\mathcal{E} -Normal and \mathcal{E} -Regular Spaces in Topological Spaces

Hamant Kumar

Department of Mathematics, Government Degree College, Bilaspur-Rampur-244921, India

Abstract: The aim of this paper is to introduce and study two new classes of spaces, namely E-normal and E-regular spaces in topological spaces. The relationships among normal, p-normal, α -normal, *B-normal and E-normal spaces are investigated*, Moreover, we introduced some functions such as g&closed, &g&closed, pre &open. We obtained some characterizations of &normal and ®ular spaces, properties of the forms of $g\xi$ -closed functions and preservation theorems for ξ -normal and ξ -regular spaces.

Keywords: ξ -closed sets, ξ -normal, ξ -regular spaces, g ξ -closed and ξ -g ξ -closed functions

2010 Mathematics Subject Classification: 54D10, 54D15, 54A05, 54C08.

1. Introduction

Levine [**3**] introduced generalized closed sets in general topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved. α -open sets were introduced by Njastad $[7]$. Devi et al. $[2]$ introduced the concept of ξ closed sets. Nour [**8**] introduced the notion of p-normal spaces and obtained their characterizations and preservation theorems. Paul and Bhattacharyya [**9**] obtained some properties of p**-**normal spaces. Benchalli et al. $[1]$ introduced the notion of α -normal spaces and obtained their characterizations and preservation theorems. Mahmoud et al. $[4]$ introduced the notion of β -normal spaces and obtained their characterizations and preservation theorems. Recently, Sharma et al. [**10**] introduced a new class of regular spaces called ξ -regular spaces by using ξ -open sets introduced by Devi et al. [2] and obtained several properties such as characterizations and preservation theorems for ξ -regular spaces.

2. Preliminaries

Throughout this paper, spaces (X, τ) , (Y, σ) , and (Z, γ) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by **Cl(A)** and **Int(A)** respectively. A is said to be α **-open** [1] if $A \subset Int(ClInt(A)))$. The complement of a α open set is said to be α -closed [1]. The intersection of all α -closed sets containing A is called α -closure [2] of A, and is denoted by α Cl(A).

2.1 Definition. A subset A of a space (X, τ) is said to be

1. generalized closed (briefly **g-closed**) [3] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.

2. generalized α -closed (briefly α **g**-closed) [6]) if α Cl(A) \subset U whenever A \subset U and U \in τ .

3. generalized α -closed (briefly **g** α -closed) [5]) if α Cl(A) \subset U whenever A \subset U and U is α -open in X.

4. ξ **-closed** [2] if α Cl(A) \subset U whenever A \subset U and U is $g\alpha$ -open in X.

5. g-open (resp. α **g-open, g** α **-open**, ξ **-open**) if the complement of A is g-closed (resp. α g-closed, g α -closed, -closed).

The intersection of all ξ -closed sets containing A is called **E-closure** of A, and is denoted by **ECl(A)**. The **E-interior** of A, denoted by $\zeta Int(A)$, is defined as union of all ξ -open sets contained in A. The family of all ξ -closed (resp. ξ open) sets of a space X is denoted by $\xi C(X)$ (resp. $\xi O(X)$).

2.2 Lemma. Let A be a subset of a space X and $x \in X$. The following properties hold for $\xi Cl(A)$:

(i) $x \in \mathcal{E}Cl(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in$ ζ O(X) containing x. (ii) A is ξ -closed if and only if $A = \xi Cl(A)$. (iii) $\xi C1(A) \subset \xi C1(B)$ if $A \subset B$. (iv) ζ C1(ζ C1(A)) = ζ C1(A). (v) ζ C1(A) is ζ -closed.

2.3 Definition. A subset A of a space X is said to be **generalized** ξ -closed (briefly **g** ξ -closed) if ξ Cl(A) \subset U whenever $A \subset U$ and $U \in \tau$.

