On k-Super Mean Labeling of Some Graphs

Dr. M. Tamilselvi¹, K. Synthiya²

¹Associate Professor, PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Tiruchirappalli – 620 002, India

²Research Scholar, PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Tiruchirappalli – 620 002, India

Abstract: Let G be a (p,q) graph and $f: V(G) \rightarrow \{1,2,3,...,p+q\}$ be an injection. For each edge e = uv, let $f^{*}(e) =$ $\frac{f(u)+f(v)}{2} \text{ if } f(u) + f(v) \text{ is even and } f^*(e) = \frac{f(u)+f(v)+1}{2} \text{ if } f(u) + f(v) \text{ is odd, then } f \text{ is called super mean labeling if } f(V) \cup \{f^*(e): e \in E(G) = \{1, 2, 3, \dots, p+q\}. A \text{ graph that admits a super mean labeling is called super mean graph. Let G be a <math>(p,q)$ graph and $f: V(G) \to \{k, k+1, k+2, \dots, p+q+k-1\}$ be an injection. For each edge e = uv, let $f^*(e) = \frac{f(u)+f(v)}{2}$ if f(u) + f(v) is even and $f^*(e) = \frac{f(u) + f(v) + 1}{2}$ if f(u) + f(v) is odd, then f is called k - super mean labeling if $f(V) \cup \{f^*(e) : e \in E(G)\} = \{k, k+1, k+1, k+1\}$ 2,, p + q + k - 1. A graph that admits a k - super mean labeling is called k - super mean graph. In this paper, we investigate ksuper mean labeling of $L_n \odot K_1$, $S(T_n)$, $S(T_n \odot k_1)$, $(P_n:C_4)$, $[P_n:C_6^2]$.

Keyword: k - super mean labeling, k - super mean graph, $L_n \odot K_1$, $S(T_n)$, $S(T_n \odot k_1)$, $(P_n:C_4)$, $[P_n:C_6^2]$

1. Introduction

All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense of Harary [1]. The symbols V(G) and E(G) will denote the vertex set and edge set of a graph G. In this paper, we investigate k-super mean graphs of

 $L_n \odot K_1$, $S(T_n)$, $S(T_n \odot k_1)$, $(P_n:C_4)$, $[P_n:C_6^2]$.

Definition 1.1:

Let G be a (p, q) graph and $f: V(G) \rightarrow \{1, 2, 3, \dots, p+q\}$ be an injection. For each edge e = uv, let $f^*(e) = \frac{f(u) + f(v)}{2}$ if f(u) + f(v) is even and $f^*(e)$ $=\frac{f(u)+f(v)+1}{2}$ if f(u)+f(v) is odd, then f is called **super** mean labeling if $f(v)U{f^*(e): e \in E(G) =$ $\{1, 2, 3, \dots, p + q\}$. A graph that admits a super mean labeling is called super mean graph.

Definition 1.2:

Let G be a (p, q) graph and

 $f: V(G) \rightarrow \{k, k+1, k+2, .., p+q+k-1\}$ be an injection. For each edge e = uv, let $f^{*}(e) = \frac{f(u) + f(v)}{2} \text{ if } f(u) + f(v) \text{ is even and } f^{*}(e) = \frac{f(u) + f(v) + 1}{2} \text{ if } f(u) + f(v) \text{ is odd, then f is called } \mathbf{k} \text{ - super}$

mean labeling if

 $f(V) \cup \{f^*(e):e \in E(G)\} = \{k, k+1, \dots, p+q+k-1\}.$ А graph that admits a k - super mean labeling is called k super mean graph.

Definition 1.3:

A ladder graph is a product of $P_2 \times P_n$.

Definition 1.4:

A triangular snake (T_n) is obtained from a path by identifying each edge of the path with an edge of the cycle C₃.

Definition 1.5

If G is a graph, then S (G) is a graph by subdividing each edge of G by a vertex.

