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Abstract: In aim goal of the present article is to determine the price of call European option in financial market model with inert 

investment agents, as described in , to a mathematical model of a financial market with jumps. This model takes also into account a 

certain inertial behavior of investors during small time intervals. Next the pricing of an European call option in this type of financial 

market out for this mathematical model. 
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1. Introduction 
 

In this paper we are interested in a mathematical model 

which describes a financial market consisting of small 

investors with different inertial. At a given time some 

investors are inert and others are active. In their article, 

Erhan et al. (2003),  concentrated themselves on the 

impact of the inertial behavior of investors to the formation 

of the price of the underlying financial asset by defining a 

functional central limit theorem for semi-Markov processes. 

They presented a simple microstructure model (micro-

economy) for the evolution of the price of a financial risky 

asset where this price is driven by a demand of several small 

investors with an inertial behavior. The latter mean that 

these investors are trading in an irregular manner and are 

inactive most of the time. 

 

Considering the non-Walras approach for the evaluation of 

the price of an asset and supposing that the price only 

changes when the market is in disequilibrium, Erhan et al. 

showed that in case the market consists of a big number of 

small inactive investors the logarithmic price process of an 

asset converges to a stochastic process. This process can be 

written as a stochastic integral with respect to fractional 

Brownian motion. But this fact poses a problem. Knowing 

that a stochastic integral which is defined with respect to a 

fractional Brownian motion with Hurst parameter  is 

not a semi martingale, this model may give an opportunity 

of arbitrage in this market. 

 

Based on the dynamics of the agents behavior, we are going 

in the first section construct the equation of the price process 

of the underlying financial asset. The second section will be 

concentrated on the determination of the equivalent 

martingale measures before passing on the evaluation of the 

price of an European call option. In the third section, we will 

be interested on a comparison of the evolution of the asset 

price in the context of an investment in the oil sector. The 

last section, we are going to do some concluding remarks. 

 

 

2. Model’s presentation 
 

We consider a financial market consisting of a certain 

number of investment agents which trade a single financial 

asset. The agents are small investors who remain inactive (or 

inert) in the market during a short time. Let  be the number 

of agents. Put  where , 

represent the agents in the market. Denote by  the price 

process of the risky asset, we will first describe in 

probabilistic terms the dynamics of the individual behavior 

of the agent. 

 

2.1. Construction of equation of the price process of the 

underlying financial asset 

 

Let  be the mode of trading of agent , who 

can be active or nonactive in the market during certain 

intervals. In order to reflect the inertia of agent a, we view 

the process  as being semi-Markovian on the probability 

space  with state space . In what follows we 

write . Let us now give an explicit mathematical 

formula for the process  in terms of a renewal Markov 

process. Let  and  be random 

variables which satisfy -almost surely: 

 
and  

 
for all , and  , where  is the at most 

countable state of the process . The process 

 is called the semi-Markovian renewal 

process with respect to  (Cocozza-Thivent, 1997). If we 

consider the process  as being homogeneous in time 

we get for every  and 

 the following equality  

 
The process defined by 
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is the semi-Markov process which represents the evolution 

of the trading mode of the agents in the market. This means 

that the (trading) mode of the agents during the random time 

interval  is given by the process .  The 

distribution of the length  of the interval   

may depend on the sequence  between the states 

 and . This leads us to the hypothesis that the 

distribution of the lengths of the intervals of the active and 

inactive agents is different. In addition to the process which 

describes the trading mode of the agents we consider a 

process  which indicates the level of the volume 

of the transactions in the market i.e market-wide amplitude 

process. It is large on time intervals with heavy trading and 

small on short time intervals of modest trading of the agents. 

Agent  accumulates assets at the rate . We recall 

that the random quantity  indicates the level of the 

transaction volume at time . 

