𝑛𝑄3 , 𝑣1 , 𝑣2) = 𝑒𝑖 =  𝑣𝑖  , 𝑣𝑖
′′ ;  1 ≤  𝑖 ≤ 𝑛  ∪  

                                  {𝑒𝑖
′ = (𝑣𝑖  , 𝑣𝑖

′  ) ;  1 ≤  𝑖 ≤ 𝑛 } ∪ 

                                   𝑒𝑖
′′ =   𝑣𝑖

′  ,𝑣𝑖
′′′  ;  1 ≤ 𝑖 ≤ 𝑛 ∪   

                                   𝑒𝑖
′′′ =  𝑣𝑖

′′ , 𝑣𝑖
′′′  ;  1 ≤ 𝑖 ≤ 𝑛  ∪ 

                       𝑎𝑖 =  𝑢𝑖 ,𝑢𝑖
′′  ;  1 ≤ 𝑖 ≤ 𝑛  ∪ 

                                  {𝑎𝑖
′  =  (𝑢𝑖  ,𝑢𝑖

′  ) ;  1 ≤ 𝑖 ≤ 𝑛} ∪ 

                        𝑎𝑖
′′  =  𝑢𝑖  

′ ,𝑢𝑖
′′′  ;  1 ≤ 𝑖 ≤ 𝑛  ∪ 

                                   𝑎𝑖
′′′ =  𝑢𝑖

′′,𝑢𝑖
′′′  ;  1 ≤ 𝑖 ≤ 𝑛  ∪ 

                      𝑏𝑖  =   𝑣𝑖  ,𝑢𝑖 ;  1 ≤ 𝑖 ≤ 𝑛  ∪ 
                                   𝑏𝑖

′ =   𝑣𝑖
′′ ,𝑢𝑖

′′   ;  1 ≤ 𝑖 ≤ 𝑛  ∪   

                                   𝑏𝑖
′′  =   𝑣𝑖

′  ,𝑢𝑖
′ ;  1 ≤ 𝑖 ≤ 𝑛  ∪      

                                  {𝑏𝑖
′′′  =  (𝑣𝑖

′′′ ,𝑢𝑖
′′′ ) ;  1 ≤ 𝑖 ≤ 𝑛 } 

be the vertices and edges of (𝑛𝑄3 , 𝑣1 , 𝑣2) respectively.  

         

First we label the vertices of (𝑛𝑄3 , 𝑣1 , 𝑣2) as follows: 

𝑓(𝑣𝑖) = 19𝑖 + 𝑘– 19,   1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑖
′ ) = 19𝑖 + 𝑘– 17, 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑖
′′) =19𝑖 + 𝑘– 2, 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑖
′′′) = 19𝑖 + 𝑘 ,   1 ≤  𝑖 ≤ 𝑛 

𝑓(𝑢𝑖  ) = 19𝑖 + 𝑘 – 9 ,   1 ≤  𝑖 ≤ 𝑛 

𝑓(𝑢𝑖
′ ) = 19𝑖 + 𝑘– 15 ,   1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑢𝑖
′′) = 19𝑖 +  𝑘 –  4 ,   1 ≤ 𝑖 ≤ 𝑛              

𝑓(𝑢𝑖
′′′) = 19𝑖 + 𝑘– 11 ,   1 ≤ 𝑖 ≤  𝑛 

Now the induced edge labels are 

𝑓*(𝑒𝑖)= 19𝑖 + 𝑘–10, 1 ≤  𝑖 ≤  𝑛 

𝑓*(𝑒𝑖
′) = 19𝑖 + 𝑘– 18,1 ≤  𝑖 ≤  𝑛 

𝑓*(𝑒𝑖
′′) = 19𝑖 + 𝑘– 8, 1 ≤  𝑖 ≤  𝑛 

𝑓*(𝑒𝑖
′′′) = 19𝑖 + 𝑘– 1, 1 ≤ 𝑖 ≤  𝑛  

𝑓*(𝑎i) = 19𝑖 + 𝑘–6, 1 ≤ 𝑖 ≤  𝑛  

𝑓*(𝑎𝑖
′ ) = 19𝑖 + 𝑘–12,   1 ≤ 𝑖 ≤  𝑛 

𝑓*(𝑎𝑖
′′) = 19𝑖 + 𝑘– 13, 1 ≤ 𝑖 ≤ 𝑛  

𝑓*(𝑎𝑖
′′′) = 19𝑖 + 𝑘– 7, 1 ≤ 𝑖 ≤ 𝑛 

𝑓*(bi) = 19𝑖 + 𝑘– 14, 1 ≤  𝑖 ≤  𝑛                                                                        

𝑓*(𝑏𝑖
′) = 19𝑖 + 𝑘–3, 1 ≤  𝑖 ≤  𝑛  

𝑓*(𝑏𝑖
′′)= 19𝑖 +  𝑘–16, 1 ≤  𝑖 ≤  𝑛 

𝑓*(𝑏𝑖
′′′) =  19𝑖 + 𝑘– 5, 1 ≤  𝑖 ≤  𝑛 

Here 𝑝 = 7𝑛 +  1 , 𝑞 =  12𝑛 , 𝑝 + 𝑞 = 19𝑛 + 1 
Clearly,  

𝑓(𝑉) ∈{𝑓*(𝑒): 𝑒 ∈ 𝐸(𝑛𝑄3 , 𝑣1 , 𝑣2)}={ 𝑘, 𝑘 + 1,… 19𝑛 +  𝑘 } 

So, 𝑓(𝑉) ∪{𝑓*(e) : 𝑒 ∈ 𝐸(𝑛𝑄3 , 𝑣1 , 𝑣2)} is a k-Super mean 

labeling. 

