ξ-Normal and ξ-Regular Spaces in Topological Spaces

Hamant Kumar

Department of Mathematics, Government Degree College, Bilaspur-Rampur-244921, India

Abstract: The aim of this paper is to introduce and study two new classes of spaces, namely ξ-normal and ξ-regular spaces in topological spaces. The relationships among normal, p-normal, ξ-normal, β-normal and ξ-normal spaces are investigated. Moreover, we introduced some functions such as gξ-closed, ξgξ-closed, pre ξ-open. We obtained several characterizations of ξ-normal and ξ-regular spaces, properties of the forms of gξ-closed functions and preservation theorems for ξ-normal and ξ-regular spaces.

Keywords: ξ-closed sets, ξ-normal, ξ-regular spaces, gξ-closed and ξ-gξ-closed functions

2010 Mathematics Subject Classification: 54D10, 54D15, 54A05, 54C08.

1. Introduction

Levine [3] introduced generalized closed sets in general topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved. α-open sets were introduced by Njastad [7]. Devi et al. [2] introduced the concept of ξ-closed sets. Nour [8] introduced the notion of p-normal spaces and obtained their characterizations and preservation theorems. Paul and Bhattacharyya [9] obtained some properties of p-normal spaces. Benchali et al. [1] introduced the notion of α-normal spaces and obtained their characterizations and preservation theorems. Mahmoud et al. [4] introduced the notion of β-normal spaces and obtained their characterizations and preservation theorems. Recently, Sharma et al. [10] introduced a new class of regular spaces called ξ-regular spaces by using ξ-open sets introduced by Devi et al. [2] and obtained several properties such as characterizations and preservation theorems for ξ-regular spaces.

2. Preliminaries

Throughout this paper, spaces (X, τ), (Y, σ), and (Z, γ) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by Cl(A) and Int(A) respectively. A is said to be α-open [1] if A ⊂ Int(Cl(A)). The complement of a α-open set is said to be α-closed [2]. The intersection of all α-closed sets containing A is called α-closure [2] of A, and is denoted by αCl(A).

2.1 Definition. A subset A of a space (X, τ) is said to be

1. generalized closed (briefly g-closed) [3] if Cl(A) ⊂ U whenever A ⊂ U and U ∈ τ.
2. generalized α-closed (briefly αg-closed) [6] if αCl(A) ⊂ U whenever A ⊂ U and U ∈ τ.
3. generalized α-closed (briefly αg-closed) [5] if αCl(A) ⊂ U whenever A ⊂ U and U is α-open in X.

4. ξ-closed [2] if αCl(A) ⊂ U whenever A ⊂ U and U is gα-open in X.
5. g-open (resp. αg-open, gα-open, ξ-open) if the complement of A is g-closed (resp. αg-closed, gα-closed, ξ-closed).

The intersection of all ξ-closed sets containing A is called ξ-closure of A, and is denoted by ξCl(A). The ξ-interior of A, denoted by ξInt(A), is defined as union of all ξ-open sets contained in A. The family of all ξ-closed (resp. ξ-open) sets of a space X is denoted by ξC(X) (resp. ξO(X)).

2.2 Lemma. Let A be a subset of a space X and x ∈ X. The following properties hold for ξCl(A):

(i) x ∈ ξCl(A) if and only if A ∩ U ≠ ∅ for every U ∈ ξO(X) containing x.
(ii) A is ξ-closed if and only if A = ξCl(A).
(iii) ξCl(A) ⊂ ξCl(B) if A ⊂ B.
(iv) ξCl(ξCl(A)) = ξCl(A).
(v) ξCl(A) is ξ-closed.

2.3 Definition. A subset A of a space X is said to be generalized ξ-closed (briefly gξ-closed) if ξCl(A) ⊂ U whenever A ⊂ U and U ∈ τ.