 

The portfolio of agent  and the disequilibrium of the 

market at time  are respectively given by 

 and  

 

Hence, the process  describes the stochastic 

evolution of the “disequilibrium of the market”. In first 

times this process will be considered as the only parameter 

or component which drives the dynamics of the price 

process of the risky financial asset. In order to describe the 

distribution of the length of the trading intervals we return to 

equality (1). The Markov chain   on  associated 

with the renewal process is determined by the transition 

probabilities matrix  defined by 

           (3) 

If  for a some pair , then  for all 

. We can define the quotient . With this 

convention, if  and . are given, we can define the 

function of conditional distribution for the length   

of  time interval by 

 (4) 

with  the semi-Markov kernel of 

. 

 

Remark 1 

1) One way show that, if  is of the formation 

        (5), 

then  is a homogeneous Markov process. 

2) By Proposition (1.9) in Cinlar (1975), it follows that, 

knowing the Markov chain , the sojourn time of a 

semi-Markovian process are conditionally independent. 

This means 

 
 

From the second point of Remark 1, it follows that the 

lengths of period of inactivity and activity are independent 

and identically distributed among each other. As we have 

said previously, our goal is to analyze the additional effects 

on the formation of prices of the assets, under the condition 

that the probability of inactivity during a long time interval 

is larger that the probability of non-interrupted trading time 

of an agent. Mathematically speaking such an idea can be 

expressed by the hypothesis that the distributions of the 

lengths of the time periods of inactivity of agents have heavy 

tails, whereas the distributions of the lengths of time 

intervals of inactivity are small. 

 

In an endeavor to find an approximation result for the 

dynamics of the trading activity in a financial market 

containing a certain number of small investors we consider 

an evolution of the trading process which is faster that the 

signal of the amplitude of the market. Mathematically we 

express this by the introduction of a scaling parameter  

and consider the process of the trading mood  (for agent 

). For small ,  is called an accelerated semi-

Markov process. Observe however, that we do not change 

the principal qualitative characteristics of the model. The 

agents remain in a state of inactivity during a longer time 

than in a state of activity. Mathematically, there is no reason 

to restrict oneself to processes  which are positive. Hence 

it suffices to suppose that the process  is a continuous 

semi-martingale. Once the process  and the processes  

with , we define the process , the global 

order rate at time, by 

                          (7) 

The work of Erhan et al. (2003), have established the 

following limit theorem for a financial market with inert 

investors. This Theorem is announced below. 

 

Theorem 1 

 Let  be a semi-martingale on . Under 

the hypothesis (2.5) and (2.6) defined in  page 6; 

, there exists a positive constant  such that 

for every , the process of disequilibrium or of deficit 

of the market  defined by 

 
satisfies 

 
where the Hurst coefficient of the process of fractional 

Brownian motion   is . 

 

Remark 2 

In economic terms, this theorem says that in a mathematical 

model of a financial market with several agents of which the 

periods of inactivity are longer than those of activity and 

with a certain scale of trading frequency, the logarithmic 

price process can be approximated in law by a stochastic 

integral of  with respect to fractional Brownian motion 

with Hurst coefficient . Such an approximation may 

lead to an arbitrage opportunity because the process of price 

is not a semi-martingale. For conditions of existence of 

arbitrage opportunity the reader is referred to  and . 

 

If the processes , are stationary, independent, 

ergodic and Markovian on , with average zero, i.e. if the 

Kernel of the semi-Markovian process is of the form as 
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described in (4), then one can deduce the following result 

 
where  is a Brownian motion. This means that if the 

length of periods of non-activity of an agent is small, there is 

no arbitrage opportunity because the limit process is a semi-

martingale, which in fact is a martingale, provided 

. In our model we are going to consider the 

fact that the agents remain inactive in small time intervals 

and that for most of the time they remain active. We also 

consider the fact that these small moments of inertia of agent 

may turn certain jumps in the price process of an asset risky. 

These hypothesis allow us to present our model with inertia. 

 

In the construction of the model we assume that the jumps 

provoked by the inertia occur according to a law of Poisson. 