2.4 Remark. We have the following implications for the properties of subsets:

closed \Rightarrow g-closed ⇓⇓ α -closed $\Rightarrow \alpha$ g-closed ⇒ ξ -closed \Rightarrow g ξ -closed

Where none of the implications is reversible as can be seen from the following examples:

2.5 Example Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Then A= {b} is g-closed but not closed.

Volume 5 Issue 9, September 2017 [www.ijser.in](file:///G:\www.ijser.in\Documents\www.ijser.in)

[Licensed Under Creative Commons Attribution CC BY](http://creativecommons.org/licenses/by/4.0/)

2.6 Example. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Then $A = \{a, b\}$ is g-closed as well as g ξ -closed.

2.7 Example Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{c\}, \{d\}, \{a, d\}\}$ c}, {c, d}, {a, c, d}, X} Then A ={a} is α -closed as well as -closed but not closed.

2.8 Example Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{c, d\}, X\}.$ Then A = {a, b, c} is ξ -closed. But it is neither α -closed nor closed.

2.9 Lemma. A subset A of a space X is $g\xi$ -open in X if and only if $F \subset \xi Int(A)$ whenever $F \subset A$ and F is closed in X.

3. Generalized -closed functions

3.1 Definition. A function f: $X \rightarrow Y$ is said to be **5-closed** [2] if for each closed set F of X, $f(F)$ is ξ -closed in Y.

3.2 Definition. A function f: $X \rightarrow Y$ is said to be

(i) **generalized -closed** (briefly **g-closed**) if for each closed set F of X, $f(F)$ is g ξ -closed in Y.

(ii) **ξ-generalized ξ-closed** (briefly **ξ-gξ-closed**) if for each ξ -closed set F of X, f (F) is g ξ -closed in Y.

3.3 Remark. Every closed function is ξ -closed but not conversely. Also, every ξ -closed function is g ξ -closed because every ξ -cosed set is g ξ -closed. It is obvious that both ξ -closedness and ξ -g ξ -closedness imply g ξ closedness.

3.4 Theorem. A surjective function f: $X \rightarrow Y$ is g ξ -closed (resp. ξ -g ξ -closed) if and only if for each subset B of Y and each open (resp. ξ -open) set U of X containing $f^{-1}(B)$, there exists a gg-open set V of Y such that $B \subset V$ and f^{-} ${}^1(V) \subset U$.

Proof. Suppose that f is g&-closed (resp. &-g&-closed). Let B be any subset of Y and U be open (resp. ξ -open) set of X containing $f^{-1}(B)$. Put $V = Y - f(X - U)$. Then the complement V^c of V is $V^c = Y - V = f(X - U)$. Since X – U is closed in X and f is g ξ -closed, $f(X - U) = V^c$ is g ξ closed. Therefore, V is g ξ -open in Y. It is easy to see that $B \subset V$ and $f^{-1}(V) \subset U$.

Conversely, let F be a closed (resp. ξ -closed) set of X. Put $B = Y - f(F)$, then we have $f^{-1}(B) \subset X - F$ and $X - F$ is open (resp. ξ -open) in X. Then by assumption, there exists a g ξ -open set V of Y such that $B = Y - f(F) \subset V$ and f $1(V) \subset X - F$. Now $f^{-1}(V) \subset X - F$ implies $V \subset Y - f(F)$ $=$ B. Also B \subset V and so B $=$ V. Therefore, we obtain f(F) $=$ $Y - V$ and hence f (F) is g ξ -closed in Y. This shows that f is g ξ -closed (resp. ξ -g ξ -closed).

3.5 Remark. We can prove the necessity part of the above theorem by replacing each set to closed set in the form of the proposition given below:

3.6 Proposition. If a surjective function f: $X \rightarrow Y$ is g ξ closed (resp. ξ-gξ-closed) then for a closed set F of Y and for any open (resp. ξ -open) set U of X containing f⁻¹(F), there exists a ξ -open set V of Y such that $F \subset V$ and f ${}^{1}(V) \subset U.$

Proof. By **Theorem 3.4**, there exists a g ξ -open set W of Y such that $F \subset W$ and $f^{-1}(W) \subset U$. Since F is closed, by **Lemma 2.9** we have $F \subset \xi Int(W)$. Put $V = \xi Int(W)$. Then $V \in \xi O(Y)$, $F \subset V$ and $f^{-1}(V) \subset U$.

3.7 Proposition. If f: $X \rightarrow Y$ is continuous ξ -g ξ -closed and A is g ξ -closed in X, then $f(A)$ is g ξ -closed in Y.