Definition 1.6

The graph $\mathbf{G} = (\mathbf{P}_n: \mathbf{C}_4)$ is obtained from a path \mathbf{P}_n by fusing one edge of one cycle C₄ at each vertices of the P_n denoted by (**P**_n:**C**₄).

Definition 1.7:

The graph $\mathbf{G} = [\mathbf{P}_n: \mathbf{C}_6^2]$ is obtained from a path P_n by fusing one vertex of two cycle C_6 at each vertices of the P_n denoted by $[P_n:C_6^2]$.

2. Main Results

Theorem 2.1:

 $\mathbf{L}_{\mathbf{n}}\mathbf{\Theta}\mathbf{k}_{\mathbf{1}}$ is a k – Super mean labeling graph for all $n \geq 2$.

Proof:

Let V($L_n \Theta k_1$) = { $u_i, v_i : 1 \le i \le n$ } U $\{ w_i, x_i : 1 \le i \le n \}$ and $E(L_n \Theta k_1) = \{a_i : (w_i, v_i) : 1 \le i \le n\} U$ $\{b_i : (v_i, u_i) : 1 \le i \le n\} \cup \{c_i : (u_i, x_i) : 1 \le i \le n\} \cup \{d_i : (u_i, x_i) : ($ u_i, u_{i+1}): $1 \le i \le n - 1$ }U $\{e_i : (v_i, v_{i+1}) : 1 \le i \le n - 1\}$ be the vertices and edges of $L_n O k_1$ respectively. First we label the vertices of L_nOk_1 as follows. $f(w_i) = \int k; i = 1$ $k + 9i - 10; 2 \le i \le n$ $f(v_i) = k + 9i - 7; 1 \le i \le n$ $f(u_i) = k + 9i - 5; 1 \le i \le n$ $f(x_i) = k + 9i - 3; 1 \le i \le n.$ Clearly. $f(V) \cup \{f^*(e) : e \in E(G) = \{k, k + 1, ..., k + 9n - 3\}.$

It can be verified that f is a k-Super mean labeling.

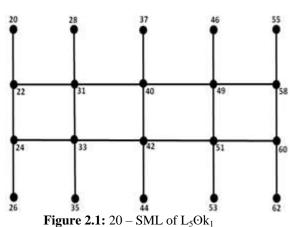
Hence, **f** is a \mathbf{k} – Super mean labeling and hence $\mathbf{L}_{\mathbf{n}}\mathbf{\Theta}\mathbf{k}_{\mathbf{1}}$ is a **k** – Super mean graph.

www.ijser.in

Licensed Under Creative Commons Attribution CC BY

Example 2.1:

20 – super mean labeling of L_5Ok_1 is shown in figure 2.1



Theorem 2.2:

 $S(T_n)$ is a k – Super mean labeling graph for all $n \ge 2$.

Proof:

Let $S(T_n\)$ be the graph obtained by subdividing all the edges.

Let $V(S(T_n)) = \{w_i : 1 \le i \le n\} U$ $\{u_i, v_i, x_i, y_i : 1 \le i \le n - 1\}$ and $E(S(T_n)) = \{a_i : (u_i, v_i) : 1 \le i \le n - 1\} U$ $\{b_i : (u_i, x_i) : 1 \le i \le n - 1\} U$ $\{c_i : (v_i, w_i) : 1 \le i \le n - 1\} U$ $\{d_i : (x_i, w_{i+1}) : 1 \le i \le n - 1\} U$ $\{e_i : (w_i, y_i) : 1 \le i \le n - 1\} U$ $\{e_i' : (y_i, w_{i+1}) : 1 \le i \le n - 1\}$ be the vertices and edges of $S(T_n)$ respectively.