The size of the jumps will be given by real random 

variables. 

 

Let  be a Poisson process with intensity . The variable 

 indicates the number of times that the jumps occur 

before or at instant . Let  be a sequence of random 

variables distributed identically with mean  which 

give the sizes of the jumps. We assume the random variables 

 are independent of one another and also 

independent of the Poisson process . One shows that 

the process defined by 

        (10) 

is a Poisson process (See ); by convention . 

The jumps of  are achieved at the same time instants as 

those of , but the jumps in , are of size 1, while the 

jumps of , are of an uncertain size. The first jump has 

size , the second jump has size , … 

 

Denoted by  the characteristic function of 

the random variable . Since the random variables 

, are independent and identically distributed the 

function  does not depend in the index . The moment 

generating function of the  is by definition 

 

 

 
Because the random variables  tame their values in the 

finite set  with  

such that  for all  and 

. Then 

 
Let  be mutually independent and identically 

distributed random variables. In addition we suppose that 

they are independent of the process . Under these 

hypothesis, one can prove that  is a process 

with independent increments and mean  

 

We notice that in average there are  jumps in the interval 

 the average size of a jump is equal to  and that the 

jumps are independent of the size of the jumps. Thus 

 is equal to the product  

 

2.2. Compensated martingales 

 

Definition 1 Let  be a probability space endowed 

with a filtration  with  

Let  be a process of finite variation with  and with 

total variation which is locally integrable. The unique 

predictable process  with the property that  is a local 

martingale, is called the compensator of the process  The 

local martingale  is called the compensated local 

martingale of the process  

 

The existence and the uniqueness of the process  are 

guaranteed by the theorem of Rao which can be found in 

( ). 

 

From this Rao’s theorem, one can prove that the 

compensated Poisson process  is a martingale 

with respect to filtration  where  

Let 

,           (11) 

because the time intervals of inertia are shot and the agents 

remain longer in activity, in our model we incorporate the 

fact that during the time of activity the evolution of the price 

process is given by a standard Brownian motion  

Taking this hypothesis into account we will introduce in the 

general equation the following term 

           

Where  and  are processes which are adapted 

to the filtration generated by . In financial terms  

is called the rate of rentability at time instant  while the 

coefficient  represents the volatility of the price of the 

asset during the period of activity. The expression (12) will 

be considered as the classical term of the general equation of 

the price process of the risky asset. 

The term which describes the price evolution during the 

small times of inertia is given by 

              (13) 

Where  is a standard Brownian motion as in (9). Since 

the small inertias induce jumps in the price evolution of the 

risky asset, we introduce the following term to describe the 

jumps: 

             (14) 

Where the process  is the compensated martingale 

defined in (11), while the process  is bounded and 

predictable with respect to the filtration 

 The process  can be 

interpreted as factor or coefficient of readjustment of the 

length of the jumps. 

 

2.3. Model of financial market with small inertia and 

jumps 

 

Consider a financial market constructed on a probability 

space  jointly with the filtration  

given by 
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We assume that there are two assets in the financial market: 

one of the assets carries the risk and the other one is non-

risky. Denote  the price evolution of the non-risky 

asset and  price of risky asset. The process  

satisfy stochastic equation 

          (15) 

Where  is interest rate on the market. The process  is 

the solution of the following stochastic differential equation 

 (16) 

Where  and the real number  indicates the finite 

maturity date. Equation (16) can also be written in the form 

 

 
(17) 

Since the market contains small time intervals of inertia 

through the behavior of the agents, the term with  in 

equation (16) represents the inertia. The term with  in 

the same equation expresses the jumps caused by the inertia 

of the small agents. The part with pure jumps is given by the 

term . 