2.4 Remark. We have the following implications for the properties of subsets:

closed ⇒ g-closed
⇒ α-closed ⇒ αg-closed
⇒ ξ-closed ⇒ gξ-closed

Where none of the implications is reversible as can be seen from the following examples:

2.5 Example Let X = {a, b, c} and τ = {∅, {a}, X}. Then A = {b} is g-closed but not closed.
2.6 Example. Let $X = \{a, b, c, \}$ and $\tau = \{\emptyset, \{a\}, X\}$. Then $A = \{a, b\}$ is g-closed as well as g-ξ-closed.

2.7 Example Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}, X\}$ Then $A = \{a\}$ is α-closed as well as ξ-closed but not closed.

2.8 Example Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{c, d\}, X\}$. Then $A = \{a, b, c\}$ is ξ-closed. But it is neither α-closed nor closed.

2.9 Lemma. A subset A of a space X is g-ξ-open in X if and only if $F \subset \xi \text{Int}(A)$ whenever $F \subset \text{A}$ and F is closed in X.

3. Generalized ξ-closed functions

3.1 Definition. A function $f: X \rightarrow Y$ is said to be ξ-closed [2] if for each closed set F of X, $f(F)$ is ξ-closed in Y.

3.2 Definition. A function $f: X \rightarrow Y$ is said to be

(i) generalized ξ-closed (briefly g-ξ-closed) if for each closed set F of X, $f(F)$ is g-ξ-closed in Y.

(ii) ξ-generalized ξ-closed (briefly ξ-g-ξ-closed) if for each ξ-closed set F of X, $f(F)$ is g-ξ-closed in Y.

3.3 Remark. Every closed function is ξ-closed but not conversely. Also, every ξ-closed function is g-ξ-closed because every ξ-closed set is g-ξ-closed. It is obvious that both ξ-closedness and ξ-g-ξ-closedness imply g-ξ-closedness.

3.4 Theorem. A surjective function $f: X \rightarrow Y$ is g-ξ-closed (resp. ξ-g-ξ-closed) if and only if for each subset B of Y and each open (resp. ξ-open) set U of X containing $f^{-1}(B)$, there exists a g-ξ-open set V of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

Proof. Suppose that f is g-ξ-closed (resp. ξ-g-ξ-closed). Let B be any subset of Y and U be open (resp. ξ-open) set of X containing $f^{-1}(B)$. Put $V = Y - f(X - U)$. Then the complement V^c of V is $V^c = Y - V = f(X - U)$. Since $X - U$ is closed in X and f is g-ξ-closed, $f(X - U) = V^c$ is g-ξ-closed. Therefore, V is g-ξ-open in Y. It is easy to see that $B \subset V$ and $f^{-1}(V) \subset U$.

Conversely, let F be a closed (resp. ξ-closed) set of X. Put $B = Y - f(F)$, then we have $f^{-1}(B) \subset X - F$ and $X - F$ is open (resp. ξ-open) in X. Then by assumption, there exists a g-ξ-open set V of Y such that $B = Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$. Now $f^{-1}(V) \subset X - F$ implies $V \subset Y - f(F)$ and $f^{-1}(V) \subset X - F$. So there exists $B \subset Y$ such that $f^{-1}(V) \subset X - F$. Also $B \subset V$ and $B \subset f^{-1}(V)$. Therefore, we obtain $f(F) = Y - V$ and hence $f(F)$ is g-ξ-closed in Y. This shows that f is g-ξ-closed (resp. ξ-g-ξ-closed).

3.5 Remark. We can prove the necessity part of the above theorem by replacing each set to closed set in the form of the proposition given below:

3.6 Proposition. If a surjective function $f: X \rightarrow Y$ is g-ξ-closed (resp. ξ-g-ξ-closed) then for a closed set F of Y and for any open (resp. ξ-open) set U of X containing $f^{-1}(F)$, there exists a ξ-open set V of Y such that $F \subset V$ and $f^{-1}(V) \subset U$.

Proof. By Theorem 3.4, there exists a g-ξ-open set W of Y such that $F \subset W$ and $f^{-1}(W) \subset U$. Since F is closed, by Lemma 2.9 we have $F \subset \xi \text{Int}(W)$. Put $V = \xi \text{Int}(W)$. Then $V \in \xi \text{Int}(Y)$, $F \subset V$ and $f^{-1}(V) \subset U$.

