Synthesis, Antimicrobial and QSAR Studies of Substituted Anilides

Kapil Tiwari¹, Pramod K. Saxena²

Department of Chemistry Atarra P. G. College, Atarra Banda U.P., India

Abstract: A series of substituted anilides were synthesized and tested in vitro for antibacterial activity against Gram positive B. subtilis, S. aureus and Gram negative E.coli and as well as for antifungal activity against C. albicans and A. niger. The compounds having a nitro group showed better activity among different substituted anilides. The work describes QSAR and SAR studies on the TIBO derivatives as non-molecular reserve transcriptase inhibitor of HIV-1using the 2D-topological, physicochemical and hydrophobic parameters along with the indicator parameters.

Keywords: Substituted anilides, antimicrobial activity, QSAR, topological descriptors

1. Introduction

The usage of most antimicrobial agents is limited, not only by the rapidly developing drug resistance, but also by unsatisfactory status of present treatment of bacterial and fungal infections and drug side effects¹⁻³. Therefore the development of new and different antimicrobial drugs is an important objective and much of research program efforts are directed towards the design of new agents. Recently substituted anilides have received considerable attention due to their wide range of biological activities *viz*. antibacterial, antifungal, anticonvulsant, anaesthetic, antiproliferative, antiplaque, antiplatelet-aggregation, antioxidant and potassium channel activatingpotentials⁴⁻¹³.

2. Methodology

Two methodologies are adopted to develop mathematical models. In the first method giuph theoretical descriptor are used for correlation with bio- logical activity (logIC, t) and in the second method physicochemical properties are used for correlation with biological activity (logICpy).

The multivariate regression analysis (MRA) was used to obtain a model used in QSAR studies. Typically in such studies, after selecting the compounds and the activity to be analysed, one considers selection of potentially useful descriptors. The major descriptors used in QSAR are divided into two clauses:

(i) Graph theoretical descriptors, the class includes Wiener Izt(tex (W), Randicconnectivity Index (/, BalabanJIndex (J), SzegedIndex (Sz), Schultrmolecular topological tndex (MTI), Electrotopologicalstate (5) etc. and

(ii) Physicochemical properties (de-scriptor), this includes logP (Partition Coefficient), Molar refractivity (MR), MOl2r YOlume (MV), Para-chorlPc), Index of refraction (IR). Surface tension (ST) etc. Indicator parameters are also used for the presentation of substitute effect.

3. Results and Discussion

A series of new substituted anilides (1-44) were synthesized by reaction of substituted anilines with different acid chlorides in moderate to good yield (Scheme 1). The intermediate acid chlorides were prepared by treatment of different organic acids with thionyl chloride. The IR and 1H NMR spectral data of the synthesized compounds were found in agreement with the assigned molecular structures. The physicochemical parameters of synthesized anilide derivatives used in present study are given in Table 1.

Scheme 1: Scheme for synthesis of substituted anilide derivatives

1-11, $X = C_6H_5$; **12-22,** $X = CH_3$ (CH₂) $_9CH_2$; **23-33,** X =CH₃ (CH₂) ₁₁CH₂; **34-44,** $X = CH_3 (CH_2)_{15}CH_2$ 1, 12, 23, 34; R_1 , R_2 , R_3 , $R_4 = H$ **2, 13, 24, 35**; R₂, R₃, R₄ = H, R₁=Cl **3, 14, 25, 36**; R₁, R₃, R₄ = H, R₂=Cl **4, 15, 26, 37**; R₁, R₂., R₄ = H, R₃ = Cl 5, 16, 27, 38; R₁, R₃, R₄ = H, R₂ =CH₃ **6, 17, 28, 39**; R₁, R₂, R₄ = H, R₃ =CH₃ **7, 18, 29, 40**; R₂, R₃, R₄ = H, R₁ = OCH₃ **8**, **19**, **30**, **41**; R₁, R₂, R₄ = H, R₃ = OCH₃ **9, 20, 31, 42**; R_1 , R_3 , $R_4 = H$, $R_2 = NO_2$ **10, 21, 32, 43**; R_1 , R_2 , $R_4 = H$, $R_3 = NO_2$ **11, 22, 33, 44**; R_1 , R_2 , $R_4 = H$, $R_3 = Br$ Volume 7 Issue 2, February 2019 www.ijser.in

Licensed Under Creative Commons Attribution CC BY

The newly obtained derivatives were evaluated for their *in vitro* antibacterial activity against Gram positive *Bacillus subtilis, Staphylococcus aureus,* Gram negative *Escherichia coli* and antifungal activity against *Candida albicans* and *Aspergillusniger.* Double strength nutrient broth IP and Sabourauddextrose broth IP²³ were employed for bacterial and fungal growth respectively. Minimal inhibitory concentration (MIC) was determined by means of standard serial dilution method²⁴ using ciprofloxacin and fluconazole as reference compounds in case of antibacterial and antifungal activity respectively and the pMIC values obtained are presented in Table 2. All the compounds showed appreciable *in vitro* antimicrobial activity against the microorganisms understudy.

The compound 42 showed significant antimicrobial activity against B. subtilis, E. coli, S. aureus, and A. niger with pMIC values 1.70, 1.35, 1.50 and 1.51 respectively. The compound 7 showed highest pMIC (pMICca = 1.75) value of all the compounds. Further the antibacterial activity of compounds 20, 21, 31, 35 and 42-44 were found to be more active against B. subtilis having pMIC value more than 1.59, than other synthesized substituted anilide derivatives. Compounds 21, 27, 28, 31, 32, 35-37, 39, 42-44 were found to be more active against S. aureus having pMICsa more than 1.39, than other synthesized substituted anilide derivatives. Compounds 20, 21, 31, 37, 44 were found to be more active against E. coli having pMICec more than 1.38, than other synthesized substituted anilide derivatives. Compounds 13-15, 19-22, 31, 33-44 were found to be more active against A. niger having pMICan more than 1.38, than other synthesized substituted anilide derivatives.

