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Abstract: Real world systems have been created using differential equations, this has made it possible to predict future trends and 

behavior. Specifically stochastic differential equations have been fundamental in describing and understanding random phenome na. 

So far the Black-Scholes-Merton partial differential equation used in deriving the famous Black-Scholes-Merton model has been one 

of the greatest breakthroughs in finance as far as prediction of asset prices in the stock market is concerned. In this model  we use the 

Logistic Brownian motion as opposed to the usual Brownian motion and we also consider volatility to be stochastic. In this stud y we 

have incorporated the stochastic nature of volatility and derived a Logistic Black-Scholes-Merton partial differential equation with 

stochastic volatility. This has been done by analyzing the Logistic Brownian motion and the Brownian motion, using the Ito process, 

Ito’s lemma, stochastic volatility model and reviewing the derivation of the Black-Scholes-Merton partial differential equation. The 

formulated Differential equation may enhance reliable decision making based on more rational prediction of asset prices.  

 

Keywords: about four key words separated by commas 

  

1. Introduction 
 

Logistic Geometric Brownian motion model  

In relaxing one of the assumptions of the Black-Scholes-

Merton partial differential equation and using the Walrasian 

law and the excess demand function ED(S(t)) = QD(S(t))-

QS(S(t)), where ED(S(t)) represents the excess demand, 

QD(S(t)) and QS(S(t))  are the quantities demanded and 

supplied respectively, the price of an asset follows a  

logistic geometric Brownian motion given by equation ; 

dZSSSdtSSSdS )()*( *    

 
dZdt
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S
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1
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where S* is the Walrasian market equilibrium price, S is the 

stock price at any given time t,   is the drift rate and  is 

the volatility of the stock price at any given time t. Here, 

volatility  is constant, [37]. 

 

We use the Logistic Geometric Brownian Motion in 

equation (1) and a choice of portfolio in equation 
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  and the change in portfolio equation 
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  to derive to derive the Logistic Black-

Scholes-Merton Partial differential equation give as,[37] 
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Volatility 

Volatility is the measure of how uncertain we are about 

future stock price movement. The volatility of a stock price 

 is defined so that t is the standard deviation of the 

return on stock in a short period of time  .As volatility 

increases therefore, the chance that a stock will do very well 

or very poorly increases, which results in both the call and 

put options rising or falling respectively. 

 

Stochastic volatility 

One assumption In the Black-Scholes-Merton model is that 

volatility is always constant. However Hull and White 

[16],[17], among others considered stochastic volatility 

models. They considered the fact that in a real markets 

situation volatility may follow a stochastic process of the 

following forms among others, 

dZdtd              (3) 

 or  

  dZdtbd          (4) 

where  , b and   are constants and dZ refers to a Wiener 

process,  is the asset volatility while   and   are the 

mean and variance of asset volatility respectively. In 

equation (4) the variance rate has a drift that pulls it back to 

a level b at a rate  .. 

 

Multidimensional soIt 'ˆ  lemma 

 

When functions have more than one random variable from 

which we can get a family of differential equations using the 

price of an underlying assets as  

iiiiii dZXdtXdX            (5) 

Where xi is the stock price of the i
th

 asset, i= 1,……..,N, 

and i  and i  the drift and volatility of the i
th

 asset 

respectively, while idZ  is the respective increase in the 

Wiener process. We have idZ  is equal to dti  where 

i is a random drawing from the normal distribution table. 

Thus idZ  has a mean of zero and a standard deviation of 

dt hence  

  0idZE  and   dtdZE i 2
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If iZ and jZ are correlated , the Wiener processes are 
idZ  

and jdZ ,where     ijjiji dZdZEdZdZ ,var , in this 

case ij is the correlation coefficient between th i
th

 and j
th

 

Wiener processes. To manipulate the functions 

),,.......,( 21 tXXXG N  of many stochastic variables 

NXXX ,......., 21  and t then by the soIt 'ˆ  lemma we have 
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where dtdZdtdZ ji  22 ,  and dtdZdZ ijji 
 

[16],[18],[37],[57], 

 

By soIt 'ˆ  Multiplication table we have  

* 
idZ  

dt 

jdZ  dtij  
0 

dt 0 0 

 

In case of two random variables X1 and X2 and a 

deterministic variable t , that is  

12112111 ),,(),,( dZtXXntXXmdX      and 

22122122 ),,(),,( dZtXXntXXmdX   

 