First we label the vertices of T_n as follows.

$$f(u_i) = \begin{cases} k, i = 1 \\ k + 11i - 6; 2 \le i \le n - 1 \end{cases}$$

$$f(v_i) = \begin{cases} k + 2, i = 1 \\ k + 11i - 9; 2 \le i \le n - 1 \end{cases}$$

$$f(w_i) = \begin{cases} k + 5, i = 1 \\ k + 11i - 11; 2 \le i \le n \end{cases}$$

$$f(x_i) = \begin{cases} k + 6, i = 1 \\ k + 11i - 3; 2 \le i \le n - 1 \end{cases}$$

$$f(y_i) = \begin{cases} k + 8, i = 1 \\ k + 11i - 5; 2 \le i \le n - 1 \end{cases}$$
Now the induced edge labels are as follows:
$$f^*(a_i) = \begin{cases} k + 1, i = 1 \\ k + 11i - 7; 2 \le i \le n - 1 \end{cases}$$

$$f^*(b_i) = \begin{cases} k + 3, i = 1 \\ k + 11i - 4; 2 \le i \le n - 1 \end{cases}$$

$$f^{*}(c_{i}) = \begin{cases} k + 4, i = 1 \\ k + 11i - 10; 2 \le i \le n - 1 \end{cases}$$

$$f^{*}(d_{i}) = \begin{cases} k + 9, i = 1 \\ k + 11i - 1; 2 \le i \le n - 1 \end{cases}$$

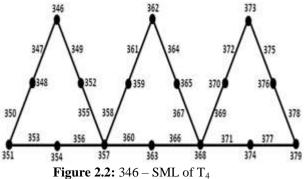
$$f^{*}(e_{i}) = \begin{cases} k + 7, i = 1 \\ k + 11i - 8; 2 \le i \le n - 1 \end{cases}$$

$$f^{*}(e_{i}') = \begin{cases} k + 10, i = 1 \\ k + 11i - 2; 2 \le i \le n - 1 \end{cases}$$
Here p = 5n-4, q = 6n-6, p+q = 11n-10.
Clearly,
f(V) \cup {f*(e): e \in E(G)

 $= \{k, k+1, ..., k+11n-11\}.$ Hence , **f** is a **k** – Super mean labeling and hence **S**(**T**_n) is a **k** – Super mean graph.

Example 2.2:

346 - Super mean labeling of $S(T_4)$ is shown in figure 2.2



Theorem 2.3:

The graph $S(T_n \Theta k_1)$ is a k – Super mean labeling graph for all $n \ge 2$.

Proof:

$$\begin{split} & \text{Let } V(S(T_n \odot k_1)) = \{u_i, u_i', v_i: 1 \le i \le n+1\} \ U \\ & \{v_i', w_i, w_i', x_i, y_i, z_i: 1 \le i \le n\} \ \text{and} \\ & E(S(T_n \odot k_1)) = \{a_i: (v_i', w_i): 1 \le i \le n\} \ U \\ & \{a_i': (w_i, z_i): 1 \le i \le n\} \ U \\ & \{b_i: (v_i, v_i'): 1 \le i \le n\} \ U \\ & \{b_i': (z_i, v_{i+1}): 1 \le i \le n\} \ U \\ & \{c_i: (v_i, y_i): 1 \le i \le n\} \ U \\ & \{c_i': (y_i, v_{i+1}): 1 \le i \le n\} \ U \\ & \{d_i: (v_i, u_i'): 1 \le i \le n\} \ U \\ & \{d_i: (u_i', u_i): 1 \le i \le n+1\} \ U \\ & \{d_i': (w_i', w_i): 1 \le i \le n\} \ U \\ & \{e_i': (w_i', w_i): 1 \le i \le n\} \ U \\ & \{e_i': (w_i', w_i): 1 \le i \le n\}. \end{split}$$
 be the vertices and edges of $S(T_n \odot k_1)$ respectively.