Analysis of results indicates that the presence of an electron withdrawing NO₂ group (compounds **9**, **10**, **20**, **21**, **31**, **32**, **42**, **43**) leads to increase in activity in comparison to the presence of other groups. The importance of electron withdrawing group in enhancing the antimicrobial activity was supported by similar results observed by P. Sharma *et al.*²⁵. The antimicrobial results also indicated that there is a significant increase in pMIC values in case of stearic acid derivatives as compared to other acid derivatives. It is also important to note that the range of pMIC value is increasing in each case as the chain length of acid derivatives increases. The positive contribution of chain length may be due to its more lipophilicity.

In general, the antimicrobial activity of tested compounds follows the pattern:

B. subtilis > A niger > S. aureus > E. coli

In an attempt to determine the role of structural features which appears to influence the observed activity of reported compounds, QSAR studies were undertaken using linear free energy relationship (LFER) model of Hansch and Fujita.²⁶ Biological activity data determined as MIC values were first transformed to pMIC on molar basis, which was used as dependent variable in QSAR study. These were correlated with different molecular descriptors like log of octanol–water partition coefficient (logP), molar refractivity (MR), Kier's molecular connectivity $(^0\chi^{v})$ and shape ($\kappa_1, \kappa\alpha_{\Box}$) topological indices, Randic topological index (R), Balban

topological index (J), Wiener topological index (W), Total energy (Te), energies of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), dipole moment (μ), electronic energy (Ele.E) and nuclear energy (Nu.E)²⁶⁻³³. The values of selected descriptors used in regression analysis are presented in Table 3.

Table 1: Physicochemical characteristics of substi	tuted
anilides	

C	M. El.	NA 3374	$\mathbf{M} = (0\mathbf{C})$	Dfamilia	0/
Comp.	M. Formula	M. Wt.	M. p. (°C)	0.12	% yield
2	C H NOCI	221	130-132 91 92	0.15	<u> </u>
2	$C_{13}H_{10}NOCI$	231	01-03	0.39	41.2
3	$C_{13}\Pi_{10}$ NOCI	231	109-111	0.21	01.7
4	$C_{13}\Pi_{10}NOCI$	251	107.100	0.23	20.3
3	$C_{14}H_{13}NO$	211	107-109	0.22	58.1
0	$C_{14}H_{13}NO$	211	28.40	0.10	08.3
7	C14H13NO2	227	38-40	0.23	/1.2
8	CI4HI3NO2	227	140-142	0.12	55.4
9	C13H10N2O3	242	147-149	0.16	52.7
10	CI3HI0N2O3	242	146-148	0.12	22.2
11	$C_{13}H_{10}NOBr$	276	194-196	0.27	29.2
12	$C_{18}H_{29}NO$	275	52-54	0.46	43.6
13	C ₁₈ H ₂₈ NOCl	309	44-46	0.26	34.8
14	C ₁₈ H ₂₈ NOCl	309	127-129	0.33	67.3
15	$C_{18}H_{28}NOCI$	309	49-51	0.04*	23.9
16	$C_{19}H_{31}NO$	289	60-62	0.57*	32.5
17	$C_{19}H_{31}NO$	289	57-59	0.23	27.9
18	C19H31NO2	305	46-48	0.31*	53.3
19	C19H31NO2	305	50-52	0.26	40.0
20	C18H28N2O3	320	52-54	0.40	39.6
21	C18H28N2O3	320	41-43	0.11	68.8
22	C ₁₈ H ₂₈ NOBr	354	36-38	0.30	64.7
23	$C_{20}H_{33}NO$	303	49-51	0.34	42.2
24	C ₂₀ H ₃₂ NOCl	337	52-54	0.66	51.4
25	C ₂₀ H ₃₂ NOCl	337	44-46	0.54	93.1
26	C ₂₀ H ₃₂ NOCl	337	85-87	0.40	71.3
27	$C_{21}H_{35}NO$	317	59-61	0.43	31.9
28	$C_{21}H_{35}NO$	317	49-51	0.26	34.0
29	C21H35NO2	333	53-55	0.41	42.8
30	C21H35NO2	333	87-89	0.77	30.6
31	C20H32N2O3	348	57-59	0.22	32.6
32	C20H32N2O3	348	69-71	0.38	36.5
33	C ₂₀ H ₃₂ NOBr	382	74-76	0.50	50.8
34	$C_{24}H_{41}NO$	359	57-59	0.25**	26.4
35	C24H40NOCl	393	65-67	0.71	45.0
36	C24H40NOCl	393	50-52	0.61	51.7
37	C ₂₄ H ₄₀ NOCl	393	55-57	0.80	62.9
38	C ₂₅ H ₄₃ NO	373	44-46	0.34	72.7
39	C ₂₅ H ₄₃ NO	373	67-69	0.23**	36.3
40	C25H43NO2	389	43-45	0.34	52.6
41	C25H43NO2	389	54-56	0.36	66.6
42	C24H40N2O3	404	49-51	0.15	50.8
43	C24H40N2O3	404	42-44	0.21	69.4
44	C ₂₄ H ₄₀ NOBr	438	37-39	0.22	24.2

TLC mobile phase - ******Toluene: chloroform (1:1), *****ethyl acetate: hexane (1:3)

Table 2: The	in vitro	antimicrobia	l activity	of synthesized
	ar	nilide derivati	ves	