 

Hence the graph (𝑛𝑄3 , 𝑣1, 𝑣2) is a k-Super mean graph. 

 

Example 2.1: 
 

315 – Super mean labeling of (2𝑄3 , 𝑣1 , 𝑣2) is given in figure 

2.1  

 

Theorem 2.2: 

The graph 𝑇𝑃𝑛  is a super mean graph 

 

Proof:  

Let V(𝑇𝑃𝑛 ) = {𝑣𝑖  ;  1 ≤   𝑖 ≤  𝑛 –  1} ∪ {𝑢𝑖  ;  1 ≤  𝑖 ≤  𝑛 }                      

and      

            E(𝑇𝑃𝑛 ) = {𝑒𝑖  = (𝑣𝑖 ,𝑢𝑖  ) ;   1 ≤   𝑖 ≤ 𝑛 –  1 } ∪  

                            {𝑒𝑖
′
 = (𝑣𝑖 ,𝑢𝑖+1 ) ;   1 ≤   𝑖 ≤ 𝑛 –  1} ∪ 

                            {𝑎𝑖  = (𝑢𝑖 ,𝑢𝑖+1 ) ;  1 ≤   𝑖 ≤ 𝑛 –  1} ∪ 

                             {𝑏𝑖  = (𝑣𝑖 , 𝑣𝑖+1 ) ;   1 ≤   𝑖 ≤ 𝑛 –  2} 
be the vertices and edges of 𝑇𝑃𝑛  respectively. 

 

First we label the vertices of 𝑇𝑃𝑛as follows: 

𝑓(𝑣𝑖) =  6𝑖 +  𝑘 –  4 , 1 ≤   𝑖 ≤   𝑛 –  1 

𝑓(𝑢𝑖)  =  6𝑖 +  𝑘 –  6 ,   1 ≤   𝑖  ≤   𝑛 –  1 

𝑓(𝑢𝑖) =  6𝑖 +  𝑘 –  7 ,   𝑖 =  𝑛 

Now the induced edge labels are 

𝑓*(𝑒𝑖)  =  6𝑖 +  𝑘 –  5 ,   1 ≤   𝑖 ≤   𝑛 –  1  

𝑓*(𝑒𝑖
′) =  6𝑖 +  𝑘 –  2 ,   1 ≤  𝑖 ≤   𝑛 –  1  

𝑓*(𝑎𝑖) =  6𝑖 +  𝑘 –  3 ,   1 ≤  𝑖 ≤  𝑛 –  1  

𝑓*(𝑏𝑖) =  6𝑖 + 𝑘 –  1 ,   1 ≤  𝑖 ≤  𝑛 –  2  

  Here 𝑝 =  2𝑛 –  1 , 𝑞 =  4𝑛 –  5 , 𝑝 + 𝑞 =  6𝑛 –  6  
Clearly, 

𝑓(V) ∪ { 𝑓*(𝑒) ∶  𝑒 ∈ 𝐸(𝑇𝑃𝑛) } =  {𝑘, 𝑘 + 1,… 6𝑛 + 𝑘 −  7} 

So, 𝑓(𝑉) ∪ { 𝑓*(𝑒) ∶  𝑒 ∈ 𝐸(𝑇𝑃𝑛  )} is a k-Super mean 

labeling. 

 

Hence the graph 𝑇𝑃𝑛  is a k-Super mean graph. 

 

Example 2.2: 

 

55 – Super mean labeling of 𝑇𝑃4 is given in figure 2.2  

 

 
 

Theorem 2.3: 

The graph 𝑆(𝑃𝑚 × 𝑃𝑛 ) is a super mean graph. 

 

Proof:  

Let 𝑉(𝑆(𝑃𝑚 × 𝑃𝑛  )) = {𝑢𝑖𝑗  ; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤  𝑗 ≤ 𝑛 }  

and 

        𝐸(𝑆(𝑃𝑚 × 𝑃𝑛 )) ={𝑒𝑖𝑗 = (𝑢𝑖𝑗 , 𝑢𝑖 𝑗+1  ) ; 1 ≤ 𝑖 ≤ 𝑚 ,  

                                                               1 ≤ 𝑗 ≤   𝑛 − 1} ∪ 

                                  {𝑎𝑖𝑗 = (𝑢𝑖𝑗 , 𝑢 𝑖+1 𝑗  ) ; 1 ≤ 𝑖 ≤ 𝑚 –  1 ,  

                                                                    1 ≤ 𝑗 ≤ 𝑛}  ∪ 

                                  {𝑏𝑖𝑗  =(𝑢𝑖𝑗 , 𝑢 𝑖+1  𝑗+1  ) ;1 ≤ 𝑖 ≤ 𝑚– 1,    

                                                                    1 ≤ 𝑗 ≤ 𝑛 –  1} 

be the vertices and edges of 𝑆(𝑃𝑚 × 𝑃𝑛 ) respectively. 
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First we label the vertices of (𝑃𝑚 × 𝑃𝑛 )  as follows: 

𝑓(𝑢𝑖𝑗  )  =  4𝑛 –  2  𝑖 –  1 +  2𝑗 +  𝑘 –  2 , 

                                     1 ≤  𝑖 ≤  𝑚, 1 ≤ 𝑗 ≤  𝑛 

 

Now the induced edge labels are 

𝑓*(𝑒𝑖𝑗 ) =  4𝑛 –  2  𝑖 –  1 +  2𝑗 +  𝑘 –  1 ,   

                                                     1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 –  1   

𝑓*(𝑎𝑖𝑗 ) =  4𝑛 –  2  𝑖 –  1 +  2𝑛 +  𝑗  +   𝑗 +  𝑘 –  3 ,                                                                

                                                     1 ≤ 𝑖 ≤ 𝑚–1, 1 ≤ 𝑗 ≤ 𝑛 

𝑓*(𝑏𝑖𝑗 ) = 4𝑛 –  2  𝑖 –  1 + 2𝑛 + 2𝑗 , + 𝑘 –  2 ,                                

                                     1 ≤   𝑖 ≤   𝑚 –  1, 1 ≤   𝑗 ≤  𝑛 –  1 

 