First we label the vertices of $S(T_n \odot k_1)$ respectively.

$$f(u_i^{i}) = \begin{cases} k \ ; \ i = 1 \\ k + 19i - 21; 2 \le i \le n + 1 \end{cases}$$

$$f(u_i^{i}) = \begin{cases} k + 2; \ i = 1 \\ k + 19i - 19; 2 \le i \le n + 1 \end{cases}$$

$$f(v_i^{i}) = k + 19i - 15; \ 1 \le i \le n + 1$$

$$f(v_i^{i}) = k + 19i - 13; \ 1 \le i \le n \\ f(w_i^{i}) = k + 19i - 9; \ 1 \le i \le n \\ f(w_i^{i}) = k + 19i - 7; \ 1 \le i \le n \\ f(w_i^{i}) = k + 19i - 5; \ 1 \le i \le n \\ f(x_i^{i}) = k + 19i - 10; \ 1 \le i \le n \\ f(z_i^{i}) = k + 19i + 1; \ 1 \le i \le n \\ f(z_i^{i}) = k + 19i - 11; \ 1 \le i \le n \\ Now the induced edge labels are as follows:$$

$$f^*(a_i^{i}) = k + 19i - 11; \ 1 \le i \le n \\ f(x_i^{i}) = k + 19i - 11; \ 1 \le i \le n \\ f(x_i^{i}) = k + 19i - 11; \ 1 \le i \le n \\ f^*(a_i^{i}) = k + 19i - 11; \ 1 \le n \\ f^*(a_i^{i}) = k + 19i - 11; \ 1 \le n \\ f^*(a_i^{i}) = k + 19i - 11; \ 1 \le n \\ f^*(a_i^{i}$$

Volume 5 Issue 9, September 2017 www.ijser.in

Licensed Under Creative Commons Attribution CC BY

$$f^{*}(a_{i}^{'}) = k + 19i - 4; 1 \le i \le n$$

$$f^{*}(b_{i}) = k + 19i - 14; 1 \le i \le n$$

$$f^{*}(b_{i}^{'}) = k + 19i - 12; 1 \le i \le n$$

$$f^{*}(c_{i}^{'}) = k + 19i - 3; 1 \le i \le n$$

$$f^{*}(c_{i}^{'}) = k + 19i - 3; 1 \le i \le n$$

$$f^{*}(d_{i}) = \begin{cases} k + 2; i = 1 \\ k + 19i - 17; 2 \le i \le n + 1 \end{cases}$$

$$f^{*}(d_{i}^{'}) = \begin{cases} k + 1; i = 1 \\ k + 19i - 20; 2 \le i \le n + 1 \end{cases}$$

$$f^{*}(e_{i}^{'}) = k + 19i - 6; 1 \le i \le n$$

$$f^{*}(e_{i}^{'}) = k + 19i - 8; 1 \le i \le n$$
Here $p = 9n + 3, q = 10n + 2, p + q = 19n + 5$
Clearly,
$$f(v) U \{f^{*}(e) : e \in E(G) \\ = \{k, k + 1, \dots, k + 19n + 4\}$$
So, $S(T_{n} \Theta k_{1})$ is a k -Super mean graph.

Example 2.3:

1073 – Super mean labeling of $S(T_3 \Theta k_1)$ is shown in figure 2.3

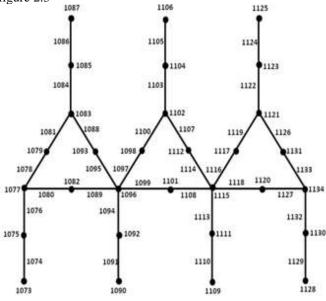


Figure 2.3: 1073 – SML of S(T₃ O k₁)

Theorem 2.4:

The graph (P_n : C_4) is a k – Super mean labeling graph for all $n \geq 2$.

Proof:

Let $V((P_n : C_4)) = \{u_i, v_i, w_i, x_i, y_i ; 1 \le i \le n\}$ and $E((P_n : C_4)) = \{a_i = (u_i, v_i) ; 1 \le i \le n\} U$ $\{b_i = (u_i, w_i) ; 1 \le i \le n\} U$ $\{c_i = (v_i, x_i); 1 \le i \le n\} U$ $\{d_i = (w_i, x_i) ; 1 \le i \le n\} U$ $\{e_i = (x_i, y_i); 1 \le i \le n\} U$ $\{e_i' = (y_i, y_{i+1}); 1 \le i \le n - 1\}$

be the vertices and edges of $(P_n: C_4)$ respectively.