Comp.	pMICbs	pMICsa	pMICec	pMICan	pMICca
1	1.45	1.30	1.09	1.25	1.25
2	1.32	1.22	1.16	1.27	1.32
3	1.39	1.06	1.06	1.32	1.36
4	1.40	1.22	0.97	1.16	1.27
5	1.42	1.12	1.18	1.07	1.23
6	1.40	1.16	1.10	1.23	1.23

International Journal of Scientific Engineering and Research (IJSE)	R)
ISSN (Online): 2347-3878	
Impact Factor (2018): 5.426	

7	151	1.26	1.01	1.26	1.75
/	1.51	1.20	1.01	1.20	1.75
0	1.42	1.10	1.00	1.20	1.52
9	1.44	1.24	1.10	1.29	1.29
10	1.34	1.23	1.24	1.29	1.54
11	1.54	1.14	1.14	1.50	1.44
12	1.50	1.30	1.14	1.18	1.44
13	1.50	1.30	1.20	1.40	1.69
14	1.54	1.30	1.20	1.39	1.49
15	1.50	1.25	1.09	1.39	1.45
16	1.50	1.26	1.21	1.32	1.66
17	1.56	1.20	1.06	1.32	0.68
18	1.44	1.25	1.18	1.34	1.49
19	1.44	1.20	1.18	1.39	1.49
20	1.60	1.35	1.40	1.41	1.51
21	1.60	1.50	1.41	1.41	1.41
22	1.48	1.15	1.15	1.45	1.45
23	1.48	1.30	1.25	1.34	1.39
24	1.51	1.20	1.13	1.38	1.43
25	1.43	1.38	1.19	1.38	1.49
26	1.49	1.30	1.27	1.38	1.49
27	1.46	1.40	1.10	1.36	1.46
28	1.46	1.40	1.16	1.35	1.40
29	1.50	1.29	1.10	1.29	1.40
30	1.50	1.20	1.14	1.30	1.40
31	1.60	1.42	1.40	1.40	1.45
32	1.45	1.40	1.24	1.35	1.50
33	1.49	1.20	1.24	1.38	1.49
34	1.51	1.33	1.30	1.46	0.78
35	1.60	1.50	1.29	1.45	1.50
36	1.50	1.45	1.25	1.55	1.55
37	1.64	1.40	1.39	1.39	1.50
38	1.48	1.27	1.27	1.48	0.73
39	1.48	1.40	1.27	1.43	1.48
40	1.55	1.39	1.25	1.44	1.55
41	1.49	1.29	1.29	1.39	1.55
42	1.70	1.50	1.35	1.51	1.51
43	1.60	1.50	1.35	1.51	0.83
44	1.60	1.44	1.39	1.55	0.86
Std.	3.33*	3.33*	3.33*	2.64**	2.64**

*Ciprofloxacin **Fluconazole bs – Bacillus subtilis ec – Escherichia coli

sa – Staphylococcus aureus an – Aspergillus niger ca-Candida albican.

In present studies a set of substituted anilides consisting of 44 molecules were used for linear regression model generation. The reference drugs were not included in model generation as they belong to different structural series. Preliminary analysis was carried out in terms of correlation analysis. A correlation matrix constructed for antibacterial activity against *B. subtilis* is presented in Table 4. The highest interrelationship was observed between $\[mu]\chi\[mu]$ and $\[mu]\chi\[mu]$ (r = 0.998), and in all the other cases r is greater than 0.8.

The data presented in Table 5 demonstrates the correlation of molecular descriptors of different substituted anilides with their corresponding antimicrobial activity. Generally good correlations were observed with the topological descriptors especially with molecular connectivity indices

 $(^{0}\chi, ^{0}\chi^{v}and ^{2}\chi).$

The linear regression equations developed using the highly correlated topological indices are reported in equations 1-4 together with statistical parameters of regression. It is important to note that all these models were developed by using the entire set (n = 44), since no outliers were identified.

The quality of the models is indicated by the following parameters: r- correlation coefficient; F- Fisher's statistics; and s- standard error of estimation, r^2_{cv} - cross-validated r^2 obtained by 'leave one out' (LOO) method.

QSAR model for antifungal activity against A. niger

 $\begin{array}{l} pMICan = 0.025 \ ^{0}\chi^{v} \Box \ \ \Box \ +1.003 \ (1) \\ n = 44 \ r = 0.835 \ r^{2} = 0.697 \ F = 97.03 \ s = 0.055 \ r^{2}_{cv} = 0.662 \end{array}$

QSAR model for antibacterial activity against E. coli

 $\begin{array}{l} pMICec = 0.062 \ ^2 \chi \Box \ +0.675 \ (2) \\ n = 44 \ r = 0.767 \ r^2 = 0.588 \ F = 60.18 \ s = 0.071 \ r^2_{\ cv} = 0.554 \end{array}$

QSAR model for antibacterial activity against S. aureus

 $\begin{array}{l} pMICsa=0.065\ ^2\chi\square\ +0.748\ (3)\\ n=44\ r=0.765\ r^2=0.585\ F=59.41\ s=0.074\ r^2_{\ cv}=0.542 \end{array}$

QSAR model for antibacterial activity against B. subtilis

 $\begin{array}{l} pMICbs = 0.017 \ ^0 \! \chi + 0.762 \ (4) \\ n = 44 \ r = 0.676 \ r^2 = 0.457 \ F = 35.38 \ s = 0.057 \ r^2_{\ cv} = 0.397 \end{array}$

The coefficient of ${}^{0}\chi^{v}$ in the mono-parametric model in Eq. 1 is positive indicating thereby that antifungal activity of different substituted anilides against *A. niger* is directly proportional to the magnitude of ${}^{0}\chi^{v}$. The antifungal activity increases with an increase in magnitude of ${}^{0}\chi^{v}$. This is evidenced by the values of ${}^{0}\chi^{v}$ in Table 3. The values of ${}^{0}\chi^{v}$ for compounds **33-44** lie in range of 17-19 which are higher than the ${}^{0}\chi^{v}$ values of other compounds. This makes them to be the most effective compounds against *A. niger*. Similar trend was observed in case of *E. coli*, *S. aureus*, and *B. subtilis* with ${}^{2}\chi$, ${}^{2}\chi$ and ${}^{0}\chi$ respectively.