Here 𝑝 = 𝑚𝑛 , 𝑞 = 3𝑚𝑛 –  2𝑚 – 2𝑛 +  1 ,                                          

  𝑝 + 𝑞 = 4𝑚𝑛 –  2𝑚 –2𝑛 +  1 
Clearly , 

𝑓 𝑉 ∪  {𝑓*(𝑒): 𝑒 ∈ 𝐸(𝑆(𝑃𝑚 × 𝑃𝑛))} 

                                     = 𝑘,𝑘 + 1, . . . 4𝑚𝑛 –2𝑚 − 2𝑛 + 𝑘          

So, 𝑓(𝑉) ∪ { 𝑓*(𝑒) ∶ 𝑒 ∈ 𝐸(𝑆(𝑃𝑚 × 𝑃𝑛 ))} is a k-Super mean 

labeling. 

         Hence the graph (𝑃𝑚 × 𝑃𝑛 ) is a k-Super mean graph. 

 

Example 2.3: 

       545 – Super mean labeling of (𝑃4 × 𝑃4) is given in figure 

2.3  

 
Theorem 2.4: 

       The graph (𝑃𝑛  A 𝐾1) ∪ 𝑇𝑚  is a k-Super mean graph. 

Proof: 

       Let 𝑉((𝑃𝑛  A 𝐾1) ∪ 𝑇𝑚 ) = {𝑣𝑖  ; 1≤ i ≤ n } ∪  

                                                {𝑢𝑖  ; 1≤ i ≤ n } ∪ 

                                                {𝑤𝑖  ; 1≤ i ≤ m – 1}∪ 

                                                {𝑤𝑖
′
 ; 1≤ i ≤ m}  

 and  

 𝐸((𝑃𝑛  A 𝐾1) ∪ 𝑇𝑚 ) = {𝑒𝑖  = (𝑣𝑖 , 𝑢𝑖  ) ; 1 ≤  𝑖 ≤  𝑛 } ∪  

                                   {𝑒𝑖
′
 = (𝑢𝑖  , 𝑢𝑖+1) ; 1 ≤ 𝑖 ≤ 𝑛 –1 } ∪ 

                                   {𝑎𝑖  = (𝑤𝑖  , 𝑤𝑖  
′ ) ; 1 ≤  𝑖 ≤  𝑚 –  1} ∪ 

                                   {𝑏𝑖= (𝑤𝑖  , 𝑤𝑖+1
′

 ) ; 1 ≤  𝑖 ≤  𝑚 –  1} ∪ 

                                   {𝑐𝑖  = (𝑤𝑖
′  , 𝑤𝑖+1

′
 ) ; 1 ≤  𝑖 ≤  𝑚 –  1} 

be the vertices and edges of (𝑃𝑛  A 𝐾1) ∪ 𝑇𝑚  respectively. 

 

First we label the vertices of (𝑃𝑛  A 𝐾1) ∪ 𝑇𝑚  as follows: 

𝑓(𝑣𝑖) = 4𝑖 +  𝑘 –  4,   1 ≤  𝑖 ≤  𝑛, 𝑖 𝑖𝑠 𝑜𝑑𝑑 

𝑓(𝑣𝑖) = 4𝑖 +  𝑘 –  2,   2 ≤  𝑖 ≤  𝑛, 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛 

𝑓(𝑢𝑖) = 4𝑖 +  𝑘 –  2,   1 ≤  𝑖 ≤  𝑛, 𝑖 𝑖𝑠 𝑜𝑑𝑑 

𝑓(𝑢𝑖)  = 4𝑖 +  𝑘 –  4,   2 ≤  𝑖 ≤  𝑛, 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛 

𝑓(𝑤1) = 4𝑛 +  𝑘 –  1  

𝑓(𝑤𝑖 ) = 4𝑛 +  5𝑖 +  𝑘 –  4,   2 ≤  𝑖 ≤  𝑚 –  1  
𝑓(𝑤1

′ ) = 4𝑛 +  𝑘 +  1    

𝑓(𝑤𝑖
′ ) = 4𝑛 +  5𝑖 +  𝑘 –  6,   2 ≤  𝑖 ≤  𝑚  

Now the induced edge labels are 

𝑓*(𝑒𝑖) =  4𝑖 +  𝑘 –  3   ,   1 ≤  𝑖 ≤  𝑛 

𝑓*(𝑒𝑖
′ ) =  4𝑖 +  𝑘 –  1  ,   1 ≤  𝑖 ≤  𝑛 –  1  

𝑓*(𝑎𝑖) =  4𝑛 +  5𝑖 +  𝑘 –  5  ,   1 ≤  𝑖 ≤  𝑚 –  1  
𝑓*(𝑏1) =  4𝑛 +  𝑘 +  2 

𝑓*(𝑏𝑖) = 4𝑛 +  5𝑖 +  𝑘 –  2  ,   2 ≤  𝑖 ≤  𝑚 –  1  
𝑓*(𝑐1) = 4𝑛 +  𝑘 +  3  

𝑓*(𝑐𝑖) =  4𝑛 +  5𝑖 +  𝑘 –  3  ,   2 ≤  𝑖 ≤  𝑚 –  1  

 Here 𝑝 = 2𝑛 + 2𝑚 –  1  , 𝑞 =  2𝑛 +  3𝑚 –  4 ,  

 𝑝 +  𝑞 =  4𝑛 +  5𝑚 –  5   

 Clearly , 

 

𝑓(𝑉) ∪ {𝑓* 𝑒 : 𝑒 ∈ 𝐸((𝑃𝑛  A 𝐾1) ∪ 𝑇𝑚 )} 

                         = {𝑘, 𝑘 + 1,… .4𝑛 + 5𝑚 + 𝑘 – 6} 

So, 𝑓(𝑉) ∪ { 𝑓*(𝑒) ∶  𝑒 ∈ 𝐸((𝑃𝑛  A 𝐾1) ∪ 𝑇𝑚 )} is a k-Super 

mean labeling. 