3.7 Proposition. If $f: X \rightarrow Y$ is continuous ξ-g-ξ-closed and A is g-ξ-closed in X, then $f(A)$ is g-ξ-closed in Y.

Proof. Let V be a open set of Y containing $f(A)$. Then $A \subset f^{-1}(V)$. Since f is continuous, $f^{-1}(V)$ is open in X. Since A is g-ξ-closed in X, by a definition, we get $\xi \text{Cl}(A) \subset f^{-1}(V)$ and hence $f(\xi \text{Cl}(A)) \subset V$. Since f is ξ-g-ξ-closed and $\xi \text{Cl}(A)$ is ξ-closed in X, $f(\xi \text{Cl}(A))$ is g-ξ-closed in Y and hence we have $\xi \text{Cl}(f(\xi \text{Cl}(A))) \subset V$. By definition of the ξ-closure of a set, $A \subset \xi \text{Cl}(A)$ which implies $f(A) \subset f(\xi \text{Cl}(A))$ and using Lemma 2.2, $\xi \text{Cl}(f(A)) \subset \xi \text{Cl}(f(\xi \text{Cl}(A))) \subset V$. That is $\xi \text{Cl}(f(A)) \subset V$. This shows that $f(A)$ is g-ξ-closed in Y.

3.8 Definition. A function $f: X \rightarrow Y$ is said to be ξ-irresolute [2] if for each $V \in \xi \text{O}(Y)$, $f^{-1}(V) \in \xi \text{O}(X)$.

3.9 Proposition. If $f: X \rightarrow Y$ is an open ξ-irresolute bijection and B is g-ξ-closed in Y, then $f^{-1}(B)$ is g-ξ-closed in X.

Proof. Let U be an open set of X containing $f^{-1}(B)$. Then $B \subset f(U)$ and $f(U)$ is open in Y. Since B is g-ξ-closed in Y, $\xi \text{Cl}(B) \subset f(U)$ and hence we have $f^{-1}(\xi \text{Cl}(B)) \subset U$. Since f is ξ-irresolute, $f^{-1}(\xi \text{Cl}(B))$ is ξ-closed in X (Theorem 2.1 (i) and (iv)), we have $\xi \text{Cl}(f^{-1}(B)) \subset f^{-1}(\xi \text{Cl}(B)) \subset U$. This shows that $f^{-1}(B)$ is g-ξ-closed in X.

3.10 Theorem. Let $f: X \rightarrow Y$ and $h: Y \rightarrow Z$ be the two functions, then

(i) If $h: X \rightarrow Z$ is g-ξ-closed and if $f: X \rightarrow Y$ is a continuous surjection, then $h: X \rightarrow Z$ is g-ξ-closed.

(ii) If $f: X \rightarrow Y$ is g-ξ-closed with $h: Y \rightarrow Z$ is continuous and ξ-g-ξ-closed, then $h: X \rightarrow Z$ is g-ξ-closed.

(iii) If $f: X \rightarrow Y$ is closed and $h: Y \rightarrow Z$ is g-ξ-closed, then $h: X \rightarrow Z$ is g-ξ-closed.

Proof.

(i) Let F be a closed set of Y. Then $f^{-1}(F)$ is closed in X since f is continuous. By hypothesis (h), $(f^{-1}(F))$ is g-ξ-closed in Z. Hence h is g-ξ-closed.

(ii)The proof follows from the Proposition 3.7.

(iii)The proof is obvious from definitions.
4. ξ-Normal spaces

4.1 Definition. A space X is said to be ξ-normal (resp. α-normal [1], p-normal [8, 9], β-normal [4]) if for any pair of disjoint closed sets A, B of X, there exist disjoint ξ-open (resp. α-open, p-open, β-open) sets U and V such that $A \subseteq U$ and $B \subseteq V$.