In order to confirm our results we have predicted the activities of different substituted anilides using the model expressed by Eqs. 1–4 and compared them with the observed values. The data presented in Table 6 shows that the observed and the estimated activities are very close to each other evidenced by low values of residual activity [difference between experimentally observed pMIC and QSAR calculated pMIC].

The cross-validation of the models was also done by leave one out (LOO) technique.³⁴ The cross-validated correlation coefficient ($r_{cv}^2>0.5$) values obtained for the best QSAR models indicated their reliability in predicting the antimicrobial activity of different substituted anilides. In case of *B.subtilis* the r_{cv}^2 value is less than 0.5 which appears that the developed model is an invalid one. But one should not forget the recommendations of Golbraikh *et al.*³⁵ who have recently reported that the only way to estimate the true predictive power of a model is to test their ability to predict accurately the biological activities of compounds. The low residual activity values observed in case of *B. subtilis* (Table 6) justify the selection of the linear regression model expressed by Eq 4. Further the plot of linear regression

predicted pMICan values against the observed pMICan values also favors the model expressed by Eq. 1 (Fig. 1). In case of *C. albicans* the MLR attempt to derive QSAR models failed to give statistically significant QSAR equation.

 Table 3: Values of selected descriptors used in the linear

 regression analysis

regression analysis Comp. log P MR ${}^{0}\gamma {}^{0}\gamma {}^{v_{1}}\gamma {}^{1}\gamma {}^{v_{2}}\gamma {}^{2}\gamma {}^{v}$

com	. 105	1 mm V	~ ~ /	ίλ	λλ			
1	2.81	59.31	10.51	8.18	7.36	4.78	6.12	3.19
2	3.33	64.12	11.38	9.30	7.77	5.29	6.63	3.74
3	3.33	64.12	11.38	9.30	7.75	5.28	6.75	3.80
4	3.33	64.12	11.38	9.30	7.75	5.28	6.74	3.80
5	3.28	64.35	11.38	9.10	7.75	5.19	6.75	3.69
6	3.28	64.35	11.38	9.10	7.75	5.19	6.74	3.69
7	2.56	65.78	12.09	9.51	8.31	5.30	6.82	3.52
8	2.56	65.78	12.09	9.51	8.29	5.30	6.91	3.55
9	2.76	66.64	12.96	9.37	8.66	5.27	7.65	3.63
10	2.76	66.64	12.96	9.37	8.66	5.27	7.64	3.62
11	3.60	66.94	11.38	10.10	7.75	5.69	6.74	4.26
12	5.09	85.18	14.47	12.87	9.83	8.18	7.46	5.49
13	5.61	89.98	15.34	13.98	10.24	8.69	7.98	6.05
14	5.61	89.98	15.34	13.98	10.22	8.68	8.08	6.11
15	5.61	89.98	15.34	13.98	10.22	8.68	8.08	6.11
16	5.56	90.22	15.34	13.79	10.22	8.59	8.10	6.00
17	5.56	90.22	15.34	13.79	10.22	8.59	8.08	5.99
18	4.84	91.64	16.05	14.20	10.77	8.70	8.17	5.83
19	4.84	91.64	16.05	14.20	10.76	8.70	8.25	5.86

20	5.04	92.50	16.92	14.05	11.13	8.67	8.99	5.93
21	5.04	92.50	16.92	14.05	11.13	8.67	8.98	5.93
22	5.88	92.80	15.34	14.79	10.22	9.09	8.08	6.57
23	5.88	94.38	15.88	14.28	10.83	9.18	8.17	6.20
24	6.40	99.18	16.75	15.40	11.24	9.69	8.69	6.75
25	6.40	99.18	16.75	15.40	11.22	9.68	8.79	6.81
26	6.40	99.18	16.75	15.40	11.22	9.68	8.79	6.81
27	6.35	99.42	16.75	15.20	11.22	9.59	8.80	6.70
28	6.35	99.42	16.75	15.20	11.22	9.59	8.80	6.70
29	5.09	85.18	14.47	12.87	9.83	8.18	7.46	5.49
30	5.09	85.18	14.47	12.87	9.83	8.18	7.46	5.49
31	5.84	101.70	18.33	15.47	12.13	9.67	9.70	6.64
32	5.84	101.70	18.33	15.47	12.13	9.67	9.69	6.64
33	6.67	102.00	16.75	16.20	11.22	10.09	8.79	7.28
34	7.47	112.78	18.71	17.11	12.83	11.18	9.58	7.61
35	7.99	117.59	19.58	18.23	13.24	11.69	10.10	8.17
36	7.99	117.59	19.58	18.23	13.22	11.68	10.22	8.23
37	7.99	117.59	19.58	18.23	13.22	11.68	10.21	8.23
38	7.94	117.82	19.58	18.03	13.22	11.59	10.22	8.12
39	7.94	117.82	19.58	18.03	13.22	11.59	10.21	8.11
40	7.22	119.25	20.29	18.44	13.77	11.70	10.29	7.95
41	7.22	119.25	20.29	18.44	13.76	11.70	10.37	7.98
42	7.42	120.11	21.16	18.30	14.13	11.67	11.12	8.06
43	7.42	120.11	21.16	18.30	14.13	11.67	11.10	8.05
44	8.26	120.41	19.58	19.03	13.22	12.09	10.21	8.69