             Hence the graph (𝑃𝑛  A 𝐾1) ∪ 𝑇𝑚   is a k-Super mean 

graph. 

 

Example 2.4: 

        101 – Super mean labeling of (𝑃4  A 𝐾1) ∪ 𝑇3 is given in 

figure 2.4 

 

 
Theorem 2.5: 

Alternate triangular snakes 𝐴(𝑇𝑛)is a k-Super mean graphs. 

Proof: 
        We consider two different cases. 

Case (i):  

        If the alternate triangular snake 𝐴(𝑇𝑛) starts from 𝑢1, 

then we need to consider two subcases. 

Subcase (i) (a): n is even 

Let 𝑉(𝐴(𝑇𝑛)) = {𝑢𝑖  ;  1 ≤  𝑖 ≤  𝑛 } ∪  {𝑣𝑖  ;  1 ≤  𝑖 ≤  
𝑛

2
 }  

and 𝐸(𝐴(𝑇𝑛)) = {𝑒𝑖   = (𝑢2𝑖−1 , 𝑢2𝑖) ; 1 ≤ 𝑖 ≤
𝑛

2
 } ∪ 
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Figure 2.3: 545-Super mean labeling of 𝑺(𝑷𝟒 × 𝑷𝟒) 
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Figure 2.4: 101-Super mean labeling of (𝑷𝟒  A 𝑲𝟏) ∪ 𝑇3 
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                          {𝑎𝑖= (𝑣𝑖   , 𝑢2𝑖−1) ; 1 ≤ 𝑖 ≤
𝑛

2
 } ∪ 

                          {𝑏𝑖   = (𝑣𝑖 , 𝑢2𝑖  ) ; 1 ≤ 𝑖 ≤
𝑛

2
 } ∪ 

                          {𝑐𝑖   = (𝑢2𝑖 , 𝑢2𝑖+1  ) ; 1 ≤ 𝑖 ≤ (
𝑛−2

2
) }  

be the vertices and edges of 𝐴(𝑇𝑛) respectively. 

First we label the vertices of 𝐴 𝑇𝑛  as follows: 

𝑓(𝑢2𝑖−1) =  7𝑖 +  𝑘 –  7,   1 ≤  𝑖 ≤  
𝑛

2
 

𝑓(𝑢2𝑖) =  7𝑖 +  𝑘 –  2,   1 ≤  𝑖 ≤
𝑛

2
 

𝑓(𝑣𝑖)  =  7𝑖 +  𝑘 –  5,   1 ≤  𝑖 ≤
𝑛

2
 

Now the induced edge labels are 

𝑓*(𝑒𝑖) =  7𝑖 +  𝑘 –  4  ,   1 ≤  𝑖 ≤
𝑛

2
 

𝑓*(𝑎𝑖) =  7𝑖 +  𝑘 –  6  ,   1 ≤  𝑖 ≤
𝑛

2
 

𝑓*(𝑏𝑖) =  7𝑖 +  𝑘 –  3  ,   1 ≤  𝑖 ≤
𝑛

2
 

𝑓*(𝑐𝑖) =  7𝑖 +  𝑘 –  1  ,   1 ≤  𝑖 ≤ (
𝑛−2 

2
) 

Here 𝑝 = (
3𝑛  

2
) , 𝑞 =  

4𝑛−2 

2
 , 𝑝 +  𝑞 = (

7𝑛−2 

2
) 

 Clearly , 

𝑓(𝑉) ∪ {𝑓*(𝑒) ∶  𝑒 ∈ 𝐸(𝐴(𝑇𝑛)) } =  

{ 𝑘, 𝑘 + 1,… . . (
7𝑛 − 2 

2
) +  𝑘 –1} 

So, 𝑓(𝑉) ∪ {𝑓*(𝑒) ∶  𝑒 ∈  𝐸(𝐴(𝑇𝑛)) } is a k-Super mean 

labeling. 

         Hence the graph 𝐴(𝑇𝑛) is a k-Super mean graph. 

 

Example 2.5: 

        21 – Super mean labeling of 𝐴(𝑇6)is given in figure 2.5 

 
 

Subcase (i) (b): n is odd 

Let 𝑉(𝐴(𝑇𝑛)) = {𝑢𝑖 ;  1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑣𝑖 ;  1 ≤ 𝑖 ≤ (
𝑛−1

2
) }  

and 𝐸(𝐴(𝑇𝑛)) = {𝑒𝑖 =  𝑢2𝑖−1,𝑢2𝑖 ;  1 ≤ 𝑖 ≤  
𝑛−1 

2
 } ∪ 

                          {𝑎𝑖 = (𝑣𝑖 ,𝑢2𝑖−1) ;  1 ≤ 𝑖 ≤ (
𝑛−1

2
) } ∪ 

                          {𝑏𝑖 = (𝑣𝑖  ,𝑢2𝑖) ;  1 ≤ 𝑖 ≤ (
𝑛−1 

2
) } ∪ 

                          {𝑐𝑖 = (𝑢2𝑖  ,𝑢2𝑖+1) ;  1 ≤ 𝑖 ≤ (
𝑛−1

2
) }  

be the vertices and edges of 𝐴(𝑇𝑛) respectively. 