Proof. Let V be a open set of Y containing $f(A)$. Then $A \subset$ $f^{-1}(V)$. Since f is continuous, $f^{-1}(V)$ is open in X. Since A is g ξ -closed in X, by a definition, we get $\xi C1(A) \subset f^{-1}(V)$ and hence $f(\xi C1(A)) \subset V$. Since f is ξ -g ξ -closed and ξ C1(A) is ξ -closed in X, f(ξ C1(A)) is g ξ -closed in Y and hence we have ξ C1(f(ξ C1(A))) \subset V. By definition of the ξ -closure of a set, $A \subset \xi C1$ (A) which implies $f(A) \subset$ $f(\xi C1(A))$ and using **Lemma 2.2,** $\xi C1(f(A)) \subset$ $\xi C1(f(\xi C1(A))) \subset U$. That is $\xi C1(f(A)) \subset U$. This shows that $f(A)$ is $g\xi$ -closed in Y.

3.8 Definition. A function f: $X \rightarrow Y$ is said to be ξ **irresolute** [2] if for each $V \in \xi O(Y)$, $f^{-1}(V) \in \xi O(X)$.

3.9 Proposition. If f: $X \rightarrow Y$ is an open ξ -irresolute bijection and B is g ξ -closed in Y, then $f^{-1}(B)$ is g ξ -closed in X.

Proof. Let U be a open set of X containing $f^{-1}(B)$. Then B \subset f(U) and f(U) is open in Y. Since B is g ξ -closed in Y, $\xi C1(B) \subset f(U)$ and hence we have $f^{-1}(\xi C1(B)) \subset U$. Since f is ξ -irresolute, $f^{-1}(\xi C1(B))$ is ξ -closed in X (Theorem 2.1) (i) and (v)), we have $\xi C1(f^{-1}(B)) \subset f^{-1}(\xi C1(B) \subset U$. This shows that $f^{-1}(B)$ is g ξ -closed in X.

3.10 Theorem. Let f: $X \rightarrow Y$ and h: $Y \rightarrow Z$ be the two functions, then

(i) If hof: $X \rightarrow Z$ is g ξ -closed and if f: $X \rightarrow Y$ is a continuous surjection, then h: $X \rightarrow Z$ is g ξ -closed.

(ii) If f: $X \rightarrow Y$ is g ξ -closed with h: $Y \rightarrow Z$ is continuous and ξ -g ξ -closed, then hof: $X \rightarrow Z$ is g ξ -closed.

(iii) If f: $X \rightarrow Y$ is closed and h: $Y \rightarrow Z$ is g. E-closed, then hof: $X \rightarrow Z$ is g ξ -closed.

Proof.

(i) Let F be a closed set of Y. Then $f^{-1}(F)$ is closed in X since f is continuous. By hypothesis (hof) ($f^{-1}(F)$) is $g\xi$ closed in Z. Hence h is gg-closed.

(ii)The proof follows from the P**roposition 3.7**.

4. -Normal spaces

4.1 Definition. A space X is said to be ξ -normal (resp. α **normal** [1], **p-normal** $[8, 9]$, β **-normal** $[4]$) if for any pair of disjoint closed sets A, B of X, there exist disjoint ξ open (resp. α -open, p-open, β -open) sets U and V such that $A \subset U$ and $B \subset V$.

By the definitions stated above, we have the following diagram:

normality $\Rightarrow \alpha$ -normality \Rightarrow p-normality $\Rightarrow \beta$ -normality

 \downarrow

-normalily

Where none of the implications is reversible as can be seen from the following examples:

4.2 Example. Let $X = \{a, b, c, d\}$ and $= \{\phi, \{b\}, \{d\}, \{b, d\}$ d}, {a, b, d}, {b, c, d}, X}. The pair of disjoint closed subsets of X are $A = \{a\}$ and $B = \{c\}$. Taking β -open sets, $U = \{a, b\}$ and $V = \{c, d\}$ such that $A \subset U$ and $B \subset V$. Hence the space X is β -normal. But the space X is neither p-normal nor α -normal, since the sets U and V are neither p -open nor α -open..