In which 1dZ  and 2dZ  are Brownian increments, both 

normally distributed with variance dt and correlation  , 

11   , therefore from equation (6), we have  
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The Logistic Black-Scholes-Merton Partial differential 

equation: A case of stochastic volatility 

soIt 'ˆ  lemma can be used to transform two stochastic 

differential equations to obtain a pricing model in a case 

where volatility is stochastic. We assume that the asset 

price S follows a logistic geometric Brownian Motion of 

the form 

dZSSSdtSSSdS )*()*(         (8) 

and the stochastic volatility also follows a Geometric 

brownian motion of the form, 

2dZSdtd              (9) 

where   and   are the mean and variance of asset 

volatility respectively,  and 1dZ and 2dZ  are correlated 

Wiener processes (with the correlation coefficient 1 ) 

associated with the two differential equations (8) and (9) 

respectively. We let the Wiener processes have a 

correlation 
 .Considering equations (8) and equation (9), the value of 

an option is therefore a function of three variables, 

 tSC ,, where C is the price of the call option and S is 

the asset price. Since volatility is not a traded asset, its 

randomness cannot be easily traded away. Having two other 

sources of randomness therefore, we need to hedge our 

options against two other contracts, one being the 

Underlying asset as usual but the other to hedge the 

volatility risk. Consider a portfolio containing one option 

with values  tSC ,, , another quantity  (or S
C

 ) of 

the asset and finally 1 (or S

C




 1 ) of another option with 

a value  tSC ,,1  . Here  and 1 of the option in this case 

represent the sensitivity of the option or portfolio to the 

underlying. The value of the portfolio will therefore be 

11CSC           (10) 

The change in the portfolio d  will be given by  

11dCdSdCd           (11) 

Using soIt 'ˆ  lemma on S ,  and t and the application in 

equation (7) from equation (8) and (9), we obtain  
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The change in portfolio at time dt s therefore given as, 
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Collecting the terms in dS and d  in equation (13) we 

obtain, 
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In order to eliminate all randomness we choose 
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CC  making dS and d  

terms to be equal to zero. After eliminating  dS and d  

which contain the Wiener Process 1dZ  and 

2dZ respectively, equation (14) becomes a non stochastic 

differential equation 
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            (15) 

 We  use the no arbitrage arguments to set the return of the 

portfolio to be equal to the risk free  interest rate r as 

follows, 

dtrd           (16) 

Substituting equations (10) and (15) into equation (16) we 

obtain, 
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We now have a situation where we have one equation with 

two unknowns C and C1. Given that 
S
C

  and S

C




 1

1  

and that both are affected by a hedge ratio 

C and 

 1C
 

(which are also the 

Sensitivities of option price to volatility) respectively, we 

Collect the terms in C on one side and those in C1 to be on 

the otherto obtain, 

   







 






























C

rC
S

C
rS

S

C
SSS

C

S

C
SSS

t

C 2
*2

2

2
22

2

2
2*22

2

1

2

1

   







 


































1

1
1

2
*2

2

1

2
22

2

1

2
2*221

1
2

1

2

1

C

rC
S

C
SSS

C

S

C
SSS

t

C  

Since the two different options will have different payoffs, 

this  possibility can only be obtained if the left hand side and 

the  right hand side are independent of the contract type. 

Both sides  therefore can only be functions of the 

independent variables, S,  and t and thus we have 
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for some function  tS ,, which  is the market price of 

volatility risk and     is the risk neutral drift rate of 

volatility. Rewriting this equation we obtain 
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This equation gives us the equivalent of the Black-Scholes-

Merton partial differential equation but with stochastic 

volatility. 

 

If we let  Z1 and Z2 to be of the the same distribution, then 

dZ1=dZ2, hence 1 since dtdZ 2

1 thus equation (20) 

becomes, 
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Equation 20 is therefore the Logistic Black-Scholes- 

Merton Partial Differential equation with stochastic 

volatility. 

 

A solution to this equation based on various boundary 

conditions may enhance reliable  decision making based on 

a rational  prediction of future asset prices. 

 

2. Conclusion and Recommendations 
 

In this papers, we have managed to derive a Logistic Black-

Scholes-Merton Partial differential equation with stochastic 

volatility (equation 20) .  This is a major breakthrough in the 

study of the Black-Scholes-Merton Partial differential 

equation and its application in the prediction of future asset 

prices where volatility is Stochastic rather than constant as 

has been the assumption in all other previous studies 

 

We recommend that this differential equation be solved by 

interested scholars in order to enhance prediction of future 

asset prices 
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