Table 4: Correlation matrix for substituted anilides against B. subtilis

	pMICbs	log P	$\frac{1}{1} \frac{1}{\kappa \alpha_1} \frac{1}{\kappa \alpha$
pMICbs	1.000		
log P	0.562	1.000	
MR	0.626	0.975	1.000

⁰ χ 0.676	5	0.930	0.986	1.000							
$^{0}\chi^{v}$ 0.613	3	0.979	0.997	0.977	1.000						
¹ χ 0.664	ŀ	0.935	0.989	0.998	0.978	1.000					
$^{1}\chi^{v}0.61$	5	0.984	0.996	0.973	0.998	0.975	1.000				
² χ 0.675	5	0.897	0.960	0.987	0.944	0.984	0.936	1.000			
$^{2}\chi^{v}0.59^{2}$	7	0.991	0.992	0.962	0.997	0.963	0.996	0.930	1.000		
к 1	0.672	0.943	0.990	0.997	0.984	0.996	0.983	0.973	0.971	1.000	
κα ₁	0.656	0.959	0.994	0.991	0.993	0.990	0.992	0.959	0.983	0.997	1.000

Table 5: Correlation of pMIC with molecular descriptors

Parameter pMICbs	pMICsa	pMICec	pMICan
log P 0.562	0.657	0.620	0.800
MR 0.626	0.708	0.686	0.829
⁰ χ 0.676	0.753	0.738	0.831
⁰ χ ^v 0.613	0.684	0.670	0.835
¹ χ 0.664	0.748	0.727	0.827
$^{1}\chi^{v}0.615$	0.689	0.663	0.824
² χ 0.675	0.765	0.767	0.828
² χ ^v 0.597	0.673	0.658	0.832
к 1 0.672	0.744	0.722	0.827
κα ₁ 0.656	0.724	0.701	0.830

International Journal of Scientific Engineering and Research (IJSER) ISSN (Online): 2347-3878 Impact Factor (2018): 5.426

Observed pMICan

Figure: Plot of predicted pMICan activity values against the experimental pMICan values for the QSAR model by Eq. 1 for *A. niger.*

 Table 6: Observed and predicted antibacterial activity of substituted anilides against B.subtilis, S. aureus, E. coli, and A. niger

 using the best QSAR models

	pMIC	bs usin	gEq.1	pMIC	Csa usin	gEq.2	pMIC	ec usin	gEq.3	pMIC	an using	g Eq.4
Com.	Obs.	Pre.	Res.	Obs.	Pre.	Res.	Obs.	Pre.	Res.	Obs.	Pre.	Res.
1	1.45	1.4	0.05	1.3	1.14	0.16	1.09	1.06	0.03	1.25	1.21	0.04
2	1.32	1.42	-0.1	1.22	1.18	0.04	1.16	1.09	0.07	1.27	1.24	0.03
3	1.39	1.42	-0.03	1.06	1.18	-0.12	1.06	1.1	-0.04	1.32	1.24	0.08
4	1.4	1.42	-0.02	1.22	1.18	0.04	0.97	1.09	-0.12	1.16	1.24	-0.08
5	1.42	1.42	0	1.12	1.18	-0.06	1.18	1.1	0.08	1.07	1.23	-0.16
6	1.4	1.42	-0.02	1.16	1.18	-0.02	1.1	1.09	0.01	1.23	1.23	0.00
7	1.51	1.43	0.08	1.26	1.19	0.07	1.01	1.1	-0.09	1.26	1.24	0.02
8	1.42	1.43	-0.01	1.1	1.19	-0.09	1.06	1.11	-0.05	1.26	1.24	0.02
9	1.44	1.44	0	1.24	1.24	0	1.18	1.15	0.03	1.29	1.24	0.05
10	1.54	1.44	0.1	1.25	1.24	0.01	1.24	1.15	0.09	1.29	1.24	0.05
11	1.34	1.42	-0.08	1.14	1.18	-0.04	1.14	1.09	0.05	1.30	1.26	0.04
12	1.5	1.47	0.03	1.3	1.23	0.07	1.14	1.14	0	1.18	1.33	-0.15
13	1.5	1.49	0.01	1.3	1.26	0.04	1.2	1.17	0.03	1.40	1.36	0.04
14	1.54	1.49	0.05	1.3	1.27	0.03	1.2	1.18	0.02	1.39	1.36	0.03
15	1.5	1.49	0.01	1.25	1.27	-0.02	1.09	1.18	-0.09	1.39	1.36	0.03
16	1.5	1.49	0.01	1.26	1.27	-0.01	1.21	1.18	0.03	1.32	1.35	-0.03
17	1.56	1.49	0.07	1.2	1.27	-0.07	1.06	1.18	-0.12	1.32	1.35	-0.03
18	1.44	1.5	-0.06	1.25	1.28	-0.03	1.18	1.18	0	1.34	1.36	-0.02
19	1.44	1.5	-0.06	1.2	1.28	-0.08	1.18	1.19	-0.01	1.39	1.36	0.00
20	1.6	1.51	0.09	1.35	1.33	0.02	1.4	1.24	0.16	1.41	1.36	0.05
21	1.6	1.51	0.09	1.5	1.33	0.17	1.41	1.23	0.18	1.41	1.36	0.05
22	1.48	1.49	-0.01	1.15	1.27	-0.12	1.15	1.18	-0.03	1.45	1.38	0.07
23	1.48	1.49	-0.01	1.3	1.28	0.02	1.25	1.18	0.07	1.34	1.36	-0.02
24	1.51	1.51	0	1.2	1.31	-0.11	1.13	1.22	-0.09	1.38	1.39	-0.01
25	1.43	1.51	-0.08	1.38	1.32	0.06	1.19	1.22	-0.03	1.38	1.39	-0.01
26	1.49	1.51	-0.02	1.3	1.32	-0.02	1.27	1.22	0.05	1.38	1.39	-0.01
27	1.46	1.51	-0.05	1.4	1.32	0.08	1.1	1.22	-0.12	1.36	1.39	-0.03
28	1.46	1.51	-0.05	1.4	1.32	0.08	1.16	1.22	-0.06	1.35	1.39	-0.04
29	1.5	1.47	0.03	1.29	1.23	0.06	1.1	1.14	-0.04	1.29	1.33	-0.04
30	1.5	1.47	0.03	1.2	1.23	-0.03	1.14	1.14	0.00	1.30	1.33	-0.03
31	1.6	1.54	0.06	1.42	1.37	0.05	1.4	1.28	0.12	1.40	1.39	0.01
32	1.45	1.54	-0.09	1.4	1.37	0.03	1.24	1.28	-0.04	1.35	1.39	-0.04
33	1.49	1.51	-0.02	1.2	1.32	-0.12	1.24	1.22	0.02	1.38	1.41	-0.03
34	1.51	1.54	-0.03	1.33	1.37	-0.04	1.3	1.27	0.03	1.46	1.43	0.03
35	1.6	1.56	0.04	1.5	1.4	0.1	1.29	1.3	-0.01	1.45	1.46	-0.01
36	1.5	1.56	-0.06	1.45	1.41	0.04	1.25	1.31	-0.06	1.55	1.46	0.09
37	1.64	1.56	0.08	1.4	1.41	-0.01	1.39	1.31	0.08	1.39	1.46	-0.07
38	1.48	1.56	-0.08	1.27	1.41	-0.14	1.27	1.31	-0.04	1.48	1.46	0.02