4.3 Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b, d\}, \{a, d\}\}$ b, d}, {b, c, d}, X}. The pair of disjoint closed subsets of X are $A = \{a\}$ and $B = \{c\}$. Taking p-open sets, $U = \{a, b\}$ and $V = \{c, d\}$ such that $A \subset U$ and $B \subset V$. Hence the space X is p-normal as well as β -normal, since every popen sets are β -open. But the space X is neither normal nor α -normal, since the sets U and V are neither open nor α open.

4.4 Theorem. The following properties are equivalent for a space X:

(a) X is ξ -normal.

(b) For each pair of disjoint closed sets A, B of X, there exist disjoint g ξ -open sets U and V such that $A \subset U$ and B $\subset V$.

(c) For each closed set A and any open set V containing A, there exists a g ξ -open set U such that $A \subset U \subset \xi C1(U)$ V.

(d) For each closed set A and any g-open set B containing A, there exists a gg-open set U such that $A \subset U \subset \xi C1(U)$ \subset Int(B).

(e) For each closed set A and any g-open set B containing A, there exists a ξ -open set set G such that A \subset G \subset ζ C1)G) \subset Int (B).

(f) For each g-closed set A and any open set B containing A, there exists a ξ -open set U such that $Cl(A) \subset U \subset$ ζ C1(U) \subset B.

(g) For each g-closed set A and any open set B containing A, there exists a g ξ -open set G such that $Cl(A) \subset G \subset$ $\mathcal{E}Cl(G) \subset B$

Proof. (a) \Rightarrow (b). This proof is obvious since every ξ -open set is gg-open.

(b) \Rightarrow (c). Let A be a closed set and let V be an open set containing A. Since A and $X - V$ are disjoint closed sets of X, there exist g ξ -open sets U and W of X such that $A \subset U$ and $X - V \subset W$ and $U \cap W = \emptyset$. By **Lemma 2.9,** we get X $-V \subset \xi Int(W)$. Since $U \cap \xi Int(W) = \phi$, we have $\xi C1(U)$ \cap $\zeta Int(W) = \phi$ and hence $\zeta C1(U) \subset X - \zeta Int(W) \subset V$. Therefore, we obtain $A \subset U \subset \xi C1 \subset V$.

 $(c) \Rightarrow (a)$. Let A and B be the disjoint closed sets of X. Since $X - B$ is an open set containing A, there exists a g ξ open set G such that $A \subset G \subset \xi Cl(G) \subset X - B$. By **Lemma 2.9**, we have $A \subset \xi Int(G)$. Put $U = \xi Int(G)$ and V $= X - \xi C1(G)$. Then U and V are disjoint ξ -open sets such that $A \subset U$ and $B \subset V$. Therefore X is ξ -normal.

Since every ξ -open set is $g\xi$ -open and every closed (resp. open) set is g-closed (resp. g-open), it is obvious that (d) \Rightarrow (e) \Rightarrow (c) and (f) \Rightarrow (g) \Rightarrow (c).

 $(c) \Rightarrow$ (e). Let A be a closed set of X and let B be a g-open set such that $A \subset B$. Since B is g-open and A is closed, A \subset Int(B) by **Lemma 2.9**. Therefore by (c), there exists a g ξ -open set U such that $A \subset U \subset \xi C1(U) \subset \xi Int(B)$.

 $(e) \Rightarrow$ (d). Let A be a closed set of X and let B be a g-open set such that $A \subset B$. Then there exists a gg-open set G such that $A \subset G \subset \xi C1(G) \subset Int(B)$ by **Lemma 2.9**. Since G is g ξ -open, $A \subset \xi Int(G)$. Put $U = \xi Int(G)$, then U is ξ open and $A \subset U \subset \xi Cl(U) \subset Int(B)$.

(c) \Rightarrow (g). Let A be a g-closed set of X and let B be an open set such that $A \subset B$. Then $Cl(A) \subset B$. Therefore by (c), there exists a gg-open set U Such that $Cl(A) \subset U$ ξ Cl(U) \subset B.