 

Remark 3 

In what follows we suppose that the coefficients  

and  of the model satisfy the following conditions: 

1) The function  is deterministic and bounded and  is a 

deterministic constant such that  for all 

 

2) The process  and  are adapted and uniformly 

bounded in  and ; 

3) The process  is predictable, continuous and bounded 

such that 

 where  

 

To show that under the hypothesis of Remark 3, Equation 

(17) of the model admits a unique solution, let recall the 

Theorem 2 below. Its proof can be found in . 

 

Theorem 2 Let  be a semi-martingale with . Then, 

there exists a (unique) semi-martingale  which satisfies 

 The process  is given by 

 

     (18) 

Or, written otherwise, 

 
           (19) 

Where  is the quadratic variation of the continuous 

part of . 

 

Proposition 1 Under the hypothesis of Remark 3 the 

equation 

 
Admits a unique solution given by: 

 

 

(20) 

which can also be written in the form 

 

 
Proof (See ). 

 

3. Equivalent martingale measures 
 

In this section we want to present an equivalent measure for 

the model of the financial market which contains small 

agents with an inertial behavior. As we remarked earlier the 

stochastic differential equation describing the price of a 

risky asset possesses essentially speaking two principal 

parts: its continuous and its pure jump part. The search of an 

equivalent martingale measure will consist of determining 

two processes  for the continuous part and  for 

the pure jump part in such a way that the process 

 with   and 

 will be a martingale with respect 

to the original probability measure. 

 

Knowing the two new expressions  and 

 respectively for  and , we 

will give following a sequence of proposition which will 

lead to definition of equivalent measure for compound 

Poisson process. 

 

Proposition 2 Let  and  be two Poisson 

processes on  with respective intensity  and  and 

jump size respectively  and . 

1) If  then  is equivalent to  with Radon-

Nikodym density 

     (22) 

2) If  then the measures  and  are not 

equivalent. 

3.1  

3.2 Proposition 3 Let  and  be compound Poisson 

processes on  with Levy measures respectively  

and . The measures  and  are equivalent if and only if 

 and  are equivalent. In this case the Radon-Nikodym 

derivative is given by 

       (23) 

Where  and  are the jump intensities 

of the two processes and  

The proof of Propositions 2 and 3 are given in . 

 

Proposition 4 Let  and  be compound Poisson 

processes on  with densities  and . As previously 

consider the sequence of random variables  which 

represent the jump sizes of  and . Let  and  

denote the respective distributions of the sizes. For all 
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 the variable  takes its values in . 

Then  and  are equivalent with Radon-Nikodym 

derivative given by 

 

           (24) 

Where  and , 

 the number of jump of size  of process . 

Moreover, the process  in (24) is a martingale with 

respect to the filtration  

 

Proof. Let . We consider  as 

defined above. Then from Proposition 2, we infer that  

 and are equivalent with Radon-Nikodym derivative 

 

            (25) 

In order to show that  is a Radon-Nikodym derivative, 

it suffices to prove that 

1)  

où  

2)  is a martingale with respect to  and 

. 

Indeed, we define the process  by  

which is a martingale with continuous part 

 and pure jump part . 

Then , and if there is a jump at time  then 

 
Hence 

 
From the definition of  and Equation (25) we remark 

that the process  can be written in the form 

 
According to Theorem 3, we deduce that the process  

satisfies the equation 

 
This leads to the equality 

 
Since  is a martingale and  is left continuous 

then  is a martingale. By the fact that  is a 

martingale and  we conclude that  

for all  . Hence the process  is Radon-Nikodym 

density on . 

 

For  the Poisson processes  and  are 

independent and in addition have not simultaneous. We have 

 

 

By application of Itô product rule we obtain 

 
 

Because  and  are martingale and the integrals in (27) 

are left continuous the process  is a martingale. 