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878
Impact Factor (2018): 5.426

39	1.48	1.56	-0.08	1.4	1.41	-0.01	1.27	1.31	-0.04	1.43	1.46	-0.03
40	1.55	1.57	-0.02	1.39	1.41	-0.02	1.25	1.32	-0.07	1.44	1.47	-0.03
41	1.49	1.57	-0.08	1.29	1.42	-0.13	1.29	1.32	-0.03	1.39	1.47	-0.08
42	1.7	1.58	0.12	1.5	1.47	0.03	1.35	1.37	-0.02	1.51	1.46	0.05
43	1.6	1.58	0.02	1.5	1.46	0.04	1.35	1.37	-0.02	1.51	1.46	0.05
44	1.6	1.56	0.04	1.44	1.41	0.03	1.39	1.31	0.08	1.55	1.48	0.07

4. Conclusions

From the results and discussion made above we conclude that the different substituted anilide derivatives are effective against the microbial species tested. The results obtained from present investigation of in vitro antimicrobial activity studies indicate that the stearic-*m*-nitroanilide (42), stearic-ochloroanilide (35) and stearic-p-chloroanilide (37) are the most effective ones. Further, a general trend showed that the presence of electron-withdrawing group (NO₂) leads to increase in the activity in comparison to the presence of other groups. The topological parameters especially, the molecular connectivity indices $({}^{0}\chi, {}^{2}\chi \square$ and ${}^{0}\chi^{v})$ can be used successfully for modeling antimicrobial activity of different substituted anilides against the microbial species included in the present study. Contribution of topological descriptors in describing the antimicrobial activity of different substituted anilides was further evidenced by the results of our previous studies¹⁶⁻¹⁷. The low residual activity and cross-validated r^2 values (r^2_{cv}) observed indicated the predictive ability of the developed QSAR models.

5. Experimental Section

General Procedures. All chemicals used were of Ranbaxy Laboratories Ltd., Delhi; Qualigens, Mumbai and S.D. Fine Chemicals, Mumbai. Melting points in degree Celsius were determined with Elico melting point apparatus and are uncorrected. The FTIR spectra were recorded in KBr pellets on Perkin Elmer IR spectrophotometer. The ¹H-NMR were recorded on Brucker Avance II 400 NMR spectrophotometer using CDCl₃ as solvent and TMS as internal standard (chemical shift in δ ppm). The purity of compounds was checked by thin layer chromatography (TLC) on silica gel plates. The spots were detected by exposure to iodine vapours.

Preparation of anilides: General procedure

Acid chloride was prepared by the reaction of 0.15 mol of corresponding organic acids [benzoic acid (1-11), lauric acid (12-22), myristic acid (23-33) and stearic acid (33-44)] with thionyl chloride. Anilides were prepared by dropwise addition of a solution of corresponding substituted aniline (0.1 mol) in ether (50 mL) to a solution of respective acid chloride (0.05 mol) in ether (50 mL). An immediate reaction took place and the mixture was stirred for 30 min at room temperature which resulted in the precipitation of crude anilide. The resulting mixture was washed successively with 5% Hydrochloric acid and water to remove excess of aniline. The crude anilide was recrystallized from ethanol. Structures of the synthesized . compounds were confirmed on the basis of spectroanalytical data.

1. Yield-50% ; mp – 150-152 0 C; IR: 3342 (NH str., 2 0 amide), 3045 (CH str., aromatic), 1656 (C=O str., 2 0 amide), 1529 (C=C str., aromatic); 1 H NMR δ : 7.13-7.17 (t, 1H),

7.34-7.38 (t, 2H), 7.45-7.48 (t, 2H), 7.52-7.53 (t, 1H), 7.85-7.87 (d, 2H), 7.63-7.65 (d, 2H), 7.91 (s, 1H).