 $(g) \Rightarrow (f)$. Let A be a g-closed set of X and let B be an open set such that $A \subset B$. Then there exist a g ξ -open set G such that $Cl(A) \subset G \subset \xi Cl(G) \subset B$. Since G is g ξ -open and the closed set $Cl(A) \subset G$, we have $Cl(A) \subset \xi Int(G)$ by **Lemma 2.9.** Put $U = \xi Int(G)$. Then, U is ξ -open and Cl $(A) \subset U \subset \xi Cl(U) \subset B.$

4.5 Theorem. If f: $X \rightarrow Y$ is continuous g ξ -closed surjection and X is normal, then Y is ξ -normal.

Proof. Let A and B be the disjoint closed sets of Y. Then f $I(A)$ and f $I(B)$ are disjoint closed sets of X since f is continuous. Since X is normal, there exists disjoint open sets U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. By **Proposition 3.6**, there exist gg-open sets G and H of Y such that $A \subset G$, $B \subset H$ and $f^{-1}(G) \subset U$ and $f^{-1}(H) \subset V$. Then we have $f^{-1}(G) \cap f^{-1}(H) = \phi$ and hence $G \cap H = \phi$. It follows from **Theorem 4.4** that Y is ξ -normal.

4.6 Theorem. If f: $X \rightarrow Y$ is continuous ξ -g ξ -closed surjection and X is ξ -normal, then Y is ξ -normal.

Proof. Let A and B the disjoint closed sets of Y. Then f⁻ $^{1}(A)$ and f⁻¹(B) are disjoint closed sets of X. Since X is ξ normal, there exist disjoint ξ -open sets U and V such that f $^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Since f is ξ -g ξ -closed, by **Proposition 3.6**, there exist ξ -open sets G and H of Y such that $A \subset G$, $B \subset H$, $f^{-1}(G) \subset U$ and $f^{-1}(H) \subset V$. Since U and V are disjoint, we have $G \cap H = \phi$. This shows that Y is ξ-normal.

5. -Regular Spaces

5.1 Definition. A space X is said to be ξ -regular [10] (resp. α -regular [1]) if for each closed set F of X, and each point $x \in X - F$, there exist disjoint ξ -open (resp. α open) set U, V such that $F \subset U$ and $x \in V$.

5.2 Remark. It is obvious that every α -regular space is ξ regular but not conversely.

5.3 Lemma. The following properties are equivalent for a space X:

(a) X is ξ -regular.

(b) For each $x \in X$ and each open set U of X containing x, there exists $V \in \xi O(X)$ such that $x \in V \subset \xi Cl(V) \subset U$.

(c) For each closed set F of X, \cap { ζ Cl(V) / F \subset V \in $\mathcal{E}O(X) = F.$

(d) For each subset A of X and each open set U of X such that $A \cap U \neq \emptyset$, there exists $V \in \xi O(X)$ such that $A \cap V \neq \emptyset$ ϕ and ξ Cl(V) \subset U.

(e) For each non empty subset A of X and each closed subset F of X such that $A \cap F = \phi$, there exist V, W \in $\zeta O(X)$ such that $A \cap V \neq \phi$, $F \subset W$ and $V \cap W \neq \phi$.

Proof.

(a) \Rightarrow (b). Let U be an open set containing x, then X – U is closed in X and $x \notin X - U$. By (a), there exist $W, V \in$ $\xi O(X)$ such that $x \in V$, $X - U \subset W$ and $V \cap W = \phi.By$ **Lemma 2.2**, we have ξ Cl(V) \cap W = ϕ and hence $x \in V$ \subset ξ Cl(V) \subset U.

(b) \Rightarrow (c). Let F be a closed set of X. If $F \subset V$, then by **Lemma 2.2 (iii),** ζ Cl(F) $\subset \zeta$ Cl(V) which gives $F \subset \zeta$ Cl(V) as $F \subset \xi Cl(F)$. Therefore, $\cap {\xi Cl(V)}/F \subset V \in \xi O(X)$ \supset F.

Conversely, let $x \notin F$. Then $X - F$ is an open set containing x. By (b), there exists $U \in \xi O(X)$ such that $x \in$ $U \subset \xi Cl(U) \subset X$ – F. Put $V = X - \xi Cl(U)$. By **Lemma 2.2,** $F \subset V \in \xi O(X)$ and $x \notin \xi Cl(V)$. This implies that \cap $\{\xi Cl(V) / F \subset V \in \xi O(X)\} \subset F.$

Hence \cap { ζ Cl(V) / F \subset V $\in \zeta$ O(X)} = F.