First we label the vertices of 𝐴(𝑇𝑛)as follows: 

𝑓(𝑢2𝑖−1)  =  7𝑖 +  𝑘 –  7,   1 ≤  𝑖 ≤    
𝑛−1

2
  +  1 

𝑓(𝑢2𝑖  )  =  7𝑖 +  𝑘 –  2,   1 ≤  𝑖 ≤ (
𝑛−1 

2
) 

𝑓(𝑣𝑖)  =  7𝑖 +  𝑘 –  5,   1 ≤  𝑖 ≤ (
𝑛−1

2
) 

Now the induced edge labels are 

𝑓*(𝑒𝑖) =  7𝑖 +  𝑘 –  4  ,   1 ≤  𝑖 ≤ (
𝑛−1 

2
) 

𝑓*(𝑎𝑖) =  7𝑖 +  𝑘 –  6  ,   1 ≤  𝑖 ≤ (
𝑛−1

2
) 

𝑓*(𝑏𝑖) =  7𝑖 +  𝑘 –  3  ,   1 ≤  𝑖 ≤ (
𝑛−1 

2
) 

𝑓*(𝑐𝑖) =  7𝑖 +  𝑘 –  1  ,   1 ≤  𝑖 ≤ (
𝑛−1 

2
) 

Here 𝑝 =   
3𝑛−1

2
  , 𝑞 =  4 (

𝑛−1

2
 ) , 𝑝 +  𝑞 = (

7𝑛−5

2
 ) 

Clearly , 

𝑓(𝑉) ∪ {𝑓*(𝑒) ∶  𝑒 ∈ 𝐸(𝐴(𝑇𝑛)) }  =  

                                { 𝑘, 𝑘 +  1,… . . ( 
7𝑛 − 5

2
 ) +  𝑘 − 1 } 

 So, 𝑓(𝑉) ∪ {𝑓*(𝑒) ∶  𝑒 ∈ 𝐸(𝐴(𝑇𝑛)) } is a k-Super mean 

labeling. 

              Hence the graph 𝐴(𝑇𝑛) is a k-Super mean graph. 

 

Example 2.6: 

        75 – Super mean labeling of 𝐴(𝑇7)is given in figure 2.6 

 
 

 

Subcase (ii) (a): n is even 

Let 𝑉(𝐴(𝑇𝑛)) = {𝑢𝑖  ;  1 ≤  𝑖 ≤ 𝑛 } ∪ {𝑣𝑖  ;  1 ≤  𝑖 ≤ (
𝑛−2

2
) }  

and 𝐸(𝐴(𝑇𝑛)) = {𝑒𝑖   = (𝑢2𝑖  , 𝑢2𝑖+1) ; 1 ≤ 𝑖 ≤ (
𝑛−2

2
) } ∪ 

                          {𝑎𝑖= (𝑣𝑖  , 𝑢2𝑖) ; 1 ≤ 𝑖 ≤ (
𝑛−2

2
) } ∪ 

                          {𝑏𝑖   = (𝑣𝑖 , 𝑢2𝑖+1  ) ; 1 ≤ 𝑖 ≤ (
𝑛−2

2
) } ∪ 

                          {𝑐𝑖   = (𝑢2𝑖 , 𝑢2𝑖−1  ) ; 1 ≤ 𝑖 ≤
𝑛

2
 }  

be the vertices and edges of 𝐴(𝑇𝑛) respectively. 

First we label the vertices of 𝐴 𝑇𝑛  as follows: 

𝑓(𝑢2𝑖−1)  =  7𝑖 +  𝑘 –  7 ,   1 ≤  𝑖 ≤  
𝑛

2
 

𝑓(𝑢2𝑖)  =  7𝑖 +  𝑘 –  5 ,   1 ≤  𝑖 ≤  
𝑛

2
 

𝑓(𝑣𝑖)  =  7𝑖 +  𝑘 –  3 ,   1 ≤  𝑖 ≤ (
𝑛−2

2
) 

Now the induced edge labels are 

𝑓*(𝑒𝑖) =  7𝑖 +  𝑘 –  2  ,   1 ≤  𝑖 ≤ (
𝑛−2

2
) 

𝑓*(𝑎𝑖) =  7𝑖 +  𝑘 –  4  ,   1 ≤  𝑖 ≤ (
𝑛−2

2
) 

𝑓*(𝑏𝑖) =  7𝑖 +  𝑘 –  1 ,    1 ≤  𝑖 ≤ (
𝑛−2

2
) 

𝑓*(𝑐𝑖) =  7𝑖 +  𝑘 –  6  ,   1 ≤  𝑖 ≤
𝑛  

2
 

Here 𝑝 =  
3𝑛−2

2
 , 𝑞 =  

4𝑛−6 

2
 , 𝑝 +  𝑞 = (

7𝑛−8 

2
) 

 Clearly , 

𝑓 𝑉 ∪ {𝑓*(𝑒) ∶  𝑒 ∈ 𝐸(𝐴(𝑇𝑛)) }  =  

                        { 𝑘, 𝑘 + 1,… . . (
7𝑛 − 8 

2
) + 𝑘–1} 

So, 𝑓(𝑉) ∪ {𝑓*(𝑒) ∶  𝑒 ∈ 𝐸(𝐴(𝑇𝑛)) } is a k-Super mean 

labeling. 

         Hence the graph 𝐴(𝑇𝑛) is a k-Super mean graph. 