2. Yield-41% ; mp – 81-83^oC; IR: 3228 (NH str., 2^o amide), 3051 (CH str., aromatic), 1652 (C=O str., 2^o amide), 1522 (C=C str., aromatic); ¹H NMR δ: 7.07-7.11 (t, 1H), 7.26 (d, 1H), 7.32 (t, 1H), 7.34-7.36 (d, 1H), 7.50-7.55 (t, 2H), 7.57-7.61 (m, 1H), 7.91-7.94 (d, 2H), 8.45 (s, 1H).

8. Yield-55% ; mp - 140-142^oC; IR: 3330 (NH str., 2^o amide), 3049 (CH str., aromatic), 2837 (CH str., OCH₃) 1647 (C=O str., 2^o amide), 1515 (C=C str., aromatic); ¹H NMR δ : 3.81 (s, 3H), 6.89-7.44 (m, 9H), 7.81 (s, 1H).

12. Yield-44% ; mp – 50-54 0 C; IR: 3307 (NH str., 2⁰ amide), 2920 (CH str., aliphatic, antisym.), 2851 (CH str, aliphatic, sym), 1656 (C=O str., 2⁰ amide), 1542 (C=C str., aromatic); ¹H NMR δ : 0.86-0.89 (t, 3H), 1.25-1.34 (m, 16H), 1.50-1.70 (m, 2H), 2.32-2.37 (t, 2H), 7.08-7.52 (m, 5H). **15.** Yield-24% ; mp – 49-51 0 C; IR: 3309 (NH str., 2⁰ amide), 3101 (CH str., aromatic), 2919 (CH str., aliphatic, antisym.) 2850 (CH str., aliphatic, sym.), 1659 (C=O str., 2⁰ amide), 1524 (C=C str., aromatic); ¹H NMR δ : 0.85-0.90 (t, 3H), 1.22-1.29 (q, 20H), 1.65-1.72 (m, 2H), 2.29-2.35 (t, 2H), 7.83 (s, 1H), 7.23-7.48 (m, 4H).

28. Yield-34%; mp – 49-51°C; IR: 3296 (NH str., 2° amide), 2918 (CH str., aliphatic, antisym.), 2850 (CH str., aliphatic, sym), 1659 (C=O str., 2° amide), 1537 (C=C str., aromatic); ¹H NMR δ : 0.86-0.89 (t, 3H), 1.25-1.31 (t, 18H), 1.61-1.65 (m, 2H), 1.67-1.75 (t, 2H), 2.31 (s, 1H), 7.12-7.39 (m, 4H).

30. Yield-31%; mp – 87-89^oC; IR: 3306 (NH str., 2^{0} amide), 2919 (CH str., aliphatic, antisym.), 2850 (CH str, aliphatic, sym), 1654(C=O str., 2^{0} amide), 1547 (C=C str., aromatic); ¹H NMR δ : 0.86-0.89 (t, 3H), 1.25-1.36 (t, 20H), 1.67-1.74 (m, 2H), 2.02-2.34 (t, 2H), 3.33 (s, 3H), 6.83- 6.86 (d, 2H), 7.15 (s, 1H), 7.31-7.41(d, 2H).

34. Yield-27% ; mp – 57-59°C; IR: 3309 (NH str., 2^{0} amide), 3100 (CH str., aromatic), 2917 (CH str., aliphatic, antisym.), 2849 (CH str., aliphatic, sym.), 1657 (C=O str., 2^{0} amide), 1541 (C=C str., aromatic); ¹H NMR δ : 0.86-0.89 (t, 3H), 1.21-1.23 (m, 2H), 1.60-1.73 (m, 2H) 2.30- 2.36 (m, 2H), 7.28-7.52 (s, 5H), 7.26 (s, 1H).

Antimicrobial Evaluation

The synthesized compounds were evaluated for their *in vitro* antimicrobial activity against Gram positive *S. aureus, B. subtilis,* Gram negative *E. coli* and also against fungi *C. albicans* and A. *niger.* The MIC (μ g/ml) was determined by serial dilution technique²⁴ using double strength nutrient broth IP and Sabouraud dextrose broth IP as media for bacterial and fungal growth respectively. Ciprofloxacin and Fluconazole were used as reference compounds in case of antibacterial and antifungal activity respectively. The compounds were dissolved in dimethyl sulfoxide to give a

concentration of 100 µg/mL, which was serially diluted to give concentrations of 50.0, 25.0, 12.5, 6.25, 3.125 µg/mL in culture tubes containing 1 ml of nutrient medium. To all the tubes including standards and controls, 0.1 mL of fresh inoculum was added and the tubes were incubated at $37 \pm 1^{\circ}$ C for 24 h (bacteria) and 25°C for 7 d (*A. niger*). The MIC was recorded in each case as the minimum concentration of compound, which inhibited the growth of tested microorganism. From the MIC observed, the intermediate concentrations between MIC values were prepared by suitable dilution of stock solution and the accurate MIC values were determined.

QSAR Analysis

The calculations of molecular descriptors of anilides as well as regression analysis were carried by using molecular package TSAR 3D version 3.3.³⁶ The description of these descriptors are available in the literature²⁶⁻³³ and therefore they are not described again here.

Cross validation

The predictive powers of the equations were validated by leave one out (LOO) cross validation method,³⁷ where a model is built with N-1 compounds and Nth compound is predicted. Each compound is left out of the model derivation and predicted in turn. An indication of the performance is obtained from cross-validated (or predictive q²) method which is defined as

 $q^2 = 1 - \Sigma \Box \ (Ypredicted - Yactual)^2 / \Sigma \Box \ (Yactual - Ymean)^2$ where, $Y_{predicted}$, Y_{actual} and Y_{mean} are predicted, actual and mean values of target property (pMIC) respectively. $\Sigma \Box \ (Y_{predicted} - Y_{actual})^2$ is predictive residual error sum of squares.