 $(c) \Rightarrow (d)$. Let A be a subset of X and let U be open in X such that $A \cap U \neq \emptyset$. Let $x \in A \cap U$, then $X - U$ is a closed set not containing x. By (c), there exists $W \in$ $\xi O(X)$ such that $X - U \subset W$ and $x \notin \xi Cl(W)$. Put $V = X \zeta$ Cl(W). Then $V \subset X - W$. Also $x \in V \cap A$. By using

Lemma 2.2, we obtain $V \in \xi O(X)$, and $\xi Cl(V) \subset \xi Cl(X - \xi O(X))$ W) = $X - W \subset U$.

(d) \Rightarrow (e). Let A be a subset of X and let F be a closed set in X such that $A \cap F = \phi$, where $A \neq \phi$. Since $X - F$ is open in X and $A \neq \emptyset$, by (d), there exists $V \in \Sigma O(X)$ such that A \cap V \neq ϕ and ξ C1(V) \subset X – F. Put W = X – ξ C1(V), then $F \subset W$. Also, $V \cap W = \phi$. By **Lemma 2.2**, $W \in \Sigma O(X)$.

 $(e) \Rightarrow$ (a). This is obvious.

5.4 Theorem. The following properties are equivalent for a space X:

(a) X is ξ -regular.

(b) For each closed set F and each point $x \in X - F$, there exists $U \in \xi O(X)$ and a g ξ -open set V such that $x \in U$ and $F \subset V$ and $U \cap V = \phi$.

(c) For each subset A of X and each closed set F such that $A \cap F = \phi$, there exist $U \in \xi O(X)$ and a g ξ -open set V such that $A \cap U \neq \phi$, $F \subset V$ and $U \cap V = \phi$.

(d) For each closed set F of X, $F = \bigcap \{\xi C1(V): F \subset V \text{ and }$ V is $g\xi$ -open}.

Proof.

(a) \Rightarrow (b). The proof is obvious since every ξ -open set is g-open.

(b) \Rightarrow (c). Let A be a subset of X and let F be a closed set in X such that $A \cap F = \phi$. For a point $x \in A$, $x \in X - F$ and hence there exists $U \in \xi O(X)$ and a g ξ -open set V such that $x \in U$ and $F \subset V$ and $U \cap V = \phi$. Also $x \in A$, x \in U implies $x \in A \cap U$. So $A \cap U \neq \emptyset$.

(c) \Rightarrow (a). Let F be a closed set and let $x \in X - F$. Then, $\{x\} \cap F = \phi$ and there exist $U \in \xi O(X)$ and a g ξ -open set W such that $x \in U$, $F \subset W$ and $U \cap W = \emptyset$. Put $V =$ $\zeta Int(W)$, then by **Lemma 2.9**, we have $F \subset V$, $V \in \zeta O(X)$ and $U \cap V = \phi$. Therefore X is ξ -regular.

(a) \Rightarrow (d). For a closed set F of X, by **Lemma 5.3**, we obtain

 $F \subset \bigcap \{ \xi C1(V) : F \subset V \text{ and } V \text{ is g}\xi\text{-open} \}$ $\subset \cap$ { ζ C1(V): F \subset V and V $\in \zeta$ O(X)} = F

Therefore, $F = \bigcap {\xi \in C1(V): F \subset V \text{ and } V \text{ is g\xi-open}}$.

(d) \Rightarrow (a). Let F be a closed set of X and $x \in X - F$. by (d), there exists a g ξ -open set W of X such that $F \subset W$ and $x \in$ $X - \xi C1(W)$. Since F is closed, $F \subset \xi Int(W)$ by **Lemma 2.9**. Put $V = \xi Int(W)$, then $F \subset V$ and $V \in \xi O(X)$. Since x $\in X - \xi C1(W)$, $x \in X - \xi C1(V)$. Put $U = X - \xi C1(V)$ then, $x \in U$, $U \in \Sigma O(X)$ and $U \cap V = \emptyset$. This shows that X is ξ -regular.