 

Example 2.7: 

        56– Super mean labeling of 𝐴(𝑇8)is given in figure 2.7 

Figure 2.6: 75-Super mean labeling of 𝑨(𝑻𝟕) 

Figure 2.5: 21-Super mean labeling of 𝑨(𝑻𝟔) 
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Subcase (ii) (b): n is odd 

Let 𝑉(𝐴(𝑇𝑛)) = {𝑢𝑖  ;  1 ≤  𝑖 ≤  𝑛 } ∪ {𝑣𝑖  ;  1 ≤  𝑖 ≤ (
𝑛−1

2
)}  

and 𝐸(𝐴(𝑇𝑛)) = {𝑒𝑖 = (𝑢2𝑖 ,𝑢2𝑖+1) ;  1 ≤  𝑖 ≤ (
𝑛−1 

2
) } ∪ 

                          {𝑎𝑖 = (𝑣𝑖 ,𝑢2𝑖) ;  1 ≤  𝑖 ≤ (
𝑛−1

2
) } ∪ 

                          {𝑏𝑖 = (𝑣𝑖  ,𝑢2𝑖+1) ;  1 ≤  𝑖 ≤ (
𝑛−1 

2
) } ∪ 

                          {𝑐𝑖 = (𝑢2𝑖  ,𝑢2𝑖−1) ;  1 ≤  𝑖 ≤ (
𝑛−1

2
) }  

be the vertices and edges of 𝐴(𝑇𝑛) respectively. 

First we label the vertices of 𝐴(𝑇𝑛)as follows: 

𝑓(𝑢2𝑖−1)  =  7𝑖 +  𝑘 –  7 ,    1 ≤  𝑖 ≤    
𝑛−1

2
  + 1  

𝑓(𝑢2𝑖  )  =  7𝑖 +  𝑘 –  5 ,    1 ≤  𝑖 ≤ (
𝑛−1 

2
) 

𝑓(𝑣𝑖)  =  7𝑖 +  𝑘 –  3 ,   1 ≤  𝑖 ≤ (
𝑛−1

2
) 

Now the induced edge labels are 

𝑓*(𝑒𝑖) =  7𝑖 +  𝑘 –  2 ,   1 ≤  𝑖 ≤ (
𝑛−1 

2
) 

𝑓*(𝑎𝑖) =  7𝑖 +  𝑘 –  4 ,   1 ≤  𝑖 ≤ (
𝑛−1

2
) 

𝑓*(𝑏𝑖) =  7𝑖 +  𝑘 –  1 ,   1 ≤  𝑖 ≤ (
𝑛−1 

2
) 

𝑓*(𝑐𝑖) =  7𝑖 +  𝑘 – 6 ,   1 ≤  𝑖 ≤ (
𝑛−1 

2
) 

Here 𝑝 =   
3𝑛−1

2
  , 𝑞 =  4  

𝑛−1

2
  , 𝑝 +  𝑞 =   

7𝑛−5

2
   

Clearly , 

 𝑓(𝑉)  ∪  {𝑓*(𝑒) ∶  𝑒 ∈ 𝐸(𝐴(𝑇𝑛)) }  =  

                                    { 𝑘, 𝑘 +  1,… . . ( 
7𝑛 − 5

2
 )  +  𝑘 − 1 } 

 So, 𝑓(𝑉) ∪ {𝑓*(𝑒) ∶  𝑒 ∈ 𝐸(𝐴(𝑇𝑛)) } is a k-Super mean 

labeling. 

              Hence the graph 𝐴(𝑇𝑛) is a k-Super mean graph. 

 

Example 2.8: 

98 – Super mean labeling of 𝐴(𝑇7)is given in figure 2.8 

Theorem 2.6: 

The bi–armed crown 𝐶𝑛  ⊝ 2𝑃𝑚  is a k-Super mean graph for 

all odd 𝑛 ≥ 3 and 𝑚 ≥ 2. 

 

Proof: 

Let V(𝐶𝑛  ⊝ 2𝑃𝑚 ) =  𝑢𝑖  ;  1 ≤   𝑖 ≤ 𝑛 ∪ 

                               {𝑣𝑖1
𝑤  ;  1 ≤ 𝑖 ≤  𝑛 , 1 ≤ 𝑤 ≤  𝑚} ∪ 

                               {𝑣𝑖2
𝑤  ;  1 ≤   𝑖 ≤  𝑛 , 1 ≤ 𝑤 ≤ 𝑚 } 

and 𝑣𝑖1
𝑚= 𝑣𝑖2

𝑚  = 𝑢𝑖  

E(𝐶𝑛  ⊝ 2𝑃𝑚 ) = {𝑒𝑖  = (𝑢𝑖 , 𝑢𝑖+1) ; 1 ≤ 𝑖 ≤ 𝑛 –  1}  ∪  

                {𝑒𝑖1
𝑤

 = (𝑣𝑖1
𝑤 , 𝑣𝑖1

𝑤+1) ; 1 ≤ 𝑖 ≤ 𝑛 , 1 ≤ 𝑤 ≤ 𝑚 –  1} ∪ 

                {𝑒𝑖2
𝑤

 = (𝑣𝑖2
𝑤  , 𝑣𝑖2

𝑤+1
 ) ; 1 ≤ 𝑖 ≤ 𝑛 , 1 ≤ 𝑤 ≤ 𝑚 –  1} 

and 𝑒𝑛= (𝑢𝑛 , 𝑢1) 

be the vertices and edges of 𝐶𝑛  ⊝ 2𝑃𝑚  respectively. 