By the definitions stated above, we have the following diagram:

$$
\begin{align*}
\text{normality} & \Rightarrow \alpha\text{-normality} \Rightarrow p\text{-normality} \Rightarrow \beta\text{-normality} \\
\downarrow \\
\xi\text{-normality}
\end{align*}
$$

Where none of the implications is reversible as can be seen from the following examples:

4.2 Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}, X\}$. The pair of disjoint closed subsets of X are $A = \{a\}$ and $B = \{c\}$. Taking β-open sets, $U = \{a, b\}$ and $V = \{c, d\}$ such that $A \subseteq U$ and $B \subseteq V$. Hence the space X is β-normal. But the space X is neither p-normal nor α-normal, since the sets U and V are neither p-open nor α-open.

4.3 Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b, d\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}, X\}$. The pair of disjoint closed subsets of X are $A = \{a\}$ and $B = \{c\}$. Taking p-open sets, $U = \{a, b\}$ and $V = \{c, d\}$ such that $A \subseteq U$ and $B \subseteq V$. Hence the space X is p-normal as well as β-normal, since every p-open sets are β-open. But the space X is neither normal nor α-normal, since the sets U and V are neither open nor α-open.

4.4 Theorem. The following properties are equivalent for a space X:

(a) X is ξ-normal.
(b) For each pair of disjoint closed sets A, B of X, there exist disjoint ξ-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
(c) For each closed set A and any open set V containing A, there exists a ξ-open set U such that $A \subseteq U \subseteq \xi Cl(U) \subseteq V$.
(d) For each closed set A and any open set B containing A, there exists a ξ-open set U such that $A \subseteq U \subseteq \xi Cl(U) \subseteq \int(B)$.
(e) For each closed set A and any open set B containing A, there exists a ξ-open set G such that $A \subseteq \xi Cl(G) \subseteq \int(B)$.
(f) For each closed set A and any open set B containing A, there exists a ξ-open set U such that $\xi Cl(A) \subseteq U \subseteq \xi Cl(U) \subseteq B$.
(g) For each closed set A and any open set B containing A, there exists a ξ-open set G such that $\xi Cl(A) \subseteq G \subseteq \xi Cl(G) \subseteq B$.

Proof. (a) \Rightarrow (b). This proof is obvious since every ξ-open set is ξ-open.

(b) \Rightarrow (c). Let A be a closed set and let V be an open set containing A. Since A and $V - A$ are disjoint closed sets of X, there exist ξ-open sets U and W of X such that $A \subseteq U$ and $X - V \subseteq W$ and $U \cap W = \emptyset$. By Lemma 2.9, we get $X - V \subseteq \xi \int(W)$. Since $U \cap \xi \int(W) = \emptyset$, we have $\xi Cl(U) \cap \xi \int(W) = \emptyset$ and hence $\xi Cl(U) \subseteq X - \xi \int(W) \subseteq V$. Therefore, we obtain $A \subseteq U \subseteq \xi Cl(U)$.

(c) \Rightarrow (a). Let A and B be the disjoint closed sets of X. Since $X - B$ is an open set containing A, there exists a ξ-open set G such that $A \subseteq G \subseteq \xi Cl(G) \subseteq X - B$. By Lemma 2.9, we have $A \subseteq \xi \int(G)$. Put $U = \xi \int(G)$ and $V = X - \xi Cl(G)$. Then U and V are disjoint ξ-open sets such that $A \subseteq U$ and $B \subseteq V$. Therefore X is ξ-normal.

Since every ξ-open set is ξ-open and every closed (resp. open) set is ξ-closed (resp. ξ-open), it is obvious that (d) \Rightarrow (e) and (f) \Rightarrow (g) \Rightarrow (c).

(c) \Rightarrow (d). Let A be a closed set of X and let B be a ξ-open set such that $A \subseteq B$. Since B is ξ-open and $A \subseteq \int(B)$ by Lemma 2.9. Therefore by (c), there exists a ξ-open set U such that $A \subseteq U \subseteq \xi Cl(U) \subseteq \int(B)$.