References

- [1] Fiddler, D. F. Emerge. Infect. Dis. 1998, 4, 169.
- [2] Oren, I.; Temiz, O; Yalcin, I; Sener, E; Altanlar N. *Eur. J. Pharm. Sci.* 1998, 7, 153. 3. Hong, C. Y. Z. *Farmaco.* 2001, 56, 41.
- [3] Ozawa, I.; Takeuchi, I.; Yamomoto, K.; Hamada, Y.; Ito, T.; Kuwahara, M.; Takagaki, T. *Chem. Pharm. Bull.* (*TOKYO*). **1984**, *32*(*1*), 305.
- [4] Narasimhan, B.; Belsare, D.; Pharande, D.; Mourya, V.; Dhake, A. *Eur. J. Med. Chem.* **2004**, *39*, 827.
- [5] Schultz, H. W. J. Pharm. Sci. 2006, 52(5), 503.
- [6] Niewiadomy, A.; Matisiak, J.; Macik-Niewiadomy, G. *Eur. J. Pharm. Sci.* **2001**, *13*, 243.
- [7] Ragavendran, J. V.; Sriram, D.; Patel, S.K.; Reddy, I. V.; Bharathwazan, N.; Stables, J.; Yogeeswari, P. *Eur. J. Med. Chem.* 2007, *42*, 146.
- [8] Biagi, G.; Giorgi, I.; Livi, O.; Nardi, A.; Calderone, V.; Martelli, A.; Martinotti, E.; LeRoy, S. O. *Eur. J. Med. Chem.* **2004**, *39*(*6*), 491.
- [9] Aydin, O. N.; Eyigor, M.; Aydin, N. Eur. J. Anaesthesiol. 2001, 18, 687.
- [10] Bouchain, G.; Delorme, D. Current Medicinal Chemistary. 2003, 10, 2359.
- [11] Clark, M. T.; Coburn, R. A.; Evans, R. T.; Genco, R. J. J. Med. Chem. 1986, 29, 25.
- [12] Hung, C.; Tsia, W.; Kuo, L.; Kuo, Y. Bioorg. Med. Chem. 2004, 13, 1791.

- [13] Wang, X.; Tang, Y.; Xie, Q.; Qiu, Z. Eur.J. Med Chem. 2006, 41, 226.
- [14] Narasimhan, B.; Kothawade, U. R.; Pharande, D. S.; Mourya, V. K.; Dhake, A. S. *Indian J. Chem.* **2003**, *42B*, 2828.
- [15] Narasimhan, B.; Mourya, V.; Dhake, A. Bioorg. Med. Chem. Lett. 2006, 16, 3023.
- [16] Narasimhan, B.; Mourya, V. K.; Dhake, A. S. *Khim.-Farm. Zh.* 2007, 3, 120.
- [17] Gangwal, N. A.; Narasimhan, B.; Mourya, V. K.; Dhake, A. S. *Indian J. Het. Chem.* **2003**, *12*, 201.
- [18] Narasimhan, B.; Kumari, M.; Jain, N.; Dhake, A.; Sundaravelan, C, *Bioorg. Med. Chem. Lett.* 2006, 16, 4951.
- [19] Narasimhan, B.; Kumari, M.; Dhake, A.; Sundaravelan, C. Arkivoc 2006, xiii, 73.
- [20] Kumar, A.; Narasimhan, B.; Kumar, D. Bioorg. Med. Chem. 2007, 15, 4113.
- [21] Narasimhan, B.; Mourya, V. K.; Dhake, A. S. *Arkivoc* **2007**, *i*, 189.
- [22] Pharmacopoeia of India; Ministry of Health Department: Govt. of India: New Delhi, **1996**, Vol. II, pA-88.
- [23] Cappucino, J. G.; Sherman, N. Microbiology—A Laboratory Manual; Addison Wesley: California, 1999, pp 263.
- [24] Sharma, P.; Rane, N.; Gurram, V.K. Bioorg. Med. Chem. Lett. 2004, 14, 4185.
- [25] Hansch, C.; Fujita, T. J. Am. Chem. Soc. 1964, 86, 1616.
- [26] Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J. J. Med. Chem. 1973, 16, 1207.
- [27] Kier, L. B.; Hall, L. H. Molecular Connectivity in Chemistry and Drug Research; Academic Press: New York, **1976**, pp 129–145.
- [28] Randic, M. J. Am. Chem. Soc. 1975, 97, 6609.
- [29] Balban, A. T. Chem. Phys. Lett. 1982, 89, 399.
- [30] Wiener, H. J. Am. Chem. Soc. 1947, 69, 17.
- [31] Sharma, P.; Rane, N.; Gurram, V. K. *Bioorg. Med. Chem.Lett.* **2004**, *14*, 4185.
- [32] Randic, M. Croat. Chem. Acta. 1993, 66, 289.
- [33] Wold, S.; Erikkson, L. Statistical validation of QSAR results. In Chemometrics Methods in Molecular Design; Water, H. V., Ed.; VCH: Weinheim, 1995; pp 309–318.
- [34] Golbraikh, A.; Tropsha, A. J. Mol. Graph. Model. 2002, 20, 209.
- [35]TSAR 3D Version 3.3, Oxford Molecular Limited, 2000.
- [36] Agrawal, V. K.; Singh, J.; Mishra, K. C.; Khadikar, P. V.; Jaliwala, Y. A. Arkivoc 2006, *ii*, 162