First we label the vertices of $(P_n : C_4)$ as follows. $f(u_i) = [k; i = 1]$ $k + 11i - 10; 2 \le i \le n$ $f(v_i) = k + 11i - 2, 1 \le i \le n$ $f(w_i) = |k+2; i = 1$ $k + 11i - 12; 2 \le i \le n$ $f(x_i) = k + 11i - 7, 1 \le i \le n$ $f(y_i) = k + 11i - 3, 1 \le i \le n.$ Now the induced edge labels are as follows: $f^*(a_i) = k + 11i - 6, 1 \le i \le n$ $f^*(b_i) = \int k + 1; i = 1$ $k + 11i - 11; 2 \le i \le n$ $f^*(c_i) = k + 11i - 4, 1 \le i \le n$ $f^*(d_i) = \int k + 2; i = 1$ $k + 11i - 9; 2 \le i \le n$ $f^*(e_i) = k + 11i - 5, 1 \le i \le n$

 $f^*(e'_i) = k + 11i + 3, 1 \le i \le n - 1.$ Here p = 5n, q = 6n-1, p+q = 11n-1

Clearly,

$$f(V) \cup \{f^*(e): e \in E(G) \\ = \{k, k + 1, ..., k + 11n - 2\}.$$

Hence, **f** is a \mathbf{k} – Super mean labeling and hence ($\mathbf{P}_n : \mathbf{C}_4$) is a \mathbf{k} – Super mean graph.

Example 2.4:

567 – Super mean labeling of $(P_4 : C_4)$ is shown in figure 2.4

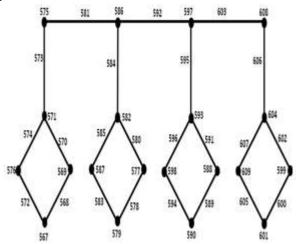


Figure 2.4: 567 – SML of (P₄ : C₄)

Theorem 2.5:

The graph $[P_n:C_6^2]$ is a **k** – Super mean labeling graph for all $n \geq 2$.

Proof:

Let $V([P_n:C_6^2]) = \{u_i, v_i, w_i, x_i, y_i, z_i ; 1 \le i \le n\} U$ $\{u_i', v_i', w_i', y_i', z_i'; 1 \le i \le n\}$ and $E([P_n:C_6^2]) = \{a_i = (u_i, v_i); 1 \le i \le n\} U$ $\{a_i' = (u_i, v_i'); 1 \le i \le n\}$ U $\{b_i = (v_i, w_i) ; 1 \le i \le n\} U$ $\{b_i' = (v_i', w_i'); 1 \le i \le n\} U$ $\{c_i = (w_i, x_i); 1 \le i \le n\} U$

Volume 5 Issue 9, September 2017

www.ijser.in

Licensed Under Creative Commons Attribution CC BY

International Journal of Scientific Engineering and Research (IJSER) ISSN (Online): 2347-3878 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