(e) \Rightarrow (d). Let A be a closed set of X and let B be a ξ-open set such that $A \subseteq B$. Then there exists a ξ-open set G such that $A \subseteq G \subseteq \xi Cl(G) \subseteq \int(B)$ by Lemma 2.9. Since G is ξ-open, $A \subseteq \int(G)$. Put $U = \int(G)$, then U is ξ-open and $A \subseteq U \subseteq \xi Cl(U) \subseteq \int(B)$.

(g) \Rightarrow (f). Let A be a ξ-closed set of X and let B be an open set such that $A \subseteq B$. Then there exist a ξ-open set G such that $\xi Cl(A) \subseteq G \subseteq \xi Cl(G) \subseteq B$. Since G is ξ-open and the closed set $\xi Cl(A) \subseteq G$, we have $\xi Cl(A) \subseteq \int(G)$ by Lemma 2.9. Put $U = \int(G)$. Then, U is ξ-open and $\xi Cl(A) \subseteq U \subseteq \int(B)$.

4.5 Theorem. If $f : X \to Y$ is continuous ξ-closed surjection and X is normal, then Y is ξ-normal.

Proof. Let A and B be the disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed sets of X since f is continuous. Since X is normal, there exists disjoint open sets U and V such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. By Proposition 3.6, there exist ξ-open sets G and H of Y such that $A \subseteq G$, $B \subseteq H$ and $f^{-1}(G) \subseteq U$ and $f^{-1}(H) \subseteq V$. Then we have $f^{-1}(G) \cap f^{-1}(H) = \emptyset$ and hence $G \cap H = \emptyset$. It follows from Theorem 4.4 that Y is ξ-normal.

4.6 Theorem. If $f : X \to Y$ is continuous ξ-closed surjection and X is ξ-normal, then Y is ξ-normal.
Proof. Let A and B the disjoint closed sets of Y. Then \(f^{-1}(A) \) and \(f^{-1}(B) \) are disjoint closed sets of X. Since X is \(\xi \)-normal, there exist disjoint \(\xi \)-open sets U and V such that \(f^{-1}(A) \subseteq U \) and \(f^{-1}(B) \subseteq V \). Since \(f \) is \(\xi \)-g\(\xi \)-closed, by Proposition 3.6, there exist \(\xi \)-open sets G and H of Y such that \(A \subseteq G, B \subseteq H, f^{-1}(G) \subseteq U \) and \(f^{-1}(H) \subseteq V \). Since U and V are disjoint, we have \(G \cap H = \emptyset \). This shows that Y is \(\xi \)-normal.

5. \(\xi \)-Regular Spaces

5.1 Definition. A space X is said to be \(\xi \)-regular [10] (resp. \(\alpha \)-regular [1]) if for each closed set F of X, and each point \(x \in X - F \), there exist disjoint \(\xi \)-open (resp. \(\alpha \)-open) set U, V such that \(F \subseteq U \) and \(x \in V \).

5.2 Remark. It is obvious that every \(\alpha \)-regular space is \(\xi \)-regular but not conversely.

5.3 Lemma. The following properties are equivalent for a space X:

(a) X is \(\xi \)-regular.

(b) For each \(x \in X \) and each open set U of X containing x, there exists \(V \subseteq \xi O(X) \) such that \(x \in V \subseteq \xi Cl(V) \subseteq U \).

(c) For each closed set F of X, \(\cap \{ \xi Cl(V) / F \subseteq V \subseteq \xi O(X) \} = F \).

(d) For each subset A of X and each closed set U of X such that \(A \cap U \neq \emptyset \), there exists \(V \subseteq \xi O(X) \) such that \(A \cap V \neq \emptyset \) and \(\xi Cl(V) \subseteq U \).

(e) For each non-empty subset A of X and each closed subset F of X such that \(A \cap F = \emptyset \), there exist \(V, W \subseteq \xi O(X) \) such that \(A \cap W \neq \emptyset \), \(F \subseteq V \) and \(V \cap W \neq \emptyset \).

Proof.