First we label the vertices of 𝐶𝑛  ⊝ 2𝑃𝑚  as follows:  

Let 𝑛 =  2𝑡 +  1 for some 𝑡.                                                         

𝑓 𝑣𝑗1
𝑖  =  4  𝑗 –  1 𝑚 –  2𝑗 +  2𝑖 +  𝑘 ,  

                                                     1 ≤  𝑗 ≤  𝑡 +  1 , 1 ≤   𝑖 ≤  𝑚 

𝑓(𝑣𝑗2
𝑚+1−𝑖) = 2  2𝑗 –  1 𝑚 – 2𝑗 +  2𝑖 + 𝑘 – 2  , 

                                                                 1 ≤ 𝑗 ≤ 𝑡  , 2 ≤  𝑖 ≤  𝑚     

𝑓(𝑣 𝑡+1 2
𝑚−1 )  =  2 (2𝑡 +  1) 𝑚 –  (2𝑡 +  2)  +  𝑘 +  3 

𝑓(𝑣 𝑡+1 2
𝑚−1−𝑖) =  2  2𝑡 +  1 𝑚 –  2𝑡 +  2𝑖 +  𝑘 +  1 , 

                                                                             1 ≤  𝑖 ≤ 𝑚 –  2 

𝑓(𝑣 𝑡+1+𝑗  1
𝑖 ) = 4 𝑗 + 𝑡 𝑚 –2 𝑡 + 𝑗 + 2𝑖 + 𝑘–1 , 

                                                                  1 ≤ 𝑗 ≤ 𝑡 , 1 ≤ 𝑖 ≤  𝑚 

𝑓(𝑣 𝑡+1+𝑗  2
𝑚+1−𝑖 ) =  4𝑗 +  4𝑡 + 2 𝑚 –  𝑡 +  2𝑗 +  2𝑖 +

                             4𝑖 –2𝑡 +  𝑘 ,     1 ≤  𝑗 ≤  𝑡 , 2 ≤ 𝑖 ≤ 𝑚  
 Now the induced edge labels are 

 𝑓*(𝑒𝑗1
𝑖 ) = 4   𝑗 –  1   𝑚 –  2𝑗 +  2𝑖 +  𝑘 +  1 ,   

                                                     1 ≤ 𝑗 ≤  𝑡 + 1 , 1 ≤ 𝑖 ≤ 𝑚– 1  

𝑓*(𝑒𝑗2
𝑚−𝑖 ) = 2  2𝑗 –  1  𝑚 –  2𝑗 +  2𝑖 +  𝑘 –  1 ,                                                                                                                                      

                                                           1 ≤ 𝑗 ≤  𝑡  , 1 ≤   𝑖 ≤ 𝑚 − 1 

 𝑓*(𝑒 𝑡+1 2
𝑚−1 ) = 2 (2𝑡 +  1) 𝑚 +  𝑘 –  6  

 𝑓*(𝑒 𝑡+1 2
𝑚−1−𝑖) = 2  2𝑡 +  1 𝑚 –  2𝑡 +  2𝑖 +  𝑘 , 

                                                                              1 ≤ 𝑖 ≤ 𝑚 –  2  

𝑓*(𝑒 𝑡+1+𝑗  1
𝑖 ) = 4  𝑗 + 𝑡  𝑚 – 2  𝑡 +  𝑗 + 2𝑖 + 𝑘 ,  

                                                           1 ≤ 𝑗 ≤ 𝑡 , 1 ≤ 𝑖 ≤  𝑚–1       

𝑓*(𝑒 𝑡+1+𝑗  2
𝑚+1−𝑖 ) =  4𝑗 + 4𝑡 + 2 𝑚 –  𝑡 + 2𝑗 +  2𝑖 +  4𝑖 −

                               2𝑡 +  𝑘 –  1 , 1 ≤   𝑗 ≤  𝑡 , 2 ≤  𝑖 ≤ 𝑚  

𝑓*(𝑒𝑖) = 𝑓(𝑣𝑖2
1 ) – [𝑓(𝑣11

′ ) –  1]  +  𝑘 ,   1 ≤  𝑖 ≤  
𝑛+(𝑛−2) 

2
 

𝑓*(𝑒𝑖) = 𝑓(𝑣𝑛1
𝑚 ) –  [𝑓(𝑣11

′ ) –  1] – ( 
𝑖− 1

2
) [𝑓*(𝑒1)– 𝑘 + 1] +

                                                                                     𝑘 –1 , 𝑖 =  𝑚 

Here 𝑝 =  2𝑚𝑛 –  𝑛  , 𝑞 =  2𝑚𝑛 –  𝑛 , 𝑝 +  𝑞 =  4𝑚𝑛 –  2𝑛   
Clearly, 

𝑓 𝑉 ∪ { 𝑓* 𝑒 : 𝑒 ∈ 𝐸(𝐶𝑛  ⊝ 2𝑃𝑚  )} = 

                               {𝑘, 𝑘 + 1,… . 4𝑚𝑛– 2𝑛 + 𝑘 – 1} 

 

So, 𝑓(𝑉) ∪ { 𝑓*(𝑒) ∶  𝑒 ∈ 𝐸(𝐶𝑛  ⊝ 2𝑃𝑚  ) } is a k-Super mean 

labeling. 

 

Hence the graph 𝐶𝑛  ⊝ 2𝑃𝑚  is a k-Super mean graph. 

 

 Example 2.9: 

   34 – Super mean labeling of 𝐶7 ⊝ 2𝑃3 is given in figure 

2.9 Figure 2.8: 98-Super mean labeling of 𝑨(𝑻𝟕) 
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Figure 2.7: 56-Super mean labeling of 𝑨(𝑻𝟖) 
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Theorem 2.7: 

A graph  𝑇𝐿𝑛⨀𝐾1  is a super mean graph, for every 𝑛. 