5.5 Definition. A function f: $X \rightarrow Y$ is said to be ξ -open [2] if for each open set U of X, $f(U) \in \xi O(Y)$.

Volume 5 Issue 9, September 2017 [www.ijser.in](file:///G:\www.ijser.in\Documents\www.ijser.in)

[Licensed Under Creative Commons Attribution CC BY](http://creativecommons.org/licenses/by/4.0/)

5.6 Theorem. If f: $X \rightarrow Y$ is a continuous ξ -open g ξ closed surjection and X is regular, then Y is ξ -regular.

Proof. Let $y \in Y$ and let V be an open set of Y containing y. Let x be a point of X such that $y = f(x)$. By the regularity of X, there exists an open set U of X such that x $\in U \subset Cl(U) \subset f^{-1}(V)$. We have $y \in f(U) \subset f(Cl(U))$ V. since f is ξ -open and g ξ -closed, $f(U) \in \xi O(Y)$ and f(C1(U)) is gξ-closed in Y. So, we obtain, $y \in f(U)$ \subset $\mathcal{E}Cl(f(U)) \subset \mathcal{E}Cl(f(Cl(U))) \subset V$. It follows from **Lemma 5.4** that Y is ξ -regular.

5.7 Definition. A function f: $X \rightarrow Y$ is said to be pre ξ **open** if for each ξ -open set U of X, $f(U) \in \xi O(Y)$.

5.8 Theorem. If f: $X \rightarrow Y$ is a continuous pre ξ -open ξ g ξ -closed surjection and X is ξ -regular, then Y is ξ regular.

Proof. Let F be any closed set of Y and $y \in Y - F$. Then f $f^{-1}(Y) \cap f^{-1}(F) = \phi$ and $f^{-1}(F)$ is closed in X. Since X is ξ regular, for a point $x \in f^{-1}(y)$, there exist $U, V \in \xi O(X)$ such that $x \in U$, $f^{-1}(F) \subset V$ and $U \cap V = \phi$. Since F is closed in Y, by **Proposition 3.6**, there exists $W \in \xiO(Y)$ such that $F \subset W$ and $f^{-1}(W) \subset V$. Since f pre ξ -open, we have $y = f(x) \in f(U)$ and $f(U) \in \xi O(Y)$. Since $U \cap V = \phi$, $f^{-1}(W) \cap U = \phi$ and hence $W \cap f(U) = \phi$. This shows that Y is ξ -regular.

6. Conclusion

We introduced a weaker version of normality called ξ normality in topological spaces. We gave some characterizations and preservation theorems of ξ -normal and ξ -regular spaces. Some counterexamples were given and some basic properties were presented. The relationships among normal, α -normal, p-normal, β normal, and ξ -normal are investigated.

References

- [1] S. S. Benchalli and P. G. Patil, Some new continuous maps in topological spaces, Journal of Advanced Studied in Topology, 2/1-2, (2009), 53-63.
- [2] R. Devi, S. N. Rajappriya, K. Muthukumaraswamy and H. Maki, -closed sets in topological spaces and digital planes, Scientiae Mathematicae Japanicae Online, (2006), 615-631.
- [3] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), **19**(1970), 89-96.
- [4] R. A. Mahmoud and M. E. Abd EI-Monsef, β irresolute and β -topological invariant, Proc. Pakistan Acad. Sci., **27**(1990), 285.
- [5] H. Maki, R. Devi and K. Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, **42**(1993), 13-21.
- [6] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -open and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Math. **15**(1994), 51-63.
- [7] O. Njastad, On some class of nearly open sets, Pacific. J. Math. , **15**(1965), 961
- [8] T. M. J. Nour, Contribution to the Theory of Bitopological Spaces, Ph. D. Thesis, Delhi Univ 1989.
- [9] Paul and Bhattacharyya, On p-normal spaces, Soochow J. Math., Vol. 21, **3**(1995), 273-289.
- $[10]$ M. C. Sharma, P. Sharma, S. Sharma and M. Singh, ξ regular spaces, Journal of Applied Science and Technology, Vol. 4 **1**(2014), 1-4.