(a) \(\Rightarrow \) (b). Let U be an open set containing x, then \(X - U \) is closed in X and \(x \notin X - U \). By (a), there exist \(W, V \subseteq \xi O(X) \) such that \(x \in V \subseteq \xi Cl(V) \subseteq U \).

(b) \(\Rightarrow \) (c). Let F be a closed set of X. If \(F \subseteq V \), then by Lemma 2.2 (iii), \(\xi Cl(F) \subseteq \xi Cl(V) \) which gives \(F \subseteq \xi Cl(V) \) as \(F \subseteq \xi Cl(F) \). Therefore, \(\cap \{ \xi Cl(V) / F \subseteq V \subseteq \xi O(X) \} \supseteq F \).

Conversely, let \(x \notin F \). Then \(X - F \) is an open set containing x. By (b), there exists \(U \subseteq \xi O(X) \) such that \(x \in U \subseteq \xi Cl(U) \subseteq X - F \). Put \(V = X - \xi Cl(U) \). By Lemma 2.2, \(F \subseteq V \subseteq \xi O(X) \) and \(x \notin \xi Cl(V) \). This implies that \(\cap \{ \xi Cl(V) / F \subseteq V \subseteq \xi O(X) \} \subseteq F \).

Hence \(\cap \{ \xi Cl(V) / F \subseteq V \subseteq \xi O(X) \} = F \).

(c) \(\Rightarrow \) (d). Let A be a subset of X and let U be open in X such that \(A \cap U \neq \emptyset \). Let \(x \in A \cap U \), then \(X - U \) is a closed set not containing x. By (c), there exists \(W \subseteq \xi O(X) \) such that \(X - U \subseteq W \) and \(x \notin \xi Cl(W) \). Put \(V = X - \xi Cl(W) \). Then \(V \subseteq X - W \). Also \(x \in V \cap A \). By using Lemma 2.2, we obtain \(V \subseteq \xi O(X) \) and \(\xi Cl(V) \subseteq \xi Cl(X - W) \).

(d) \(\Rightarrow \) (e). Let A be a subset of X and let F be a closed set in X such that \(A \cap F = \emptyset \), where \(A \neq \emptyset \). Since X - F is open in X and \(A \neq \emptyset \), by (d), there exists \(V \subseteq \xi O(X) \) such that \(A \cap V \neq \emptyset \) and \(\xi Cl(V) \subset X - F \). Put \(W = X - \xi Cl(V) \), then \(F \subseteq W \). Also, \(V \cap W = \emptyset \). By Lemma 2.2, \(W \subseteq \xi O(X) \).

(e) \(\Rightarrow \) (a). This is obvious.

5.4 Theorem. The following properties are equivalent for a space X:

(a) X is \(\xi \)-regular.

(b) For each closed set F and each point \(x \in X - F \), there exists \(U \subseteq \xi O(X) \) and a \(g\xi \)-open set V such that \(x \in U \) and \(F \subseteq V \) and \(U \cap V = \emptyset \).

(c) For each subset A of X and each closed set F such that \(A \cap F = \emptyset \), there exist \(U \subseteq \xi O(X) \) and a \(g\xi \)-open set V such that \(A \subseteq U \) and \(F \subseteq V \).

(d) For each closed set F of X, \(F \cap \subseteq \{ \xi Cl(V) / F \subseteq V \subseteq \xi O(X) \} \).

Proof.

(a) \(\Rightarrow \) (b). The proof is obvious since every \(\xi \)-open set is \(g\xi \)-open.

(b) \(\Rightarrow \) (c). Let A be a subset of X and let F be a closed set in X such that \(A \cap F = \emptyset \). For a point \(x \in A \), \(x \notin X - F \) and hence there exists \(U \subseteq \xi O(X) \) and a \(g\xi \)-open set V such that \(x \in U \) and \(F \subseteq V \) and \(U \cap V = \emptyset \).