 

Since  and  are independent, they do not have 

common jumps, and therefore it follows that  

 
The previous arguments also show that the product  

is a martingale as well. Repeating this procedure  times, 

we finally see that the product 

 
is also a martingale. It follows that 

 

 
is a martingale with  Therefore  for 

all  From equality (29) we conclude that  

is the Radon-Nikodym derivative relative to the change of 

measure for the compound Poisson process . It also 

shows that the process  is a martingale with respect 

to the filtration . According to the fact that 

, we deduce the following 

equalities: 

 

 
It is sufficient to take 

 for all .     (31) 

We see that the measures  and  are equivalent with 

Radon-Nikodym derivative the process  see the 

observation in Remark 4 below. 

This completes the proof.            

 

Remark 4 

Notice that the probability of the event , i.e.  in 

equality (31), does not depend on  as long as . 

Hence, we may write  . Here we 

use the fact that the process  is a martingale. 

 

Remark 5 

We can easily show that with respect to the measure , the 

process  is a compound Poisson process with intensity 

. So that the distribution of the jump sizes of  with 

respect to the measure  is equal to  In the next 

proposition we assume that the variables  are still 

iid, but not discrete anymore. 

 

Proposition 5 Let the hypothesis of Proposition 4 be 

satisfied, and suppose that the iid. variables  have 

densities  and  with respect to  and  

respectively. Then the measures  and  are equivalent with 

Radon-Nikodym derivative given by the martingale 
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Proof. The proof of this proposition is similar to the one of 

Proposition 4.                   

 

Knowing the new equivalent measure of the compound 

Poisson process, will enable us to define the equivalent 

probability measure for market model with inertia. This 

means an equivalent measure for the Brownian motions 

 and , and the compound Poisson process  

 

Let  be a probability space on which the Brownian 

motions  and  as well as the compound 

Poisson process  are defined. Here 

 is a Poisson process with intensity  

and the i.i.d. variables  have  as jump density 

function. On the space  we consider the filtration 

, where  

We know by hypothesis that the Brownian motions 

 and the compound Poisson process  are 

independent. This fact will be used in Lemma 1 below. Let  

be positive real number, and let  be another jump 

density function with the property that  

=0. Let  and  be two processes which are adapted 

to  and satisfy the following conditions: 

 
and process  is martingale. With this notation we 

define 

 

 
and 

 

Lemma 1 The process  defined in (35) is a martingale. 

In particular  for all  

 

Proof. It is know that the processes  and  are 

martingales: see Proposition 4. Since  is continuous 

and  does not contain a Brownian motion part, we have 

. The product rule for Itô calculus shows 

 
Consequently 

 

Since the processes  and  are continuous from the 

right and have limits from the left, the two integrals in (37) 

are martingales. Hence the product  is a 

martingale. From equality (35) it is clear that  So 

we see  for every  because  is a 

martingale. This concludes the proof.          

 

Fix a real number  and define the probability measure  

by: 

 
Then the new measure  defined in (38) is a probability 

measure which is equivalent to  with the process  as 

Radon-Nikodym density. The probability measure  is 

called the neutral risk measure or adjustment measure. 

 

Theorem 3 With respect to the probability measure  the 

processes 

 
and  

 
are Brownian motions, and  is a compound Poisson 

process with intensity . The variables  are 

independent and identically distributed, with  as density 

of the distribution of the jump size. In addition, the 

processes ,  and  are independent. 

 

Proof. The proof of this theorem follows from combination 

of the Theorem (11.6.7), Theorem (11.6.9) and Theorem 

(11.6.10) in .                       

 

Remark 6 Suppose that the compound Poisson process  

has jumps  which attain their non-zero values in the 

finite set  with  such that 

 and  

 

Let  be strictly positive quantities 

with sum is equal to 1. We redefine the new probability 

measure  by taking 

 

 
where  are independent Poisson 

processes with intensity . 

 

Corollary 1 With respect to the measure  as defined in 

Remark 6, the processes  

 and  

(40) 

 

Are Brownian motions,  is a Poisson process with 

intensity  and jump variables  which are i.i.d. and 

satisfy  for all 

. Moreover, the processes 

 and  are mutually independent. As a 

consequence for every  the processes  

and  are independent as well. Every  is a 

Poisson process with intensity . The processes 

 are also mutually independent. 
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Proof. The proof of this Corollary follows from application 

of the Theorem 3 and Remark 6.             

