Evaluation and Improvement of an Unsignalized Intersection Performance at Bangi City, Malaysia

Sahar A. Ali Dawood
Department of Civil Engineering, Al-Mustaqbal University Collage, Babil, Iraq

Abstract: Traffic congestion and long queues at intersections during peak hour are the major problems in the cities. Growing numbers of road users lead to increasing of traveling times. This study focused at an unsignalized roundabout intersection in Bangi city. This intersection have heavy traffic flow at peak hour (8am, 5pm) because it is connected to the road leading to University Kabangsaan Malaysia (UKM). Data collected manually (traffic volume, speed travel, No. of lane, width lane …etc). AASIDRA program used for data analysis, finding problem, suggest suitable solutions and its cost. After data analysis we find that the intersection have bad level of service (F), more delay, high degree of saturation, high stop rate. We suggest adding one lane and slip for all approach. This solution is active and the problem of intersection reduced (Delay, Stop rate, Degree of saturation).

Keywords: Unsignalized Intersection, Roundabout, Traffic Flow, AASIDRA Program, Bangi, Malaysia

1. Introduction

The rapid increase in the use of personal transportation has its roots in the weak traffic system especially at intersections in Malaysian cities so we must solve this problem by using some strategies to reduce congestion [7]. Traffic congestion is a major curse on urban movements. It is a plague that has become an integral part of normal life in almost all urban areas in the world. More seriously, traffic congestion causes unpredictability in journey times, thereby making urban commuters to plan for these problems by leaving home early just to avoid being late. The problem of traffic congestion in urban areas is worse at road intersections. Indeed, there is no other point on cities roads that can be greatly congested as road intersections [1]. The study aims are analyzing the traffic (determining delay, queue and degree of saturation), determine level of service, reduce the congestion & average delay in the intersection and choice the more economical solution for the intersection problems by sidra software.

2. Area Study & Data Collection

2.1 Site Visit and Visual Appraisal

Site visit are conducted during the study in order to get first knowledge of the study focus area and to evaluate the actual site problems. Existing traffic data, documents and drawings was examined to obtain the information of the selected intersections. Preliminary data such as number of lanes, lane width and radius of median are collected during the site visit. This information is important for future planning.

2.2 Classified Volumetric Count (at Peak Hours)

The survey is usually carried out to collect traffic data for every directional flow at intersection in the study focus area. Working days at peak hours are the suitable time for the survey to be carried out. The counts were carried out for 15 minutes duration in the morning. The numbers of car in 15 minutes are multiply with four to get the total number of car per hour. The data on traffic flows are converted from classified vehicles into passenger car equivalent (pcu/hr) by using pcu factors. In this study pcu factors is based on the study conducted by Highway Planning Unit such adopted in Table 1. Otherwise, Table 2 shows the traffic volume count (pcu/hr) collected during the peak hour at the study focus area.

Table 1: Adopted Passenger Car Unit (pcu) factors

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Pcu Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>1.0</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>0.33</td>
</tr>
<tr>
<td>Van</td>
<td>1.0</td>
</tr>
<tr>
<td>Light Lorry</td>
<td>1.5</td>
</tr>
<tr>
<td>Heavy Lorry</td>
<td>2.5</td>
</tr>
<tr>
<td>Bus</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Source: HPU, 2002
Table 2: Traffic volume count (pcu/hr)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Car (pcu/hr)</th>
<th>Lorry <5ton (pcu/hr)</th>
<th>Lorry >5ton (pcu/hr)</th>
<th>Mini Bus (pcu/hr)</th>
<th>Bus (pcu/hr)</th>
<th>Mc (pcu/hr)</th>
<th>Total (pcu/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South</td>
<td>940</td>
<td>145</td>
<td>50</td>
<td>110</td>
<td>14</td>
<td>205</td>
<td>1579</td>
</tr>
<tr>
<td>East</td>
<td>846</td>
<td>118</td>
<td>65</td>
<td>33</td>
<td>44</td>
<td>315</td>
<td>2325</td>
</tr>
<tr>
<td>North</td>
<td>585</td>
<td>78</td>
<td>67</td>
<td>100</td>
<td>15</td>
<td>64</td>
<td>1578</td>
</tr>
<tr>
<td>West</td>
<td>998</td>
<td>122</td>
<td>71</td>
<td>96</td>
<td>52</td>
<td>533</td>
<td>11588</td>
</tr>
</tbody>
</table>

Pcu unit: 1, 1.75, 2.25, 2.5, 2.75, 0.35

2.3 Travel Time Survey

In order to determine the travel speed, the travel time survey was conducted. During travel time survey, enumerator has used car’s odometer and stopwatch to record travelling distance and time. The average travel time observed was 25 km/hr equal to 7 m/s. Also queue length was observed for all approach.

3. Data Analyses & Results

After study area and data collection we analyzed it by using software program (AASIDRA, Version 5.0). To identify the problem and find economic solutions.
After identifying the intersection problem and studying the surrounding structures of it, it was found that it is possible to add a one lane and slip for all approach of intersection to reduce the congestion and improve the level of service.
There are many problems that can occur at an unsignalized intersection such as the safety, operations, and accessibility. After study the intersection we find that it have poor operational performance. Because of the congestion of intersection its level of surface is F that consider more crowded. We suggest some solutions to reduce the congestion and reduce delay and carbon emission in this area as below.

1) Add one lane and slip for all approach of intersection this solution is active and congestion reduced also the delay and stop rate reduced.
2) Strategies to enhance the ability of individuals who are blind to detect gaps and to detect vehicles that have yielded for them are needed to increase access to these intersections by individuals who are blind.

References

Figure 8: Level of service after adding lane & slip

Figure 9: Total stop after adding lane & slip

Figure 10: Total cost of the changes

4. Conclusion