(c) \(\Rightarrow \) (a). Let F be a closed set and let \(x \in X - F \). Then, \(\{ x \} \cap \subseteq \emptyset \) and there exist \(U \subseteq \xi O(X) \) and a \(g\xi \)-open set W such that \(x \in U \), \(F \subseteq W \) and \(U \cap W = \emptyset \). Put \(V = \xi Int(W) \), then by Lemma 2.9, we have \(F \subseteq V \subseteq \xi O(X) \) and \(\cap \{ \xi Cl(V) / F \subseteq V \subseteq \xi O(X) \} = F \). Therefore X is \(\xi \)-regular.

(a) \(\Rightarrow \) (d). For a closed set F of X, by Lemma 5.3, we obtain

\(F \subseteq \cap \{ \xi Cl(V) / F \subseteq V \subseteq \xi O(X) \} \subseteq \cap \{ \xi Cl(V) / F \subseteq V \subseteq \xi O(X) \} = F \).

Therefore, \(F = \cap \{ \xi Cl(V) / F \subseteq V \subseteq \xi O(X) \} = \xi g\xi -open \).

(d) \(\Rightarrow \) (a). Let F be a closed set of X and x \(x \in X - F \). By (d), there exists a \(g\xi \)-open set W of X such that \(F \subseteq W \) and \(x \notin X - \xi Cl(W) \). Since F is closed, \(F \subseteq \xi Int(W) \) by Lemma 2.9. Put \(V = \xi Int(W) \), then \(F \subseteq V \subseteq \xi O(X) \). Since \(x \in X - \xi Cl(W) \), \(x \notin X - \xi Cl(V) \). Put \(U = X - \xi Cl(V) \), then \(x \in U \), \(U \subseteq \xi O(X) \) and \(U \cap V = \emptyset \). This shows that X is \(\xi \)-regular.

5.5 Definition. A function \(f : X \to Y \) is said to be \(\xi \)-open [2] if for each open set U of X, \(f(U) \subseteq \xi O(Y) \).
5.6 Theorem. If $f: X \to Y$ is a continuous ξ-open $g\xi$-closed surjection and X is regular, then Y is ξ-regular.

Proof. Let $y \in Y$ and let V be an open set of Y containing y. Let x be a point of X such that $y = f(x)$. By the regularity of X, there exists an open set U of X such that $x \in U \subset Cl(U) \subset f^{-1}(V)$. We have $y \in f(U) \subset f(Cl(U)) \subset V$. Since f is ξ-open and $g\xi$-closed, $f(U) \in \xi O(Y)$ and $f(Cl(U))$ is $g\xi$-closed in Y. So, we obtain, $y \in f(U) \subset Cl(f(Cl(U))) \subset V$. It follows from Lemma 5.4 that Y is ξ-regular.

5.7 Definition. A function $f: X \to Y$ is said to be pre ξ-open if for each ξ-open set U of X, $f(U) \in \xi O(Y)$.

5.8 Theorem. If $f: X \to Y$ is a continuous pre ξ-open $g\xi$-closed surjection and X is ξ-regular, then Y is ξ-regular.

Proof. Let F be any closed set of Y and $y \in Y - F$. Then $f^{-1}(Y) \cap f^{-1}(F) = \emptyset$ and $f^{-1}(F)$ is closed in X. Since X is ξ-regular, for a point $x \in f^{-1}(y)$, there exist $U, V \in \xi O(X)$ such that $x \in U, f^{-1}(F) \subset V$ and $U \cap V = \emptyset$. Since F is closed in Y, by Proposition 3.6, there exists $W \in \xi O(Y)$ such that $F \subset W$ and $f^{-1}(W) \subset V$. Since f pre ξ-open, we have $y = f(x) \in f(U)$ and $f(U) \in \xi O(Y)$. Since $U \cap V = \emptyset$, $f^{-1}(W) \cap U = \emptyset$ and hence $W \cap f(U) = \emptyset$. This shows that Y is ξ-regular.

6. Conclusion

We introduced a weaker version of normality called ξ-normality in topological spaces. We gave some characterizations and preservation theorems of ξ-normal and ξ-regular spaces. Some counterexamples were given and some basic properties were presented. The relationships among normal, α-normal, p-normal, β-normal, and ξ-normal are investigated.

References