 

Remark 7 Under the new measure , we have 

1)  with  the intensity 

of . 

2) . 

3) . 

4) The process  is a martingale with respect to 

the measure  

 

Next we will construct a neutral risk measure. By employing 

the notation as indicated in the preceding remarks 6 and 7 

and also Corollary 1 we know that the price of the risky 

asset is given by 

 
 

The discount price process can be written as 

 

with . By applying Itô's formula 

to equation (42) we get: 

 

 

 
 

From equality (43) it is clear that the process , 

representing the discount price process is a martingale if and 

only if  

 
Equation (44) can be written in the form: 

 
It is well-known that 

 and        (46) 

Using (46) the equation in (44) becomes 

 
In this way we get an equation with  unknowns: 

 and . Equation (47) is called the equation of 

the price of the market risk. It is clear that the equation 

admits an infinity of solution. This observation implies the 

existence of several equivalent measures for which the 

discount price process is a martingale. It follows that the 

financial market is incomplete. 

 

Remark 8 

1) If  and  the equation (47) becomes 

the equation of the market risk for the classic model 

given by: 

       (48) 

where 

 
with  the prime of the market risk. 

2) The financial market becomes complete under certain 

conditions: for example when it is constituted of 4 

assets and 2 values of jumps sizes. 

3) If the random variables of jumps sizes are not discrete, 

but have densities  and  with respect to 

measures  and  respectively, then it follows that: 

 and . 

The equation (44) becomes 

    (49) 

Next we return to the general case and suppose that the 

unknowns  and  are chosen in such a way that 

the equation of the price of market risk (47) is satisfied. 

Then 

 

                  (50) 

with . The solution of equation (50) is 

given by 

  

                  (51) 

In the following section, Equation (51) which describes the 

price process of the risky asset, is going to be very useful for 

the pricing of the European call option. 

 

4. Pricing of an European call option 
 

In this section we try to evaluate the price of an European 

call option in the setting of market model with inertia as 

defined above. Next we determine the bracket of the viable 

price of such an option. 

 

4.1 European call option 

 

Let a financial market be defined in a probability space 

 endowed with a filtration  where 

 

 
 

Consider an European call option defined by an 

measurable random variable  with respect to an 

underlying risky asset, the price of which is given by 

equation (51). Let  be the time of maturity of the option 

and  the price at time of maturity. The random variable  

is defined by . Te value of the option at 

time  with  is given by  

 
with 
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In what follows later we will calculate the explicit value of 

an European call option in case that the coefficients  

and  in equation (51) for   are constant. Before passing 

to the calculation of the value of the option we announce the 

following (independence) lemma which can be found in . 

 

Lemma 2 Let  be a probability space and  a sub-

-field of . Let the random variables  be -

measurable. Suppose that the random variables  are 

independent of . Let  be a function 

of the standard variables  and  defined in 

such a way that 

 
Then  

 
We introduce the following notation which will be useful in 

the development of the calculation of the value of an 

European call option: 

 
where 

 
and 

 
Remark 9 The function  in the above notation is the 

cumulative distribution function for the standard normal law. 

The function  corresponds to the value of an 

European call option in a Black-Sholes model based on a 

geometric Brownian motion with constant volatility , with 

an expiration time which lies  time units in the future, 

constant interest rate , and price at maturity equal to . In 

terms of the expectation with respect to  the function 

 can also be written in the form 

 
where  is a standard normal random variable with respect 

to the probability . 