Proof: 

Let 𝑉(𝑇𝐿𝑛⨀𝐾1) =  𝑢𝑖 ;  1 ≤  𝑖 ≤  𝑛  ∪  𝑣𝑖 ;  1 ≤ 𝑖 ≤ 𝑛  ∪

                                 {𝑤𝑖 ;  1 ≤ 𝑖 ≤ 𝑛 } ∪ {𝑧𝑖  ;  1 ≤ 𝑖 ≤ 𝑛 }  

 and        

         𝐸(𝑇𝐿𝑛⨀𝐾1) ={𝑒𝑖= (𝑢𝑖 , 𝑢𝑖+1) ; 1 ≤ 𝑖 ≤ 𝑛 –  1 } ∪  

                                {𝑒𝑖
′
 = (𝑢𝑖 , 𝑣𝑖  ) ; 1 ≤ 𝑖 ≤ 𝑛 } ∪ 

                                {𝑒𝑖
′′

 = (𝑣𝑖  , 𝑣𝑖+1  ) ; 1 ≤ 𝑖 ≤ 𝑛 –  1 } ∪ 

                                {𝑒𝑖
′′′

 = (𝑢𝑖  , 𝑣𝑖+1) ; 1 ≤ 𝑖 ≤ 𝑛 –  1 } ∪ 
                                

 

                                {𝑎𝑖= (𝑣𝑖 , 𝑧𝑖) ; 1 ≤ 𝑖 ≤ 𝑛 }  ∪ 

                                {𝑎𝑖
′ = (𝑤𝑖  , 𝑢𝑖  ) ; 1 ≤ 𝑖 ≤ 𝑛} 

be the vertices and edges of 𝑇𝐿𝑛⨀𝐾1 respectively. 

 

First we label the vertices of 𝑇𝐿𝑛⨀𝐾1as follows: 

𝑓(𝑢𝑖)  = 10𝑖 + 𝑘 –  8 , 1 ≤ 𝑖 ≤ 𝑛  

𝑓(𝑣𝑖)   = 10𝑖 +  𝑘 –  6 , 1 ≤ 𝑖 ≤ 𝑛  

𝑓(𝑤𝑖 ) =  10𝑖 +  𝑘 –  10 , 1 ≤  𝑖 ≤ 𝑛 

𝑓(𝑧𝑖) =  10𝑖 +  𝑘 –  4 , 1 ≤  𝑖 ≤ 𝑛 
Now the induced edge labels are 

𝑓*(𝑒𝑖) =  10𝑖 +  𝑘 –  3 ,   1 ≤ 𝑖 ≤ 𝑛 –  1  

𝑓*(𝑒𝑖
′) =  10𝑖 +  𝑘 –  7 ,   1 ≤ 𝑖 ≤ 𝑛  

𝑓*(𝑒𝑖
′′) =  10𝑖 ,   1 ≤ 𝑖 ≤ 𝑛 –  1  

𝑓*(𝑒𝑖
′′′) =  10𝑖 +  𝑘 –  2 ,   1 ≤ 𝑖 ≤ 𝑛 –  1  

𝑓*(𝑎𝑖) =  10𝑖 +  𝑘 –  5 ,   1 ≤ 𝑖 ≤ 𝑛  

𝑓*(𝑎𝑖
′ ) =  10𝑖 +  𝑘 –  9 ,   1 ≤ 𝑖 ≤ 𝑛  

Here 𝑝 =  4𝑛 , 𝑞 =  3𝑛 +  3 𝑛 –  1 ,  

𝑝 +  𝑞 =  10𝑛 − 3  

Clearly , 

𝑓(𝑉) ∪ { 𝑓*(e) : e ∈ E(𝑇𝐿𝑛⨀𝐾1)} = 

                                      {𝑘, 𝑘 + 1,… 10𝑛 + 𝑘 – 4} 

So, 𝑓(𝑉) ∪ { 𝑓*(𝑒) ∶  𝑒 ∈  𝐸(𝑇𝐿𝑛⨀𝐾1) } is a k-Super mean 

labeling. 

 

Hence the graph 𝑇𝐿𝑛⨀𝐾1is a k-Super mean graph. 

 

Example 2.10: 
 

2000 – Super mean labeling of 𝑇𝐿4⨀ 𝐾1 is given in figure 

2.10 

 
References 
 
[1] F. Harary, Graph Theory, Addison Wesley, Massachusetts 

(1972). 

[2] P. Jeyanthi, D. Ramya, P. Thangavelu, On Super Mean 

Graphs, AKCE  J.Graphs. Combin, 6, No.1 (2009), pp.103-

112.  

[3] M. Kannan, R. Vikrama Prasad and R. Gopi, Super Root 

Square Mean Labeling of Disconnected Graphs, International 

Journal of Mathematics And its Applications, Volume 4, 

Issue 1 – c (2016), 93-98. 

[4] A.Nellai Murugan, Super Meanness of Independent and 

Special class of Graph, A multi-Disciplinary Refereed 

Journal, OUTREACH Volume VIII 2015 120-124.  

[5] S.S. Sandhya, E. Ebin Raja Merly, G.D. Jemi, Some Results 

on Super Heronian Mean Labeling of Graphs, International 

Journal of Contemporary Mathematical Sciences, Vol.11, 

2016, no.10, 485-495. 

[6] S.S. Sandhya, E. Ebin Raja Merly, G.D. Jemi, On Super 

Heronian Mean Labeling of Graphs, Asia Pacific Journal of 

Research, Vol : I. Issue L, April 2017. 

[7] Dr. A. Selvam Avadayappan, R. Sinthu, New families of 

Super     Mean Graphs, International Journal of Scientific & 

Engineering Research, Volume 7, Issue 3, March-2016. 

[8] M. Tamilselvi, A study in Graph Theory-Generalization of 

super mean labeling, Ph.D. Thesis, Vinayaka Mission 

University, Salem, August (2011). 

Figure 2.9: 34-Super mean labeling of 𝑪𝟕  ⊝ 2𝑷𝟑 
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Figure 2.10: 2000-Super mean labeling of 𝑇𝐿4⨀𝐾1 
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