 $\{c_i' = (w_i', x_i); 1 \le i \le n\} U$ $\{d_i = (x_i, y_i) ; 1 \le i \le n\} U$ $\{d_i' = (x_i, y_i'); 1 \le i \le n\} U$ $\{e_i = (y_i, z_i); 1 \le i \le n\}$ U $\{e_i' = (y_i', z_i'); 1 \le i \le n\}$ U $\{e_i''=(z_i, u_i'); 1 \le i \le n\} U$ $\{e_i'''=(u_i', z_i'); 1 \le i \le n\}$ U $\{e_i^{'v} = (x_i, x_{i+1}); 1 \le i \le n-1\}$ be the vertices and edges of $[P_n:C_6^2]$ respectively. First we label the vertices of $[P_n:C_6^2]$ as follows. $f(u_i) = k + 24i - 22; \ 1 \le i \le n$ $f(v_i) = k + 24i - 24; 1 \le i \le n$ $f(v_i) = k + 24i - 19; 1 \le i \le n$ $f(w_i) = k + 24i - 18; 1 \le i \le n$ $f(w_i) = k + 24i - 16; 1 \le i \le n$ $f(x_i) = k + 24i - 13; \ 1 \le i \le n$ $f(y_i) = k + 24i - 11; 1 \le i \le n$ $f(y_i) = k + 24i - 7; \ 1 \le i \le n$ $f(z_i) = k + 24i - 8; 1 \le i \le n$ $f(z_i) = k + 24i - 2; \ 1 \le i \le n$ $f(u_i) = k + 24i - 5; 1 \le i \le n.$ Now the induced edge labels are as follows: $f^*(a_i) = k + 24i - 23; 1 \le i \le n$ $f^*(a_i) = k + 24i - 20; \ 1 \le i \le n$ $f^*(b_i) = k + 24i - 21; \ 1 \le i \le n$ $f^*(b_i) = k + 24i - 17; \ 1 \le i \le n$ $f^*(c_i) = k + 24i - 15; \ 1 \le i \le n$ $f^*(c_i) = k + 24i - 14; \ 1 \le i \le n$ $f^*(d_i) = k + 24i - 12; \ 1 \le i \le n$ $f^*(d_i) = k + 24i - 10; \ 1 \le i \le n$ $f^*(e_i) = k + 24i - 9, 1 \le i \le n$ $f^*(e_i) = k + 24i - 4; \ 1 \le i \le n$ $f^*(e_i'') = k + 24i - 6; \ 1 \le i \le n$ $f^*(e_i''') = k + 24i - 3; \ 1 \le i \le n$ $f^*(e_i^{'v}) = k + 24i - 1; \ 1 \le i \le n - 1$ Here p = 11n, q = 13n-1, p+q = 24n-1. Clearly, $f(V) \cup \{f^*(e) : e \in E(G)\}$ $= \{k, k + 1, \dots, k + 24n - 2\}.$

Hence, **f** is a **k** – Super mean labeling and hence $[P_n:C_6^2]$ is a **k** – Super mean graph.

Example 2.5:

1 – Super mean labeling of $[P_3:C_6^2]$ is shown in figure 2.5

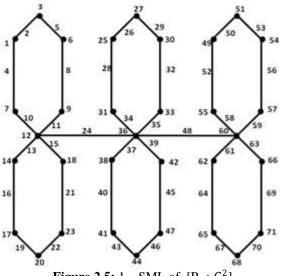


Figure 2.5: $1 - \text{SML of } [P_3 : C_6^2]$

References

- [1] F. Harary, *Graph Theory*, Addison Wesley, Massachusetts (1972).
- [2] P. Jeyanthi, D. Ramya, P. Thangavelu, On Super Mean Graphs, AKCE J.Graphs. Combin, 6, No.1 (2009), pp.103-112.
- [3] S.S. Sandhya, E. Ebin Raja Merly, G.D. Jemi, Some Results on Super Heronian Mean Labeling of Graphs, International Journal of Contemporary Mathematical Sciences, Vol.11, 2016, no.10, 485-495.
- [4] S.S. Sandhya, E. Ebin Raja Merly, G.D. Jemi, On Super Heronian Mean Labeling of Graphs, Asia Pacific Journal of Research, Vol : I. Issue L, April 2017.
- [5] M. Tamilselvi, A study in Graph Theory-Generalization of super mean labeling, Ph.D. Thesis, Vinayaka Mission University, Salem, August (2011).
- [6] Dr. M. Tamilselvi, K. Akilandeswari, N. Revathi ,Some more results on k – Super mean labeling graphs Index Copernicus Value (2013): 6.14.