 

Theorem 4 Suppose that the coefficient  and  are 

constants in the equation (53) of the price process of the 

asset . Denote by  the continuous part of the 

price process . Then the value of the 

European call option on the asset with price process  is 

given by 

 
where 

 

 
 

 
and  

 
with 

 

In the definition of , the notation 

 
is used and in (55) the variable  is replaced by  

 

Proof. Since the coefficients  and the interest rate  

are constants. We have 

 

 
The value of the European call option  at the moment 

 on the underlying asset, the price of which is 

driven by the process , the maturity being fixed at time 

 and with price  at time  reads as 

               (62) 

where  is the -field generated by the Brownian 

motions  and . By carrying the value of  from (61) 

to (62) we infer 

  (63) 

The equality in (63) is obtained by the -measurability of 

 together with fact that the two variables  

and  are independent of . By writing 

 
and choosing  such that 

 
we get 

 
By introducing the variable 

 
the value of the option becomes 

 
To obtain the equality in (64) above we used the fact that 

 is a standard normal random variable. The integral in 

(64) is positive because 

 
 

The inequality in (65) is equivalent to 

 
 

By taking  
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and recall that  the integral in (64) can be 

written as 

 

 
For brevity in (67) we wrote 

 
A substitution shows the equalities 

 
where  

 
We also have 

 
Finally using (68) and (69) the equality in (67) can be 

rewritten as 

 
where, as above , and  

 
This completes the proof.             

 

In Theorem 5 below we consider the case of a price process 

with a non-trivial jump part to calculate the value of the 

corresponding European call option. 

 

Theorem 5 For  the price of an European call 

option with respect to the neutral risk measure is given by 

 where  is the price process with 

jumps of the underlying asset. The function  

is defined by  

 
with  

 
 

The parameters  and  are defined in Theorem 4 

above. 

 

Of course, in order to find the function  we combine 

the equalities (71) and  (72) and substitute 

  

 

Proof. From the definition of the value of the option at time 

, we know that the price of an European call option is given 

by 

 
Since the variables  and  are independent of  and the  is -measurable, 

from the independence Lemma 2 it follows that 

 
where  

 
We rewrite the expression for  in the form 

 
In (76) we used the facts that the variable 

 is measurable with respect to the -field 
 and that the variables  do not 

depend on  Put 
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and also . It is clear that the random variables  

and  are standard normal random variables with respect to 

the measure . By again invoking Lemma 2 from (76) and 

definition of  in (54) we obtain 

 
It follows that 

 
Observe that if we take the conditioning on the event 

 in equality (77), the distribution 

of the random variables  and 

 coincide. In addition,  

 
So we obtain 

 

 

 
Because 

 
This completes the proof of Theorem 

        

5. Application 
 

Here we are going to consider a real example about an 

investment in oil sector . We will do a simulation of the 

asset price process and we will see its behavior at each time 

. In proposition 1, the asset price process is given below. 

 
 

We used GNU Octave version 3.8.1 for doing simulation. 

The simulation gives us two curves, which include the one 

for the asset price process with jumps and the one of the 

asset price process without jumps. To obtain this plot, Figure 

1 below, we setted that  and  are 

constants. Letting that 

. The one 

with without jumps is obtained by setting that  in 

the expression of , Expression (96). 

 

 
Figure 1: Evolution of price process with jumps and without 

jumps 

 

6. Concluding remarks 
 

In the terminology of this paper, we formulated the problem 

of inertia through the price process of the underlying risky 

asset of which the evolution is described by stochastic 

differential equation with jumps. Compared to the general 

form of this type of equations (i.e. stochastic differential 

equations with jumps), the stochastic differential equation in 

a model with inertia possesses an extra Brownian term. This 

term contains the parameter of the disequilibrium of the 

market caused by the inertial behavior of the small invest 

agents. 

 

By stochastic calculus we have determined the price of an 

European call option in an explicit manner for a financial 

market with inertia. We also established that the price of an  

European call option is a solution to an integro-differential 

equation which depends on the disequilibrium parameter of 

the financial market. 

 

Finally, we have done with a numerical example about the 

asset price evolution; both considering the evolution of asset 

price with jumps and without jumps. In the future, we can 

consider the evolution of option price with jumps and 

without jumps. 
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